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Abstract: One of the prominent problems in clinical medicine is medication-induced acute kidney
injury (AKI). Avoiding this problem can prevent patient harm and reduce healthcare expenditures.
Several researches have been conducted to identify AKI-associated medications using statistical,
data mining, and machine learning techniques. However, these studies are limited to assessing the
impact of known nephrotoxic medications and do not comprehensively explore the relationship
between medication combinations and AKI. In this paper, we present a population-based retrospective
cohort study that employs automated data analysis techniques to identify medications and medication
combinations that are associated with a higher risk of AKI. By integrating multivariable logistic
regression, frequent itemset mining, and stratified analysis, this study is designed to explore the
complex relationships between medications and AKI in such a way that has never been attempted
before. Through an analysis of prescription records of one million older patients stored in the healthcare
administrative dataset at ICES (an independent, non-profit, world-leading research organization
that uses population-based health and social data to produce knowledge on a broad range of
healthcare issues), we identified 55 AKI-associated medications among 595 distinct medications
and 78 AKI-associated medication combinations among 7748 frequent medication combinations.
In addition, through a stratified analysis, we identified 37 cases where a particular medication was
associated with increasing the risk of AKI when used with another medication. We have shown that
our results are consistent with previous studies through consultation with a nephrologist and an
electronic literature search. This research demonstrates how automated analysis techniques can be
used to accomplish data-driven tasks using massive clinical datasets.

Keywords: multivariable regression; association rule mining; automated analysis; medication-associated
acute kidney injury; medication-medication interaction; data-driven healthcare

1. Introduction

Acute kidney injury (AKI), defined as a sudden loss of kidney function over a short period of
time, affects approximately 10% of patients admitted to hospitals worldwide [1,2]. It is associated with
increased mortality, morbidity, and estimated incremental health care costs of more than $200 million
in Canada annually [3]. Medication-induced nephrotoxicity is very common in clinical practice.
It accounts for 19% of cases of AKI in a hospital setting [3–8] and is associated with increased healthcare
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expenditure [3,9]. For instance, using the medication utilization data in Canada for 2013, Morgan et al.
(2016) have reported an estimated healthcare cost of $419 million due to inappropriate prescriptions [10].

Over the last two decades, the incidence rate of AKI has increased in Canada [11,12], the United
States [13,14], and the United Kingdom [15]. The increasing occurrence of AKI is related to the
changing spectrum of diseases. There is a growing body of evidence showing that patients with
multiple comorbidities and extrarenal complications are at a higher risk of developing AKI [16,17].
For instance, Aikar et al. [18] have shown that the high comorbidity rate, measured by the Deyo-Charlson
comorbidity index, is associated with AKI. In a study of 681 AKI patients who are admitted to the
intensive care unit, the occurrence of comorbid conditions is high: 37% have coronary artery disease,
30% have chronic kidney disease, 29% have diabetes mellitus, and 21% have chronic liver disease [17].
As a patient’s number of comorbid conditions grow, there is a rise in associated hospitalizations,
physician visits, prescriptions, and expenses [19], ultimately leading to an increase in medication
intake. Patients admitted to hospitals, particularly critically ill patients with multiple comorbidities,
often take several medications, with up to 25% of these medications having nephrotoxic potential [9].
A study in 2005 has revealed that out of 7 million adverse medication event reports, 2.7% include an
incidence of AKI, of which 16% are known nephrotoxins, 18% are possible nephrotoxins, and the rest
are new potential nephrotoxins [8].

The use of nephrotoxic medications is associated with 16%–25% of all AKI cases in the adult
population [8,20]. Few studies have been conducted to identify medications that are commonly
associated with AKI. Most of these studies have been limited in assessing the impact of known
nephrotoxic medications [21–23]. In addition, information on medication combinations that can cause
AKI is lacking in the literature. It is important to identify those combinations because a combination
of multiple nephrotoxins may result in synergistic or accumulative nephrotoxicity, thus increasing
the chance of renal failure [24]. For example, the risk of developing AKI increases by 53% for each
additional nephrotoxic medication used by a patient [25]. Hence, it is important to identify not only
nephrotoxic medications but also medication combinations that affect the risk of AKI. Rivosecchi
et al., through an exhaustive literature search, further emphasize the need for a comprehensive
understanding of how medication combinations alter the risk of AKI [22]. According to a CDC report
in 2017, there are about 1000 known adverse medication effects and 5000 medications available in
the pharmacies (FastStats-Therapeutic Drug Use), making for approximately 125 billion possible
adverse medication effects between all possible pairs of medications [26]. Thus, it is impossible to
assess medication-induced AKI through this number of clinical trials. Moreover, conducting a trial to
determine whether to prescribe or not prescribe a potentially harmful combination would likely never
receive research ethics board approval.

