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Abstract: Text fields in electronic medical records (EMR) contain information on important factors
that influence health outcomes, however, they are underutilized in clinical decision making due to
their unstructured nature. We analyzed 6497 inpatient surgical cases with 719,308 free text notes
from Le Bonheur Children’s Hospital EMR. We used a text mining approach on preoperative notes to
obtain a text-based risk score to predict death within 30 days of surgery. In addition, we evaluated
the performance of a hybrid model that included the text-based risk score along with structured
data pertaining to clinical risk factors. The C-statistic of a logistic regression model with five-fold
cross-validation significantly improved from 0.76 to 0.92 when text-based risk scores were included in
addition to structured data. We conclude that preoperative free text notes in EMR include significant
information that can predict adverse surgery outcomes.
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1. Introduction

The National Academies of Science, Engineering, and Medicine has suggested that health
information technology has the potential to improve care and health outcomes [1]. To make this
vision a reality requires the capacity to predict uncommon events that are potentially preventable.
Death after surgery in children is an infrequent occurrence, with an incidence rate of <1.0% [2,3]. Other
adverse outcomes such as unplanned return to the operating room, reintubation after surgery, need for
blood transfusions, and unplanned readmission are more common, with incidence rates ranging from
0.2% to 4.4% [4–6]. Since over 5 million operations are performed on children each year in the United
States [7], even a low rate of postoperative mortality represents thousands of lives lost prematurely.
The best published models predicting these events rely on structured data such as that contained in
the National Surgical Quality Improvement Program-Pediatric (NSQIP-Ped) by American College of
Surgeons [3,8,9]. Such models are useful in quality improvement work, risk-based payment methods,
in improving surgical decision-making, and in providing accurate informed consent discussions with
parents [10–13].

The value of EMR data mining for research applications and clinical care is beginning to be
realized [14,15]. However, analysis of the unstructured text data found in clinical narratives, such as
admission and discharge summaries, observation notes, and a variety of reports in the EMR has been
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relatively underutilized. Several Natural Language Processing (NLP) methods have been specifically
developed for mining EMR data, including MedLEE [16], HiTex [17], cTAKES [18], and TEPAPA [19].
A recent systematic review showed that the majority of NLP approaches have focused on information
extraction tasks such as case-detection [20]. Meta-analysis of 19 case-detection studies showed that the
median precision and C-statistic significantly increased when unstructured text was used in addition to
structured data from the EMR [20]. Other studies have utilized unstructured text in the EMR to predict
health outcomes [21,22]. Frost et al. [23], using used text fields from over 43,000 patients to, predict
risk of frequent emergency department visits and high system costs with a C-statistic of 0.71 and 0.76,
respectively. Weissman et al. [24] showed that inclusion of unstructured text along with structured
data improved prediction of death in the ICU by using four different predictive modeling approaches.

Text-mining of clinical notes has been used to identify postoperative complications in veterans [25]
but, to the best of our knowledge, has not been utilized for predicting postoperative surgery outcomes
in children. In this study, we examined the use of free text notes in the EMR for preoperative prediction
of death after surgery in children. We hypothesized that (1) a risk score can be created through mining
unstructured free text notes in EMRs and (2) this text-based risk score will improve the performance of
models that only use structured data such as those defined by NSQIP-Ped [26].

2. Materials and Methods

We analyzed a sample of children undergoing inpatient surgical procedures at Le Bonheur
Children’s Hospital, Memphis, TN, USA, on or before their 19th birthday, whose medical records
included preoperative free text notes and whose operation occurred between 1 January 2014 and
31 May 2017 (See Figure 1 for details). Children without preoperative text data were excluded.
Those with preoperative text data were divided into two groups based on their inclusion (or not)
in the NSQIP-Pediatric program. Preoperative text from non-NSQIP cohort was used to develop a
model text-based risk model (training cohort) and this model was then tested on the NSQIP cohort
(the testing cohort).
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2.1. NSQIP Cohort

LeBonheur Children’s Hospital participates in the NSQIP-Pediatric Program, and reports data
that is included in the Participant Use File of the NSQIP-Pediatric Program. A surgical case reviewer
abstracts clinical data for a nonrandom sample of children undergoing operative procedures as
previously published [26]. Over 300 perioperative-standardized variables were collected. For this study,
death within 30 days of surgery (D30) was chosen as the main outcome variable, and other adverse
events as secondary outcomes. Based on previous work by our group [3,8,9], fifteen preoperative
variables were identified as risk factors of D30. Dichotomous risk factors included ventilator
dependency, oxygen support, previous cardiac intervention, cerebral palsy, open wound with or
without infections, neuromuscular disorder, bleeding disorder, hematologic disorder, inotropic support,
blood transfusion, malignancy, do-not-resuscitate order, and neonatal status. Case type and sepsis
were the two risk factors with more than two categories and were converted to multiple dichotomous
risk factors. We excluded the American Society of Anesthesiology (ASA) class score since it has been
shown to correlate with most of the included variables and is itself a risk score. NSQIP definitions for
risk factors and outcomes were used throughout [26].

