
  informatics

Concept Paper

Big Data in the Era of Health Information Exchanges:
Challenges and Opportunities for Public Health

Janet G. Baseman 1,* ID , Debra Revere 2 ID and Ian Painter 2

1 Department of Epidemiology, University of Washington, Seattle, WA 98105, USA
2 Department of Health Services, University of Washington, Seattle, WA 98105, USA;

drevere@uw.edu (D.R.); ipainter@uw.edu (I.P.)
* Correspondence: jbaseman@uw.edu

Academic Editors: Mouzhi Ge and Vlastislav Dohnal
Received: 11 September 2017; Accepted: 7 November 2017; Published: 10 November 2017

Abstract: Public health surveillance of communicable diseases depends on timely, complete,
accurate, and useful data that are collected across a number of healthcare and public health systems.
Health Information Exchanges (HIEs) which support electronic sharing of data and information
between health care organizations are recognized as a source of ‘big data’ in healthcare and have the
potential to provide public health with a single stream of data collated across disparate systems and
sources. However, given these data are not collected specifically to meet public health objectives,
it is unknown whether a public health agency’s (PHA’s) secondary use of the data is supportive of
or presents additional barriers to meeting disease reporting and surveillance needs. To explore this
issue, we conducted an assessment of big data that is available to a PHA—laboratory test results and
clinician-generated notifiable condition report data—through its participation in a HIE.

Keywords: big data; communicable diseases; data mining; data quality; epidemiology;
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1. Introduction

We evaluated two datasets—for sexually-transmitted infections (STIs) and non-STIs—for the time
period of 1 January 2012–15 September 2013 used by a PHA that is part of one of the largest and oldest
HIE infrastructures in the US. The two datasets were independently analyzed for their data quality,
utility, and appropriateness for meeting public health surveillance objectives: (1) timeliness, defined as
the difference between earliest date of a disease report and date the report is received at the PHA;
(2) volume, defined as the number of disease report cases received by the PHA; and (3) completion,
defined as the number of days to close a disease case report.

Our assessment uncovered the following challenges for effective utilization of big data by
public health:

(1) While PHAs almost exclusively rely on secondary use data for surveillance, big data that has
been collected for clinical purposes omits data fields of high value for public health.

(2) Big data is not always smart data, especially when the context within which the data is collected
is absent.

(3) Data collected by disparate, varying systems and sources can introduce uncertainties and limit
trustworthiness in the data which may diminish its value for public health purposes.

(4) The process by which data is obtained needs to be evident in order for big data to be useful to
public health.

(5) Big data for public health purposes needs to answer both ‘what’ and ‘why’ questions.
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Despite these and other issues such as measurement error and confounding that are well-known
challenges to both big and small data, strategies traditionally employed by public health
epidemiologists and other public health professionals can uncover limitations and contribute to
the design of solutions in collection, integration, warehousing, and analysis of big data so its value and
utility to public health can be optimized.

In recognition of the 10 year anniversary of the incorporation of the Internet search firm Google,
the journal Nature issued a special supplement on ‘big data’ and what the availability of large data
sets meant and will mean for scientists and researchers [1]. In particular, the supplement focused
on the opportunities that will be possible when issues such as interoperable data infrastructures,
security, data standardization, storage and transfer requirements, and data governance are resolved.
Now, nearly 10 years later, users of big data—characterized by the 5 Vs (huge volume, high velocity,
high variety, low veracity, and high value)—still encounter the issues presented in the Nature special
supplement [2]. In particular, the primary challenges to utilizing big data center around the diversity of
data types (variety), the resources required to handle data collection, storage and processing (velocity),
and uncertainties inherent in mixing and cleaning data from varied data streams that generates
unpredictability in the data (veracity) [3].

Nevertheless, within the health care sector, despite these challenges, big data also promises great
opportunities to improve quality of health care delivery, population management, early detection of
disease, decision-making, and cost reduction [4]. Major contributors to the explosion of big data are
investments in information technology (IT), such as increased adoption of electronic medical record
systems [5], and the creation of health information exchanges (HIEs) [6] which facilitate sharing of
electronic data and information between health care organizations [7]. While the focus of HIEs has
been on sharing patient information between clinics, hospitals, pharmacies, laboratories, and payers,
public health agencies (PHAs) are increasingly included in HIEs [8]. PHA participation in a HIE
provides a single stream of data collated across disparate systems and sources for public health.

Public health is a data-intensive and -driven field. Data is a highly valued currency for assessing
the health of the community; providing guidance to stakeholders for handling a foodborne illness
outbreak; forecasting the burden of seasonal influenza to enable sufficient timing to vaccinate
vulnerable populations; and innumerable other efforts that aim to prevent disease, prolong life,
promote human health, and mitigate unnecessary suffering [9]. Within the context of big data,
public health efforts include linking information technology systems to conduct population-based
cancer research and surveillance [10], more effectively identify behaviors that can build healthier
communities [11], and improve targeted and timely epidemiologic surveillance of communicable and
infectious disease [12].