Data analysis has the potential to address this challenge by employing methods and techniques
from different fields, such as data mining, statistics, and machine learning, to accomplish various
data-driven tasks [27]. It can be used to investigate clinical data to gain both novel and deep insights
to help healthcare providers examine medication-induced nephrotoxicity. Recently, several studies
have been conducted to identify drug-drug interactions, improve drug-safety science, and predict
adverse drug reactions, using machine learning techniques [28–33]. For instance, Kandasamy et al.
(2015) have developed a prediction model to identify drug-induced nephrotoxicity using human
induced pluripotent stem cells and random forest [29]. In addition, Dey et al. (2018) have presented
a deep learning framework to predict adverse drug reactions and detect molecular substructures
associated with them [30]. An automatic method of processing adverse drug event reports using
artificial intelligence and robotics has presented by Schmider et al. in 2019 [32]. Lysenko et al.
(2018) have incorporated Mashup [34] and a gradient-boosted tree to predict drug toxicity using
biological network data [31]. Although these studies are designed to deal with large bodies of data
to solve different medication-related problems, the relationship between medications and AKI has
not been studied before through automated data analysis. Automated data analysis techniques
allow incorporation of large quantities of data that creates an opportunity to include additional
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information to more comprehensively study individual medications and their combinations. It is
essential to consider comorbidities while studying the effect of medications since it is not clear whether
the underlying comorbidities or medications increase the risk of developing AKI. In addition to
comorbidity data, demographic data, such as age, sex, and region, are also considered as risk factors for
AKI [35,36]. Therefore, any complete study that investigates nephrotoxic medications or combinations
should include demographic and comorbidity data in the analysis. Up until now, there is a lack of
well-designed studies that consider demographic and comorbidity data while assessing the risk of
developing AKI with the use of single or multiple medications. Even though the identification of
nephrotoxic medications is crucial for improved patient care, it has not been studied thoroughly using
machine learning techniques.

The objective of this study is to identify individual medications associated with AKI in hospitalized
patients using a machine learning approach. We also identify AKI-associated medication combinations
and investigate whether the use of multiple medications results in multiplicative effects on the risk
of developing AKI. Finally, we investigate how our findings are consistent with data in the existing
literature. Our study differs from other studies in three ways: (1) we consider all the frequently
used medications in the study, whether they have been known to be nephrotoxic or not; (2) we use a
frequent itemset mining algorithm to identify frequent medication combinations and multivariable
logistic regression to investigate the association between medication combinations and AKI; and (3)
we incorporate the patient’s demographic and comorbidity features as potential covariates in the
regression model.

2. Materials and Methods

This section describes the methodology we have employed to conduct the study. We describe
the design process, study setting, workflow, data sources, cohort entry criteria, baseline covariates,
medications, acute kidney injury, tools, and analysis processes.

2.1. Design Process and Participants

To help us understand how healthcare providers perform automated analysis, and to help us
conceptualize and design our study, we adopted a participatory design method. It is a co-operative
method that involves all stakeholders (e.g., designers, intermediary-users, and end-users) in the
design process, to ensure the output of the analysis meets their needs [37]. A statistician, a clinician,
an epidemiologist, and several computer scientists were involved in the design and evaluation process
of this study. During the initial stage in the designing process, we realized that healthcare providers
usually perform medication-safety related studies in many ways. It is difficult to determine a single
correct analytics technique for these tasks because different techniques have their strengths and
weaknesses. As such, we interviewed healthcare experts to identify the data-driven tasks and analytics
techniques with which they are familiar. We identified four data-driven tasks to consider in designing
this study, through our collaboration with healthcare experts at the ICES-KDT (ICES—an independent,
non-profit, world-leading research organization that uses population-based health and social data to
produce knowledge on a broad range of healthcare issues; KDT—Kidney Dialysis and Transplantation
program), located in London, Ontario, Canada. (1) Studying the relationships between prescribed
medications and AKI. (2) Identifying commonly prescribed medication combinations to older patients.
(3) Examining the effect of a medication combination on AKI. (4) Investigating whether a certain
medication is associated with an increased risk of developing AKI when used with another medication.
We came to know that healthcare experts usually rely on different regression techniques to accomplish
such tasks. Thus, we decided to employ multivariable regression in this study. We also invited
healthcare experts to provide us with formative feedback on design decisions and results.



Informatics 2020, 7, 18 4 of 22

2.2. Study Design and Setting

We performed a population-based retrospective cohort study in older adults from April 2014 to
March 2016 in Ontario, Canada, using administrative health databases located at ICES. These datasets
were linked using unique encoded identifiers and analyzed at ICES. The use of data in this project was
authorized under Section 45 of Ontario’s Personal Health Information Protection Act, which does not
require review by a research ethics board.

Ontario has a population of approximately 13 million residents with universal access to hospital
care and physician services, including 1.9 million people aged 65 years or older who have universal
prescription drug coverage (14% of the population). We suppressed our results in cells with five
or fewer patients to comply with privacy regulations and minimize the chance of re-identification
of patients.

2.3. Workflow

Figure 1 illustrates the basic workflow of the study presented in this paper. In the first stage,
we created an integrated dataset from five different health administrative databases stored at ICES.
The data sources are explained in Section 2.4. Next, we applied the inclusion and exclusion criteria
presented in Section 2.5 to build the final cohort. The demographic and comorbidity features were
then encoded and transformed into appropriate forms for analysis in Section 2.6. Section 2.7 describes
the outcome (i.e., AKI) and how we identified the incidence of AKI. A brief description of the cohort is
presented in Section 2.8. After that, we performed individual and combination analysis, which are
discussed in Sections 2.9 and 2.10, respectively.
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2.4. Data Sources

We ascertained patient characteristics, drug prescriptions, and outcome data from five health
administrative databases (Table A1). The datasets were linked using unique, encoded identifiers
derived from health card numbers, and patient-level data were analyzed at ICES. We obtained vital
statistics from the Ontario Registered Persons Database, which contains demographic data on all
Ontario residents who have ever been issued a health card. We used the Ontario Drug Benefit
Program database to identify prescription drug use. This database contains highly accurate records
of all outpatient prescriptions dispensed to older patients, with an error rate of less than 1% [38].
We identified hospital admissions, baseline comorbidity, and emergency department (ED) visits data
from the National Ambulatory Care Reporting System (ED visits) and the Canadian Institute for Health
Information Discharge Abstract Database (hospitalizations). We used the International Classification
of Diseases, tenth revision (post-2002) codes to identify baseline comorbidities. Baseline comorbidity
data were also obtained from the Ontario Health Insurance Plan database, which includes claims for
physician services. Coding definitions for the comorbidity data are presented in Table A2.