2.2. Text Mining and Development of Text-Based Risk Score

The flow diagram for the text processing and risk score calculation is shown in Figure 2.
Unstructured text fields from all inpatient, outpatient and ambulatory settings prior to the date
of surgery were extracted for individuals who had surgeries from January 2014 to May 2017. Records
were extracted using HL7 Clinical Document Architecture (HL7/CCA) standard from the Cerner EMR
system by Methodist/LeBonheur Hospital, then converted to Continuity of Care Document (CCD)
in XML, and submitted to Quire Inc. (Memphis, TN, USA) for downstream processing. Each XML
document represents a single patient encounter, which may potentially have multiple notes spanning
multiple days at multiple locations. In an example where a patient arrived at ER then transferred to
surgery and had a later follow-up visit, each of these three related interactions had an independent
provider note but all notes were linked to one encounter ID (FIN). The unstructured text was UTF8
HTML encoded and extracted from the “text” element in the “Assessment and Plan” section of the
XML document. The HTML tags were removed and minimal formatting such as tabs and line breaks
were kept in the final plain text document. The top 10 document types and corresponding counts were
as follows: Clinical Document (311,960), Depart Clinical Summary (15,496), Ambulatory Visit Summary
Depart (13,905), Office Visit Note (11,251), ED Clinical Summary (11,232), Pediatric Surgery (10,915),
ENT (10,125), pediatric surgery (6647), Teacher Note (6462), and Progress Note (5582). A more extensive
list of document types is provided in Supplementary Materials. For each patient, all corresponding
unstructured text fields were concatenated into one patient document. Patient documents were then
pre-processed using a set of Python scripts to remove: (1) form letters; (2) tabulated numeric lab data;
(3) vital signs; and (4) negation phrases. Negation rules for text processing were developed by Quire
and were modified iteratively to achieve high precision for this specific collection. Finally, only the
most recent history and physical examination prior to surgery was included in each patient-document.
All text processing steps described above were performed on the entire patient cohort (including the
non-training and test sets described below).

Semantic analysis and text-based risk prediction was performed using an algorithm developed
by Quire Inc., which uses a vector space modeling approach called latent semantic indexing [27].
Here, patients were represented as a vector of weighted terms extracted from their medical records
(Figure 2). A log-entropy term weighting scheme was used as described by Berry and Browne [27].
Once the term-by-patient document matrix was constructed, singular value decomposition (SVD)
was performed to reduce the dimensionality of this matrix into lower rank approximation (concept
space). We used a rank of 500 in this study based on evaluation of this and other collections. Patient
similarities were calculated using the cosine of the vector angles [27].
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The Quire Predictive Modeling (QPM) algorithm (Patent pending, Quire Inc., Memphis, TN,
USA) ranks patients in a collection based on the reduced-rank vector cosine values to a set of sentinel
patients who exhibit the target outcome (Figure 2). An important advantage of this approach is that the
LSI model trained on one cohort can be used to determine a patient’s risk in a different cohort. A risk
score is calculated for each patient in the test cohort based on the percentage of sentinels who have
cosine similarities above a preset threshold of 0.55. In this study, QPM was built on the training cohort
of 4738 patients, which included 48 sentinel patients who died within 30 days of surgery. A separate
cohort of 1759 patients was used for testing and evaluation of QPM. Each of the testing cohort were
represented by pseudo-document, a vector projected into the training space, to rank and generate
individual risk scores. The rankings were normalized on a scale of 0–100, where the patient with cosine
similarity (above the threshold) to the largest number of sentinels received a risk score of 100. The risk
scores for each patient in the test cohort were then included in regression models as described below.