Specific to public health surveillance of communicable diseases, effective surveillance relies on
time-sensitive, complete, accurate, and useful data that are collected across a number of healthcare
and public health systems. It could be assumed that PHA participation in a HIE would support
and potentially improve surveillance efforts as data collected within the clinical encounter could be
shared with public health more rapidly and be integrated into PHA decision support systems to meet
public health practice needs. However, given that these data are not collected specifically to meet
public health objectives, it is unknown whether a PHA’s secondary use of the data is supportive of
or presents additional barriers to meeting disease reporting and surveillance needs. To explore
this issue, we conducted an assessment of big data that is available to a PHA—laboratory test
results and clinician-generated notifiable condition report data—through its participation in a HIE
and discuss the extent to which its value impacts the rationale for investing in the infrastructure,
including workforce training, that is required to collect and interpret this data and ultimately inform
measurable improvements in the health of public health community stakeholders.
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2. Objective

To explore challenges and opportunities for utilizing a public health big data available through
PHA participation in a HIE.

3. Methods

Ethics: This study was approved by the Indiana University Institutional Review Board with
cross-institutional and concurrent IRB deferral from the University of Washington.

Data Source: Datasets for the time period of 1 January 2012–2015 September 2013 were pulled
from two public health surveillance systems: (1) the Statewide Information Management Surveillance
System (SWIMSS) which collects electronic lab reports (ELRs) and communicable disease reports
(CDRs) for STIs; and (2) InSight, the county’s core population health data system that collects ELRs
and CDRs of non-STI data for public health surveillance activities. The SWIMSS data pull was limited
to the most prevalent and highly-reported conditions: chlamydia, gonorrhea, and syphilis. The InSight
data pull was limited to acute hepatitis B, chronic hepatitis C, and salmonella.

Analysis: The two datasets were independently analyzed for their data quality, utility,
and appropriateness for meeting public health surveillance objectives, including: (1) timeliness, defined as
the difference between earliest date of a disease report and date the report is received at the PHA;
(2) volume, defined as the number of disease report cases received by the PHA; and (3) completion,
defined as the number of days until a case report is marked as closed by the investigator.

Each dataset was separately reviewed for data quality issues. Duplicate records were removed
missing data rates tabulated. Patterns of missing data over time were visualized over time and
change point analysis [13] used to estimate time points at which underlying process changes may
have occurred. Processing times (time to receipt of test results and PHA time to process results) were
calculated in calendar days. Metadata was not available on which days the PHA conducted work,
and this was estimated from the data based on days on which any cases were closed, and this estimated
metadata was used to calculate number of work days required to close each case. Analyses of factors
associated with time to receive and time to process cases were conducted after removal of atypical
times. We aggregated case counts by disease and month to examine seasonal patterns of disease counts,
and aggregated case counts by disease and week to examine possible outbreaks and associations
between outbreaks of different disease types. Occurrences of possible outbreaks were examined using
a thresholds of three standard deviations above a 31 day moving average.

4. Results

The final SWIMSS dataset included chlamydia (n = 28,018); gonorrhea (n = 7791); syphilis (n = 810);
and syphilis, reactor (n = 3118). The final InSight dataset included acute hepatitis B (n = 563);
chronic hepatitis C (n = 2160); histoplasmosis (n = 73); and salmonella (n = 210). Table 1 summarizes
data exclusions resulting from the data quality analysis.

Table 1. SWIMSS and InSight data quality summary.

DATA-
SET

Total
Number of
Records in

Initial
Data Pull

EXCLUSIONS
Final

Number
of

Records
in

Dataset

Missing Data Date Anomalies

Date before
01/01/2012 or
Could Not
Calculate

No
Diagnosis

No Lab
Tests

“Time to
Receipt”

Anomalies

Lab Test
Date

Anomalies

Public Health
Activity Date

Anomalies

“Time to
Close”

Anomalies

SWIMSS 48,250 0 0 5392 325 1178 909 709 39,737

InSight 3719 321 4 0 163 0 12 213 3006

We identified five specific challenges to secondary use of HIE data for meeting public health
communicable disease surveillance needs. These challenges are illustrated by accompanying analyses.
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Challenge 1: While PHAs almost exclusively rely on secondary use data for surveillance, big data
that has been collected for clinical purposes omits data fields of high value for public health.