2.5. Cohort Entry Criteria

We identified a cohort of individuals aged 65 years or older who were admitted to the hospital or
visited the ED between 1 April 2014 and 31 March 2016. The ED visit or hospital admission date served
as the index or cohort entry date. If an individual had multiple ED visits or hospital admissions, we
selected the first incident. Individuals with invalid data regarding the health card number, age, and sex
were excluded. We also exclude (1) patients who previously received dialysis or a kidney transplant,
as AKI is often no longer relevant once a patient develops end-stage kidney disease (diagnosis codes
for exclusion criteria are shown in Table A3); and (2) patients who left the hospital against medical
advice or without being seen by a physician.

2.6. Input Features

There were a total of 5 demographic, 10 comorbidity, and 595 medication features in the cohort,
which served as input for the analysis. Demographic information included age, sex, residency
status (urban and rural), long term care, and socioeconomic status (income quintile, according to
Statistics Canada). We used a 5-year look-back window to identify relevant baseline comorbidities,
including diabetes mellitus, hypertension, heart failure, coronary artery disease, cerebrovascular
disease, peripheral vascular disease, chronic liver disease, chronic kidney disease, major cancers,
and kidney stones.

All of the features in the cohort were categorical. We converted the comorbidity features into
binary forms. For instance, if a patient had a particular comorbid condition, its corresponding value
was taken as “1.” We set the value for sex and residency status features if a patient was male and
resided in urban areas, respectively. The income feature took an integer value ranged between 1 to 5 to
represent the income quintile of a particular patient. All these features from different data sources
were integrated using the encoded identifiers derived by ICES. Finally, the features in the cohort were
transformed into a format and scale that were suitable for the analysis. For each feature in the cohort,
we recorded the last value before the index date. Thus, we aggregated multiple values (rows) of a
single feature into one, by considering the latest value of that feature for each patient.

2.7. Outcome

AKI was the outcome variable for all the regression models in this study. We identified the incidence
of AKI in the first visit to the ED or hospital admission, between 1 April 2014 and 31 March 2016.
The incidence of AKI was captured using the National Ambulatory Care Reporting System and the
Canadian Institute for Health Information Discharge Abstract Database, based on the International
Classification of Diseases, tenth revision diagnostic codes (i.e., N17). We set the value of the outcome
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variable if a patient was diagnosed with AKI. We recorded the first incidence of AKI, in case there were
multiple episodes.

2.8. Cohort Characteristics

A total of 924,533 participants were included in the derivation cohort, of which 25,084 (2.7%) had
AKI during their hospital or ED encounter. Selected characteristics of this cohort are shown in Table 1.
The mean age was 70 years, and 56% were women. Sixteen percent of the patients resided in rural
areas, and 6% of them were in long term care. The pre-existing comorbidities were hypertension (88%),
diabetes (38%), coronary artery disease (25%), major cancer (16%), heart failure (14%), cerebrovascular
disease (3%), peripheral vascular disease (2%), chronic liver disease (4%), chronic kidney disease (9%),
and kidney stones (1%).

Table 1. Baseline characteristics of patients admitted to the hospital or who visited the emergency
department (ED).

Characteristics
Patients Admitted to Hospital or Visited ED

Total Patients AKI No AKI

Cohort size 924,533 25,084 (3%) 899,449 (97%)

Age, yr, Mean (SD)

65 to <70 192,678 2522 (1.3%) 190,156 (98.7%)

70 to <80 382,989 7946 (2.1%) 375,043 (97.9%)

80 to <90 274,842 10,370 (3.8%) 264,472 (96.2%)

≥90 74,024 4246 (5.7%) 69,778 (94.3%)

Women 516,175 12,139 (2.4%) 504,036 (97.6%)

Year of Cohort Entry (index date)

2014–2015 605,244 16,689 (2.8%) 588,555 (97.2%)

2015–2016 319,289 8395 (2.6%) 310,894 (97.4%)

Rural residence 151,323 2097 (1.4%) 149,226 (98.6%)

Long-term care 43,351 3118 (7.2%) 40,233 (92.8%)

Income Quintile

1 180,227 5466 (3%) 5466 (3%)

2 192,686 5515 (2.9%) 5515 (2.9%)

3 182,957 4909 (2.7%) 4909 (2.7%)

4 186,407 4829 (2.6%) 4829 (2.6%)

5 182,256 4365 (2.4%) 4365 (2.4%)

Comorbid Conditions

Hypertension 814,604 24,209 (3%) 790,395 (97%)

Diabetes 358,472 13,837 (3.9%) 344,635 (96.1%)

Heart failure 125,136 7623 (6.1%) 117,513 (93.9%)

Coronary artery disease 239,437 8392 (3.5%) 231,045 (96.5%)