2.3. Hypothesis Testing and Prediction

We used the Kolmogorov-Smirnov test to check for the normality of data and the Mann-Whitney
U test to check whether the distribution of text-based risk variable was the same for different categories
of the outcome variables. We implemented stepwise logistic regression analysis with backward
elimination in predicting outcomes of cases in the NSQIP cohort by (A) using only text-based risk
variables from unstructured data, (B) using only 15 NSQIP risk factors, and (C) using all factors in
A and B as predictors. C-statistic calculation was used for model prediction performance, and the
DeLong test [28] was used to compare the models. In addition to predicting D30, the model was
used to predict 11 separate secondary surgery outcomes including death within 90 days of surgery,
unplanned readmission, unplanned readmission to operating room, unplanned repeat surgery related
to the principle surgery, unplanned second surgery, blood transfusion within 72 h of surgery start
time, postoperative unplanned intubations, postoperative systemic sepsis, septic shock, postoperative
superficial incisional surgical site infections (SSI), and postoperative organ/space SSI. For all models,
we implemented five-fold cross-validation to avoid and detect possible overfitting.
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3. Results

There were records for 8178 operative emergent or urgent cases performed at Le Bonheur
Children’s Hospital, Memphis, TN, USA between 1 January 2014 and 31 May 2017 on patients aged
18 years or younger. We excluded 1681 cases without preoperative text notes. A total of 719,308 free
text notes were available for the remaining 6497 cases. A total of 4738 patients in the non-NSQIP
cohort was used as the training data set to develop the text-based risk model that was then tested on
the NSQIP cohort of 1759 surgical cases. We evaluated if the text-based risk score could improve the
performance of models that used structured preoperative risk factors to predict surgery outcome.

Mortality rates in the testing and training cohorts were 11/1759 (0.63%) and 48/4738 (1.01%),
respectively, and did not show a significant difference (p = 0.15). Age at operation was younger
(p < 0.001) for the NSQIP cohort (mean ± standard deviation of 6.4 ± 6.0 years vs. 7.1 ± 5.3 years for
training). Gender (55% male for both) and race (47% white vs. 45% white, 40% black vs. 43% black for
testing vs. training, respectively) were similar in the two cohorts.

3.1. Association between Free Text-Based Risk Score and Death after Surgery

The text-based risk score was trained on the non-NSQIP cohort and then used to calculate the
text-based risk score for patients in the NSQIP test cohort as described in the Methods section. We
used the Mann-Whitney U test to compare text-based risk scores between D30 patients and those who
survived because the text-based risk scores were non-normally distributed (Kolmogorov-Smirnov test
p > 0.1). We found that the text-based risk scores were significantly higher (p < 0.001, Mann-Whitney
U Test) for D30 cases compared with those who survived beyond 30 days in both training set and
testing set (Table 1). D30 cases were concentrated at higher risk scores, both in the training dataset
(data not shown) and in the test set (see Figure 3).

Table 1. Comparison of text-based risk scores for categories of D30.

Data Sets Categories Count Mean Text-Based Risk;
95% CI

Mann-Whitney U Test
p Value

Non-NSQIP
(Training)

D30 = No 4690 0.35; 0.34–0.36
<0.001D30 = Yes 48 0.64; 0.59–0.72

NSQIP (Testing) D30 = No 1748 0.44; 0.42–0.46
<0.001D30 = Yes 11 0.84; 0.78–0.90
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3.2. Sensitivity Analysis for Text-Based Risk Scores

We used the C-statistic to evaluate the performance of QPM on predicting postsurgical mortality
risk. We found that using a sentinel pool of 48 (all D30 cases) in the training dataset, QPM achieved a
C-statistic of 0.83 (95% confidence interval (CI) 0.77–0.89) on the independent test dataset. To evaluate
the sensitivity of QPM with respect to the number of sentinels in the training dataset, we calculated
the C-statistic using randomly selected smaller sets of sentinels. The average C-statistic for five
randomly selected sets of 10, 20, 30, and 40 D30 sentinels were 0.80, 0.83, 0.83, 0.83 in the testing cohort,
respectively (Figure 4). Although the C-statistics for all sets were similar, the variance of the C-statistic
between the five random sets was larger with fewer sentinels. These results suggest that as few as
20 sentinel D30 patients in the training cohort could be effectively used to calculate the mortality risk
in the test cohort.
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3.3. Prediction of Postsurgical Mortality in the NSQIP Cohort

We developed three logistic regression models predicting risk of death within 30 days of surgery;
Model A using text-based risk score as a single predictor, Model B using 15 risk factors from structured
data fields and analyzed with stepwise logistic regression (SWLR), and Model C using all variables
from Model A and B and also analyzed with SWLR. Model A had a C-statistic of 0.83 (0.77–0.89, 95%
CI) (Supplementary Materials) without cross-validation and 0.81 (0.74–0.88, 95% CI) with five-fold
cross-validation. Model B identified ventilator status, bleeding disorder, and inotropic support as
significant risk factors, yielding a C-statistic of 0.86 (0.69–1.00, 95% CI) (Supplementary Materials)
without cross-validation and 0.76 (0.54–0.99) with five-fold cross-validation. The difference between
C-statistics of models A and B was non-significant (p > 0.1; DeLong test).