For example, demographic characteristics such as race/ethnicity are highly valued for
understanding population level disparities in health and health care. Detailed spatial data (for example
zip code level or finer) are data values for population-based forecasting and targeted development of
health promotion materials and resource allocation but little used by clinicians; we observed lower
data quality for these fields in our analysis. However, as seen in Figure 1, this information is not
reliably collected which can diminish the secondary use of this big data. This is observed in other
population level databases; for example ethnicity information in Medicare enrollment data has low
sensitivity and specificity [14].
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Figure 1. Missing value rates for ethnicity field, SWIMMS database.

Challenge 2: Big data is not always smart data, especially when the context within which the data is
collected is absent. While big data is suitable for detecting an increase in volume of a particular variable
of public health interest, it also presents classic, well-known outbreak detection problems such as
unknown or fluctuating denominators (for example, where only positive test results are known and the
underlying number of tests performed unknown) and signal-noise problems (for example, where early
detection of outbreaks requires detecting low numbers of cases with non-specific symptoms from
much larger volumes of health care encounters).

An illustration of this challenge is our observation in the data of an increase in the volume of
salmonella cases (Figure 2). An initial interpretation would be that there is a probably salmonella
outbreak. However, we learned that during the volume upticks, there was a shigella outbreak in
the community. The observed increase then may be attributed to heightened clinical awareness and
testing for any gastrointestinal illness symptoms, rather than a true increase in salmonella cases.
Also, what appears to be an uptick may be understood to be the true prevalence of salmonella in the
community and be interpreted as an indicator for low clinician reporting of a communicable disease.
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Figure 2. Salmonella counts by week with alert thresholds, Insight data base.

Challenge 3: Data collected by disparate, varying systems and sources can introduce uncertainties
and limit trustworthiness in the data which may diminish its value for public health purposes.

For example, in the case of laboratory reports, a positive lab test result can be generated by
numerous different types of lab tests. A lab test reporting a positive case of acute hepatitis B can be
due to any one of 22 different lab test codes, representing multiple types of lab tests. Chronic hepatitis
B has 31 different lab test codes, while chronic hepatitis C has 48 different lab codes. We identified
considerable variation in use over time for some tests (tests 2, 3, 8, 10, and 11) as illustrated in Figure 3.
Different lab tests may have different sensitivity and specificity characteristics, and so changes in lab
test composition over time complicate interpretation of trends.

Challenge 4: The process by which data is obtained needs to be evident in order for big data to be
useful to public health. Changes in the data generation and collection processes that underlay testing
for disease and collection of test data can have big impacts on value of data for public health (examples
could include changes in the type of test used at a facility or changes in personal resulting in changing
patterns of coding usage).

For example, Figure 4 shows a curious parallel double bump in counts for three diseases.
The parallel increase suggests a change in the underlying process of testing or acquiring data rather
than in the disease processes. The date range for the increase in disease counts suggests that a change
in the processes of disease testing associated with December holidays may have contributed. However,
the previous year saw no pattern of increases during the same time period.

Challenge 5: Unlike many other domains in which big data is used, big data for public health
purposes needs to answer both ‘what’ and ‘why’ questions. Also, unlike some other health care fields,
PHAs are responsible not only for the health of the communities they serve but also accountable to
other government agencies and elected officials who must make decisions and enact policies based
on public health surveillance observations. Incorporating metadata about a big data source can help
guide answers to ‘what’ and ‘why’ questions that can arise when analyzing and interpreting findings.
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Figure 3. Lab test code used for positive hepatitis C reports by time for lab test codes with more than
30 reports. Each row represents a different lab test code, with vertical bars represent when reported
cases occurred.
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Figure 4. Counts of positive test results for chlamydia, syphilis reactor, and gonorrhea aggregated
by week.

An illustration of this challenge is presented in Figure 5, a timeliness analysis which identified
substantial differences by day of the week for lab test ordering and processing. These differences by
day of the week appear to impact delivery of lab results to the PHA. It is unknown whether this could
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be accounted for in differences among labs in processing protocols, how a lab combines different test
codes to generate a final test report, or other factors that might elucidate why this difference occurred.
In turn, this timeliness difference could impact the timing for issuing a public health advisory to the
community or to health care providers regarding an increased volume of, for example, acute hepatitis
B. Needed metadata about lab processing and reporting practices could make the difference in timing
for an advisory and also help elected officials feel more confident about a finding that could require
policy decisions to stop the spread of a communicable disease in the community.
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Figure 5. Time to receive case report by public health by disease and day of week, Insight DB.

Table 2 is another illustration of the need for metadata, this focused on clinician reporting.
We identified significant variation between the day of the week that a case report is received at
the PHA, as well as considerable variation in reporting by condition. However, in the absence of
contextual factors that can influence reporting variation, such as seasonal fluctuations in illness
(for example, higher prevalence of influenza during winter months), interpretation of this finding
requires more information.