Chronic liver disease 33,359 1245 (3.7%) 32,114 (96.3%)

Cancer 145,286 4253 (2.9%) 141,033 (97.1%)

Chronic kidney disease 86,442 7759 (9%) 78,683 (91%)

Kidney stones 12,457 391 (3.1%) 12,066 (96.9%)

Peripheral vascular disease 13,197 660 (5%) 12,537 (95%)

Cerebrovascular disease 25,835 1180 (4.6%) 24,655 (95.4%)
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2.9. Individual Medication Analysis

We identified a total of 595 unique medications prescribed to about 1 million patients in the Ontario
Drug Benefit Program database. The database includes medication name, medication dose, date filled,
and route-of-administration of the prescriptions. We generated 595 binary features to record the use
data for each medication and each patient. We set the value of a specific medication feature for a patient
when the medication was administered to that patient in the 120 days prior to hospital presentation.
When patients take a drug, it affects them differently, based on their body composition and metabolism.
However, most physicians are not able to consider all of these factors when prescribing a medication.
Thus, to investigate the association between medications and AKI, we intended to identify signals that
affect a large population. If a particular signal is common in a large number of people (i.e., a population
of one million patients), then the possibility of the existence of an association is very high. Our goal
was to identify potential interactions that are not yet understood or perhaps known. We considered
this as an information retrieval problem, such that our models were designed to discover the possible
relationships between each medication and AKI. We developed a multivariable logistic regression
model to predict AKI based on the demographic, comorbidity, and medication data and observed
the attribute representing medication to understand the relationship between a particular medication
and AKI. Logistic regression is a special type of regression technique used to predict the outcome of a
binary dependent feature from one or several predictors. We developed separate regression models for
each individual medication (i.e., 595 models). For each model, the regression coefficient and p-value of
the medication attribute were analyzed to identify potential associations. The study was designed to
assist healthcare experts at the ICES-KDT program in choosing potential candidates for their future
drug-safety studies.

The “glm” function in R packages was employed to implement multivariable logistic regression
models [39]. Model covariates included demographic features and baseline comorbidities. Thus,
the formula in R included AKI as the response and comorbidities, demographics, and medication as
predictor variables. The value for the “family” argument in the “glm” function was set to “binomial”.
We used the “summary” function to get the estimate, p-value, z-score, and standard error for each
coefficient in the model. In addition, the “confit” function was used to compute the confidence interval
and odds ratio.

In order to avoid type I error in comparing multiple independent regression models, we lowered
the alpha value based on the Bonferroni correction to account for the number of comparisons
being performed. We considered a Bonferroni-corrected p-value less than 8.4 × 10−5 (divided 0.05
by the number of individual medications), as statistically significant for regression models with
each medication.

2.10. Medication Combination Analysis

In order to identify the medication combinations that are associated with AKI, we first prepared
the medication combinations data. Since the number of individual medications is 595, the total number
of combinations is a large number. Hence, we used a data mining technique named Eclat [40], to select
the frequent combinations that included prescription data of at least 0.07% of the total number of
prescriptions. Eclat is a frequent itemset mining algorithm that uses a depth-first search to discover
groups of items that frequently occur in a transaction database. An itemset that appears in at least a
pre-defined number of transactions is called a frequent itemset. Each frequent medication combination
was annotated with its support. The support of a medication combination was how many times it
appeared in the medication database.

We only included combinations of two medications in this analysis and identified 7748 unique
medication combinations. Then, we created binary features to record the presence of these combinations.
We set the value of a specific combination feature for a patient when that patient had been dispensed all
medications within the combination in the 120-day period before the index date. Similar to the individual
medication analysis, we applied a multivariable logistic regression on each medication combination.
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The baseline covariates, such as demographics and comorbidities, and medication combination
features were included as potential covariates in the models. We developed separate regression
models for each medication combination identified using frequent itemset mining (i.e., 7748 models).
The regression coefficients and p-values of the medication combination attributes were analyzed to
identify combinations that are associated with AKI. We then performed a stratified analysis to examine
potential medication-medication interactions further. We created a subset of medication combinations
based on their significance in the regression models. Statistically significant combinations were detected
by filtering the regression models based on a Bonferroni-corrected alpha value, 6.5 × 10−6 (divided 0.05
by the number of medication combinations).

Stratified analysis was conducted on each medication available in one or more combinations in
the above subset. To do this, we created a list of unique medications (i.e., base medications) from the
chosen subset of medication combinations. Then, for each medication in the list, we identified the
other medication that holds a combination with the base medication. In the next stage, we prepared
two sub-cohorts. The first one includes both medications in the combination (base and other), and the
second one excludes the other medication in the combination. Finally, we applied multivariable
logistic regression on each sub-cohort that included the combination and/or base medication feature,
along with the baseline covariates. The same process was followed for each medication available on
the list.

In this analysis, for each unique medication combination, we obtained two models for the
sub-cohorts. In order to help us to assess how the other medication affects the outcome of the base
medication, we compared the odds ratio of the combination attribute in the first model, with the odds
ratio of the base medication attribute in the second model. We tested the significance of all models in
the stratified analysis using a Bonferroni-corrected alpha value. We calculated the percentage change
in odds ratios to report the result of this analysis.