Finally, in Model C, the final logistic regression model selected the text-based risk score, ventilator
status, bleeding disorder, current receipt of inotropic support, and emergent case as significant
risk factors, resulting in a C-statistic of 0.96 (0.92–1.00, 95% CI) (Supplementary Materials) without
cross-validation and 0.92 (0.84–0.99) with five-fold cross-validation using the same five selected
variables. The values of regression coefficients and odd ratios of these five variables obtained for
each run of cross-validation were found to be within the 95% confidence intervals (Supplementary
Materials). The performance of the final logistic regression model including both text-based risk scores
and structured data was significantly better than the performance of models using only text-based
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risk score (p = 0.036; DeLong test) and the model using structured data-based risk factors (p = 0.055;
DeLong test) in terms of C-statistics.

We used a threshold value to convert predicted probabilities from the combined logistic regression
model into binary class predictions for the D30 variable. We identified this threshold value as the cutoff
value for cross-validated predictions where F1 score, (2 × Precision × Recall/(Precision + Recall),
was maximized. Using this threshold, the model correctly classified 7 of 11 deaths (sensitivity of
63.6%) but also produced 12 false positives (specificity of 99.3%), yielding positive predictive value
(precision) of 36.8% and negative predictive value of ~100.0%. When we looked at the 12 false positive
predictions, we found that there was one case each of death within 30–90 days of surgery, unplanned
postoperative intubation, deep wound disruption, and surgery-related admission within 30 days of
surgery, two cases with surgery-related repeat surgery, and four cases of unplanned blood transfusion.
In other words, 10 of 12 of the false positives experienced either death after 30 days or other adverse
surgery outcomes. We note that these results are based on the cutoff value maximizing the F1-score
and higher sensitivity (at the cost of lower specificity) can be calculated for different cutoff values
using the same predictive model.

3.4. Association between Free Text-Based Risk Score and Other Adverse Surgery Outcomes

The text-based risk scores for the NSQIP cohort were also significantly (p < 0.05, Mann-Whitney U
test) associated with other outcomes such as death within 90 days of surgery, intra- or post-operative
blood transfusion within 72 h of surgery, unplanned readmission within 30 days of surgery,
postoperative unplanned intubation, and first unplanned return to operating room (Table 2). In contrast,
the text-based risk scores were not significantly associated with post-operative deep organ space
surgical site infection.

Table 2. Distribution of text-based risk scores over categories of binary outcomes for the NSQIP cohort.

Outcome Count Mean Text-Based Risk
Value with 95%CI p Value

Death within 30 days of surgery No 1748 0.44; 0.42–0.45
<0.001Yes 11 0.84; 0.78–0.90

Death within 90 days of surgery No 1738 0.44; 0.42–0.45
<0.001Yes 21 0.82; 0.77–0.87

Postoperative superficial (incisional) surgical
site infection

No 1736 0.44; 0.42–0.45
0.015Yes 23 0.62; 0.52–0.74

Intra- or post-operative blood transfusion within 72 h of
surgery start time

No 1625 0.45; 0.43–0.47
<0.001Yes 134 0.31; 0.25–0.37

Unplanned readmission within 30 days of surgery No 1621 0.43; 0.41–0.45
<0.001Yes 138 0.57; 0.51–0.62

Postoperative Unplanned Intubation No 1735 0.43; 0.42–0.45
0.001Yes 24 0.71; 0.61–0.81

First Unplanned Return to Operating Room No 1690 0.44; 0.42–0.45
0.039Yes 69 0.52; 0.43–0.60

3.5. The Role of Free Text-Based Risk Score in Predicting Other Adverse Surgery Outcomes

The text-based risk score (derived for predicting D30) was significantly predictive of death
between 30–90 days after surgery (C-statistic 0.96, 0.92–0.99 95% CI), along with additional outcomes
such as postoperative superficial incisional surgical site infection, intra- or post-operative blood
transfusion within 72 h of surgery start time, and unplanned readmission within 30 days of surgery
(Table 3). Table 3 also includes the five-fold cross-validation results for each logistic regression model.
More details about the logistic regression models can be found in the Supplementary Materials.
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Table 3. Logistic regression of outcome including text-based risk score as a predictor.