Table 2. Variation in reporting by condition and day of week report received.

Monday Tuesday Wednesday Thursday Friday

N % N % N % N % N %

HEPBA 36 24.2 30 20.1 31 20.8 22 14.8 30 20.1
HEPBC 132 24.5 78 14.5 127 23.6 98 18.2 104 19.3
HEPC 699 28.7 457 18.8 406 16.7 460 18.9 414 17.0
HISTO 29 35.8 14 17.3 14 17.3 11 13.6 13 16.0

SAL 67 30.0 37 16.6 34 15.2 40 17.9 45 20.2

5. Discussion

According to Khoury and Ioannidis (2014), effective utilization of big data in public health centers
on two challenges: addressing the trade-off between access and accuracy and the task of separating
true signal from large and varied noise [15]. Our assessment of a large dataset available to public
health not only provides examples of these challenges but also points to pathways for turning these
challenges into opportunities.

Challenge 1: While PHAs almost exclusively rely on secondary use data for surveillance, big data that
has been collected for clinical purposes omits data fields of high value for public health.
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As important as secondary use data is for public health surveillance, public health lacks
mechanisms to enforce completeness of fields or timely reporting. Our example of missing
race/ethnicity data is a compelling case as without this information, a PHA will not be able to target
health promotion efforts to the most affected or vulnerable populations. Public health is recognized
as chronically underfunded; PHAs are not only unlikely to offer incentives for data collection, they
need to use scarce resources wisely. Conducting a STI prevention program in a community that does
not experience high levels of chlamydia, for example, would be wasteful as well as potentially cause
friction in community relations. In recent years, some mechanisms, such as ‘meaningful use’ [16],
have been enacted to expand current case reporting between hospitals/providers and public health
and increase capacity for data management and analysis. Figure 1 shows evidence of improvement
in the completeness rates of the ethnicity field for one data base that have resulted from changes in
the underlying process of collected this field. However, enforcing compliance in complete and timely
reporting may be outside the resources of public health.

Challenge 2: Big data is not always smart data, especially when the context within which the data is
collected is absent.

A constant issue with notifiable condition reporting systems is the lack of a denominator for the
number of positive test results, in part due to privacy reasons that are difficult to avoid. This lack of
context limits the value of reportable systems for disease detection, mainly in terms of increasing the
rate of false positive alerts. Big data methods to determine context from other data sources would be
of great value for public health. The opportunity here is to make use of the experience big data has
with processing unstructured data and data from multiple sources to use big data methods to help
understand the context of the clinical data.

Challenge 3: Data collected by disparate, varying systems and sources can introduce uncertainties and
limit trustworthiness in the data which may diminish its value for public health purposes.

The further away the use of the data gets from the original purpose for its collection, the higher
the potential for data quality, integrity, and value problems. There is the opportunity for public health
to play a role providing population health level situational awareness information back to the data
originators. This would show value to data originators of data fields that they collect but do not
directly use. As an example of population health situational awareness information would be obesity
rates within populations that match characteristics of the provider’s panel population.

Challenge 4: The process by which data is obtained needs to be evident in order for big data to be useful
to public health.

Big data methods which can detect and adjust for underlying changes in the process that govern
the collection of public health data would be beneficial. Three areas relating to metadata would
be useful.

1. Techniques for automatically identifying where metadata is needed would be useful (for example
automatically identifying and flagging changes in data suggestive of underlying changes in the
data generation process).

2. Techniques for generating metadata from the data itself (for example, we used counts of cases
processed on each day to generate metadata labeling which days were days public health
performed work on).

3. Techniques that adjust analyses based on metadata, especially with regard to data quality.
In situations where PH have little recourse on improving DQ methods that adjust for DQ need
to be developed. For example nowcasting methods (predicting the present state based on the
incomplete data at hand) can account for data which accrues over time [17–19].

Challenge 5: Big data for public health purposes needs to answer both ‘what’ and ‘why’ questions.
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PH use of big data is unique in that it is constrained by risk of failure. If PH fails to stop
an outbreak, preventable accidents, deaths, mortality can result (e.g., Ebola surveillance, detection,
and prediction failure). If PH predicts an outbreak that does not materialize, the costs can include
relationships with stakeholders, media, and the public. In addition, PH has a responsibility to monitor
and data sources that it does receive; thus, data of unclear value to public health uses resources that
may be better invested elsewhere.

6. Conclusions

Despite these and other issues, such as measurement error and confounding that are
well-known challenges to both big and small data, strategies traditionally employed by public health
epidemiologists and other public health professionals can uncover limitations and contribute to the
design of solutions in collection, integration, warehousing, and analysis of big data so its value and
utility to public health can be optimized.
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