2.11. Tools and Technologies

SAS was used to cut and prepare the dataset because ICES’ administrative databases were stored
in the SAS server [41]. In addition, we used R packages [42] to conduct the necessary statistical and
machine learning analyses in this study. R was chosen because it (1) provides widespread support for
carrying out data mining operations, such as frequent itemset mining and multivariable regression,
(2) is available on the ICES workstations, (3) has a rich array of libraries, (4) is platform-independent
and open-source, and (5) is continuously growing and providing updates with new features.

3. Results

This section describes the results of the study. The results of the individual medication analysis
and medication combination analysis are discussed in Sections 3.1 and 3.2, respectively.

3.1. Individual Medications and AKI

Some of the commonly prescribed medications in the 120 days before the ED visit were Atorvastatin
Calcium (24%), Rosuvastatin Calcium (22%), Hydrochlorothiazide (20%), Amlodipine Besylate
(19%), and Metformin Hcl (16%). A binary logistic regression model was fit to each medication,
where demographic and comorbidity features were included as potential risk factors in the model
to test the research hypothesis regarding the relationship between the likelihood of developing AKI
and specific medications. Table 2 shows the full list of medications with their p-values, odds ratios,
confidence intervals, and standard errors. The medication classes are shown in brackets with medication
names. We sorted medications based on the odds ratio of the medication attribute in each model.
Out of 595 medications, 55 of them were found to be strongly associated with AKI (i.e., statistically
significant after Bonferroni correction). Among these 55 medications, six of them were Diuretics,
four were Beta-blockers, three of them belonged to Oral Anti-Glycemic, three of them were Prostatic
Hyperplasia medications, and the rest of them belonged to 33 other medication classes.
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Table 2. List of the individual medications, sorted based on their odds ratios.

Medication p-Value Odds Ratio (OR) Std. Error OR’s 95% CI

Sunitinib Malate (Antineoplastic Miscellaneous) 1.6 × 10−9 4.59 0.25 2.72–7.37

Lenalidomide (Immunosuppressive Agents) 9.4 × 10−17 3.58 0.15 2.62–4.79

Abiraterone Acetate (Not Identified) 1.7 × 10−10 2.61 0.15 1.92–3.48

Metolazone (Diuretics) 1.3 × 10−60 2.38 0.05 2.14–2.63

Cyclosporine (Immunosuppressive Agents) 4.0 × 10−6 2.18 0.17 1.54–3

Megestrol Acetate (Progesteron Analogues) 2.6 × 10−7 2.08 0.14 1.56–2.72

Lithium Carbonate (Antimanic Agents) 4.7 × 10−12 2.04 0.1 1.66–2.48

Atropine Sulfate & Diphenoxylate Hcl (Antidiarrhea) 3.4 × 10−10 2.00 0.11 1.6–2.46

Furosemide (Diuretics) 2.6 × 10−133 1.93 0.02 1.87–2

Prochlorperazine Maleate (Antiemetics & Antinauseants) 9.1 × 10−26 1.93 0.06 1.7–2.17

Spironolactone (Diuretics (Potassium-Sparing)) 2.6 × 10−112 1.87 0.03 1.77–1.97

Methyldopa (Centrally Acting Antiadrenergic) 4.9 × 10-6 1.84 0.13 1.4–2.37

Hydralazine Hcl (Vasodilator Antihypertensive Drugs) 1.5 × 10−26 1.76 0.05 1.58–1.95

Dexamethasone (Corticosteroids, Plain) 2.4 × 10−19 1.74 0.06 1.54–1.96

Ondansetron Hcl (Antiemetics & Antinauseants) 9.1 × 10−13 1.69 0.07 1.46–1.94

Clonidine Hcl (Centrally Acting Antiadrenergic) 3.9 × 10-6 1.69 0.09 1.4–2.02

Allopurinol (Xanthine Oxidase Inhibitor) 1.2 × 10−81 1.51 0.02 1.45–1.57

Linagliptin (Unclassified Therapeutic Agents) 4.1 × 10−24 1.50 0.04 1.38–1.62

Loperamide (Antidiarrhea) 1.4 × 10-9 1.47 0.06 1.29–1.66

Glyburide (Oral Anti-Glycemic) 1.3 × 10−12 1.46 0.04 1.34–1.58

Chlorthalidone (Diuretics) 1.2 × 10−18 1.42 0.06 1.25–1.59

Atenolol (Beta Blockers) 1.23 × 10−8 1.40 0.02 1.06–1.17

Acetylsalicylic Acid & Dipyridamole (Adenosine Diphosphate Inhibitors) 2.9 × 10−7 1.36 0.06 1.21–1.53

Olmesartan Medoxomil (Angiotensin Ii Antagonist) 7.9 × 10−13 1.35 0.04 1.24–1.46

Iron Ferrous Fumarate (Iron Preparations) 1.9 × 10−39 1.34 0.02 1.29–1.4

Quetiapine Fumarate (Antipsychotic Agents) 4.4 × 10−6 1.34 0.03 1.26–1.43

Nortriptyline Hcl (Tricyclic Antidepressant) 7.2 × 10−19 1.34 0.06 1.18–1.51

Mirtazapine (Antidepressants: Miscellaneous) 2.1 × 10−15 1.33 0.04 1.24–1.43

Iron Ferrous Gluconate (Iron Preparations) 8.2 × 10−16 1.33 0.04 1.24–1.43

Terazosin (Alpha Adrenergic Blocking Agents) 1.5 × 10−7 1.33 0.05 1.19–1.48

Olanzapine (Antipsychotic Agents) 8.5 × 10−7 1.33 0.06 1.18–1.48

Fenofibrate (Antilipemic: Fibrates) 3.6 × 10−8 1.32 0.05 1.19–1.46

Carvedilol (Beta-Blockers) 5.1 × 10−9 1.31 0.05 1.19–1.43

Doxazosin Mesylate (Alpha Adrenergic Blocking Agents) 6.6 × 10−7 1.30 0.05 1.17–1.43