Outcome c-Statistics with 95%CI Selected Preoperative Risk Factors

Death within 30 days of surgery No CV 0.96; 0.92–1.00 Text-based risk score, ventilator dependency,
bleeding disorder, inotropic support, Emergent CaseFive-fold CV 0.92; 0.84–0.99

Death within 90 days of surgery No CV 0.95; 0.92–0.99 Text-based risk score, ventilator dependency, neonate,
bleeding disorder, Emergent caseFive-fold CV 0.94; 0.89–0.99

Postoperative superficial incisional
surgical site infection

No CV 0.72; 0.61–0.83
Text-based risk score, neonateFive-fold CV 0.67; 0.55–0.79

Intra- or post-operative blood transfusion
within 72 h of surgery start time

No CV 0.76; 0.71–0.80
Text-based risk score, oxygen support,

neuromuscular disorder, hematologic disorder,
inotropic support, malignancy, urgent caseFive-fold CV 0.73; 0.69–0.78

Unplanned readmission within 30 days
of surgery

No CV 0.67; 0.62–0.72 Text-based risk score, neonate, SIRS, Sepsis
Five-fold CV 0.66; 0.61–0.70

4. Discussion

Our study suggests that unstructured preoperative text available in EMRs contains critical
information predictive of postoperative death in children undergoing surgical procedures. Further,
these data suggest that information contained in unstructured text notes can be useful even when
distilled to a single risk variable developed via a text modeling approach. Finally, we found that the
use of text-based risk scores combined with structured data improves the prediction accuracy of death
within 30 days of surgery when compared with models using either unstructured or structured data
from the NSQIP database alone.

Data from the unstructured notes is currently used in creating clinically useful risk assessments
for surgical procedures [29]. An example is the ASA class that is included as a key variable in the
Pediatric Risk Calculator by NSQIP [30] developed by American Colleague of Surgeons. Automated
systems utilizing algorithms such as the one used in this study have the potential to decrease bias
introduced by human retrieval and interpretation of such data and may save time for clinicians.

The clinical utility of any risk assessment depends on its accuracy. US health expenditures are
higher than other technically advanced countries reporting better objective health outcomes due in
part to the provision of expensive care that is unlikely to provide meaningful benefit [31]. Sharing
accurate risk estimates with the patient and family is a key component of informed consent and shared
decision-making. This allows providers and consumers of surgical care to better weigh alternative
treatments that may be less expensive and have equivalent benefit, or to forego treatment in settings
where the probability of death after surgery approaches certainty. Formal studies of the impact of
clinical decision support tools for surgery are limited, but are needed to determine their impact on
practice and patient outcomes.

Our prediction model was created to predict the risk of death within 30 days of surgery. The
finding that the text-based risk score also contributed to accurate prediction of other major surgery
outcomes such as death within 90 days of surgery, postoperative surgical site infection, and unplanned
blood transfusion and readmission within 30 days of surgery suggest that postoperative adverse events
are interrelated. Logistic regression models for each of these outcomes performed almost equally well
in five-fold cross-validation, suggesting that the logistic regression models built on the text-based risk
score are robust and generalizable to a broad variety of adverse events despite the challenges of a
relatively small sample size and low event rate.

Limitations

Our study has some limitations. The training set included all types of operations while the test
set, NSQIP cohort, systematically excluded some operations [26]. Since the text-based risk scores are
calculated based on vectorized combinations of thousands of terms extracted from patient records, the
precise words that contribute to postsurgical mortality risk is difficult to deduce. The next step in our
work will be to investigate specific keywords that are associated with modifiable risk factors to guide
clinicians in developing interventions designed to reduce the risk of severe surgery outcomes.
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Our study presents a proof of concept on the significance of unstructured text notes in predicting
post-operative adverse outcomes in children. Its clinical applicability requires further work on both
improving the predictive model performance and external validation.

5. Conclusions

We conclude that text data in EMRs can improve the ability of structured data tools to predict
serious patient outcomes after surgery.
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Supplementary files S1 and S2.
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