Folic Acid (Vitamin B Complex) 6.9 × 10−9 1.28 0.04 1.18–1.39

Trimethoprim (Sulfonamides, Trimetroprim & Combination) 8.5 × 10−12 1.27 0.03 1.19–1.36

Indapamide (Diuretics) 3.9 × 10−8 1.26 0.03 1.19–1.33

Sulfamethoxazole (Anti-Bacterial Sulfonamide) 2.1 × 10−14 1.26 0.03 1.18–1.35

Moxifloxacin Hcl (Fluoroquinolones) 1.8 × 10−10 1.24 0.04 1.15–1.34

Nifedipine (Calcium Blockers) 3.3 × 10−6 1.21 0.03 1.14–1.28

Lisinopril (Ace Inhibitors) 5.1 × 10−6 1.21 0.04 1.12–1.31

Gabapentin (Gamma-Aminobutyric Acid (Gaba) Derivatives) 7.6 × 10−9 1.20 0.03 1.13–1.27

Oseltamivir Phosphate (Antiviral Agents-Influenza Virus Specific) 1.1 × 10−10 1.20 0.04 1.11–1.3

Metoprolol (Beta-Blockers) 6.4 × 10−11 1.19 0.03 1.12–1.25

Donepezil Hcl (Cholinesterase Inhibitors) 1.9 × 10−8 1.18 0.03 1.11–1.25

Gliclazide (Oral Anti-Glycemic) 3.7 × 10−11 1.17 0.03 1.12–1.23

Hydrochlorothiazide (Diuretics) 1.9 × 10−18 1.16 0.02 1.12–1.2

Metoprolol Tartrate (Beta-Blockers) 1.7 × 10−21 1.16 0.02 1.11–1.21

Amlodipine Besylate (Calcium Blockers) 2.4 × 10−6 1.15 0.02 1.12–1.19

Valsartan (Angiotensin Ii Antagonist) 3.1 × 10−11 1.15 0.03 1.09–1.21

Digoxin (Digitalis Preparations) 1.85 × 10−6 1.15 0.03 1.09–1.22

Bisoprolol Fumarate (Beta-Blockers) 9.9 × 10−8 1.14 0.02 1.1–1.18

Senna (Cathartics & Laxatives) 1.7 × 10−9 1.14 0.02 1.08–1.19

Ramipril (Ace Inhibitors) 9.7 × 10−15 1.13 0.02 1.09–1.17

Metformin Hcl (Oral Anti-Glycemic) 1.8 × 10−11 1.10 0.02 1.06–1.14
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Among demographics, age, sex, residency status, and long-term care attributes have shown
statistically significant relationships with the probability of AKI. The fitted models revealed that keeping
all other attributes constant, the odds of getting diagnosed with AKI for males over females varied
between 1.35 to 1.38. The odds for older age groups (i.e., 80 to <90 and ≥90) were higher. The odds
for rural residents were 24%–28% lower than the odds for urban residents. Similarly, the odds for
patients in long term care were 41%–45% higher. By analyzing the comorbidity attributes in the models,
we identified that AKI was more likely to be associated with chronic kidney disease, hypertension,
diabetes, and heart failure, and chronic liver disease. Among these attributes, chronic kidney disease,
hypertension, and diabetes have shown very strong associations. The average odds ratios for chronic
kidney disease, hypertension, and diabetes patients were 1.81, 1.64 and 1.41, respectively.

3.2. Medication Combinations and AKI

A medication combination was chosen for this analysis if it has been used by at least 700 patients during
the study period. The most frequent medication combinations were Amlodipine Besylate-and-Atorvastatin
Calcium (7%), Atorvastatin Calcium-and-Metformin Hcl (6%), Atorvastatin Calcium-and-Ramipril (5%),
Amlodipine Besylate-and-Hydrochlorothiazide (5%), Atorvastatin Calcium-and-Hydrochlorothiazide
(5%), Metformin Hcl-and-Rosuvastatin Calcium (5%), and Hydrochlorothiazide-and-Rosuvastatin
Calcium (4%).

In the next stage, we applied multivariable logistic regression on each selected combination.
We filtered the combinations based on the p-value of the medication feature in each model. We found
78 combinations that were associated with increasing the risk of AKI among 7748 combinations. Then,
we performed stratified analysis on the strongly associated combinations and reported the percentage
change in the odds ratio. We identified 37 cases where a base medication is associated with increasing
the risk of developing AKI when used with another medication. Table 3 contains a filtered list of
combinations, with a percentage change of more than 40%.

Table 3 shows the medication names with classes, odds ratios of models with and without the
other medication, and percentage change in odds ratios. In the stratified analysis, we found 16 and
27 distinct medication classes representing the first (base medication) and second (other medication
in combination) columns, respectively. The percentage change in odds ratio had increased by 80%
when Indapamide was used with Clavulanic Acid Potassium or Amoxicillin. The combination of
Allopurinol with Venlafaxine Hcl or Morphine Sulfate was associated with a 55% increase in the
odds. The odds of getting diagnosed with AKI increases if Alprazolam, Trandolapril, Metformin,
Clonidine Hcl, Acetaminophen & Oxycodone Hcl, or Cefuroxime Axetil is used in combination
with Furosemide. When Celecoxib, Pregabalin, or Atenolol was used with one of the Antipsychotic
medications (Quetiapine), the average change in odds ratio was about 65%. It is interesting to note
that Celecoxib (Anti-Inflammatory) was not found to be associated with AKI (Table 2) when used
individually, but appeared to be AKI-associated when used with Mirtazapine (Antipsychotic) or
Quetiapine Fumarate (Antidepressants).

The relationship between AKI and potential covariates (i.e., demographics and comorbidities) in
the combination models resembled the relationship of individual models. By analyzing the regression
coefficients of the combination models, we identified that patients with AKI were more likely to be
men, reside in urban areas, live in long-term care, have chronic kidney disease, hypertension, diabetes,
and heart failure. AKI was less likely to be associated with income quintile, peripheral vascular disease,
chronic liver disease, and cerebrovascular disease.
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Table 3. List of the medication combinations sorted based on their percentage change in odds ratios.

Base Medication Other Medication in Comb. Base Odds
Ratio

Comb
Odds Ratio

%Chg in Odds
Ratio

Indapamide (Diuretics) Clavulanic Acid Potassium (Penicillins) 1.24 2.22 79.00

Indapamide (Diuretics) Amoxicillin (Penicillins) 1.24 2.21 78.27

Furosemide (Diuretics) Alprazolam (Benzodiazepine Derivatives) 1.86 3.27 75.86

Donepezil Hcl (Cholinesterase Inhibitors) Indapamide (Diuretics) 1.16 2.00 72.77

Mirtazapine
(Antidepressants: Miscellaneous)

Celecoxib (Non-Steroidal
Anti-Inflammatory: Non-Asa Base) 1.31 2.27 72.41

Quetiapine Fumarate
(Antipsychotic Agents)

Celecoxib (Non-Steroidal
Anti-Inflammatory: Non-Asa Base) 1.32 2.26 70.79

Nortriptyline Hcl
(Tricyclic Antidepressant)

Acetaminophen & Oxycodone Hcl
(Analgesics &

Antipyretics: Miscellaneous)
1.27 2.13 67.49

Doxazosin Mesylate (Alpha Adrenergic
Blocking Agents)

Perindopril Tert.Butylamine
(Ace Inhibitors) 1.22 2.02 66.03

Metoprolol Tartrate (Beta-Blockers) Amitriptyline Hcl
(Tricyclic Antidepressant) 1.15 1.90 65.96

Iron Ferrous Fumarate (Iron Preparations) Bupropion Hcl (Antidepressants) 1.33 2.21 65.63

Nortriptyline Hcl
(Tricyclic Antidepressant) Lorazepam (Benzodiazepine Derivatives) 1.25 2.06 64.85

Furosemide (Diuretics) Trandolapril (Ace Inhibitors) 1.86 3.01 61.77

Indapamide (Diuretics) Donepezil Hcl (Cholinesterase Inhibitors) 1.24 2.00 61.77

Allopurinol (Xanthine Oxidase Inhibitor) Venlafaxine Hcl (Selective Serotonin
Reuptake Inhibitors-Other) 1.49 2.41 61.65

Terazosin (Alpha Adrenergic
Blocking Agents) Irbesartan (Angiotensin Ii Antagonist) 1.27 2.03 59.84

Fenofibrate (Antilipemic: Fibrates) Candesartan Cilexetil
(Angiotensin Ii Antagonist) 1.27 2.02 58.17

Terazosin (Alpha Adrenergic
Blocking Agents)

Pantoprazole Sodium
(Proton Pump Inhibitors) 1.25 1.97 57.23

Lithium Carbonate (Antimanic Agents) Atorvastatin Calcium
(Antilipemic: Statins) 1.84 2.86 55.79

Spironolactone (Diuretics
(Potassium-Sparing))

Clonazepam
(Benzodiazepine Derivatives) 1.85 2.81 52.26

Allopurinol (Xanthine Oxidase Inhibitor) Morphine Sulfate (Narcotics:
Opiate Agonists) 1.50 2.26 50.77

Iron Ferrous Fumarate (Iron Preparations) Meloxicam (Non-Steroidal
Anti-Inflammatory: Non-Asa Base) 1.33 2.01 50.75

Folic Acid (Vitamin B Complex) Hydrochlorothiazide (Diuretics) 1.22 1.82 49.59

Dexamethasone (Corticosteroids, Plain) Gabapentin (Gamma-Aminobutyric Acid
(Gaba) Derivatives) 1.67 2.49 49.42

Quetiapine Fumarate
(Antipsychotic Agents)

Pregabalin (Anticonvulsants:
Miscellaneous) 1.32 1.95 47.67

Dexamethasone (Corticosteroids, Plain) Ramipril (Ace Inhibitors) 1.69 2.48 46.97

Metoprolol (Beta-Blockers) Omeprazole (Proton Pump Inhibitors) 1.17 1.71 46.70

Ondansetron Hcl (Antiemetics &
Antinauseants)

Ranitidine Hcl (Histamine H2
Receptor Antagonist) 1.62 2.37 46.49

Furosemide (Diuretics) Metformin (Oral Anti-Glycemics) 1.86 2.69 44.56

Quetiapine Fumarate
(Antipsychotic Agents) Atenolol (Beta-Blockers) 1.32 1.90 43.70

Iron Ferrous Fumarate (Iron Preparations) Metformin (Oral Anti-Glycemics) 1.34 1.91 43.05

Spironolactone (Diuretics
(Potassium-Sparing))

Candesartan Cilexetil
(Angiotensin Ii Antagonist) 1.84 2.62 42.47

Spironolactone (Diuretics
(Potassium-Sparing)) Enalapril Sodium (Ace Inhibitors) 1.86 2.61 40.83

Furosemide (Diuretics)
Acetaminophen & Oxycodone Hcl

(Analgesics &
Antipyretics: Miscellaneous)

1.85 2.60 40.35

Spironolactone (Diuretics
(Potassium-Sparing))

Dabigatran Etexilate
(Anticoagulants Miscellaneous) 1.85 2.60 40.22

Furosemide (Diuretics) Clonidine Hcl (Centrally
Acting Antiadrenergic) 1.86 2.61 40.11

Furosemide (Diuretics) Cefuroxime Axetil (Cephalosporin) 1.86 2.61 40.02
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4. Discussion

In this study, we demonstrated how machine learning techniques could help with the identification
of potentially nephrotoxic medications using administrative health databases housed in ICES.
Nephrotoxic medications are responsible for about 20% of episodes of AKI, and the rate of
medication-induced nephrotoxicity leading to AKI among older patients is approximately 66% [43,44].
We have presented methods for identifying medications and medication combinations that are
associated with AKI using regression and frequent itemset mining algorithms. We found that 9% of
all the prescribed medications were possibly associated with AKI by analyzing the medication data
of one million older patients included in our study. Our analysis identified Angiotensin II Receptor
Blockers, Antibacterial Agents, Diuretics, Iron Preparations, Nonsteroidal Anti-Inflammatory drugs,
and Xanthine Oxidase Inhibitors as medication classes that were associated with increasing the risk of
AKI. In a recent study of the French national pharmacovigilance database, Pierson-Marchandise et al.
(2017) found that the majority of cases of medication-induced AKI were related to Antibacterial Agents,
Antineoplastic Agents, Diuretics, Anti-Inflammatory drugs, and agents acting on the Renin-Angiotensin
system [45]. A similar conclusion was reached by a study of nursing home residents, where Ace
Inhibitors, Angiotensin II Receptor Blockers, Antibiotics, and Diuretics were identified as the primary
medication classes responsible for developing AKI.

Our study also aimed to investigate how the individual medication analysis results were consistent
with what has been found in the previous studies. We first reviewed the results with a nephrologist
and learnt that most of the statistically significant medications (Table 2) were already known to be
associated with AKI, which confirmed the accuracy of our findings. We also conducted an electronic
literature search to find the research papers that studied the relationships between these medications
and AKI. To ensure that relevant papers were not missed in our search, we used a relatively large set of
keywords. We used two sets of keywords. The first set represented the medication, and the second was
concerned with AKI. For the second set, we used the following terms: “AKI”, “acute kidney injury”,
“acute renal failure”, “acute phosphate nephropathy”, “acute prerenal failure”, and “anuria”. All the
studies included in this literature search were published from 1995 until 2019. Through the literature
search, we found studies that investigate the associations between 38 medications (among 55 identified
medications) and AKI, which more comprehensively proved the efficacy of our study.

To explain the results of individual medication analysis, we divided the identified medications into
two main groups—known and likely-confounded. The medications that belong to the first group were
already known to be associated with AKI. The relationships between AKI and these medications have
previously been studied in the literature. The likely confounded group contains medications that are
used to treat AKI-associated conditions, included in studies with kidney function, or not studied before.
There is a lack of evidence regarding the association between AKI and some of these medications,
such as Prochlorperazine Maleate and Terazosin. The complete list of medications that are divided into
these groups is shown in Table 4. Out of 55 medications, there were 38 medications in the known group
and 17 medications in the likely-confounded group. The key finding of the individual medication
analysis was the list of medications included in the likely-confounded group. These medications are
suitable candidates for clinical drug-safety studies to investigate this potential association.
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Table 4. The list of statistically significant medications from individual analysis, divided into two groups.

Known Likely-Confounded

Furosemide [46,47] Hydralazine Hcl [48]

Allopurinol [49,50] Ondansetron Hcl [51]

Amlodipine [45,52] Lithium Carbonate [48]

Hydrochlorothiazide [45]. Bisoprolol Fumarate [53]

Iron Ferrous Fumarate [54] Abiraterone Acetate [55]

Spironolactone [56] Sunitinib Malate [57]

Bisoprolol [45] Carvedilol [58]

Atenolol [59] Donepezil Hcl [60]

Metoprolol [59] Acetylsalicylic Acid [48]

Valsartan [61] Mirtazapine [62]

Indapamide [45] Loperamide [63]

Nifedipine [64] Doxazosin Mesylate [65]

Iron Ferrous Gluconate [54] Senna [66]

Quetiapine [67] Megestrol Acetate [68,69]

Gabapentin [70] Nortriptyline [71]

Linagliptin [72] Terazosin

Glyburide [73] Prochlorperazine Maleate

Lenalidomide [74]

Trimethoprim [45]

Olmesartan Medoxomil [75]

Ramipril [45]

Gliclazide [45]

Atropine Sulfate [45]

Folic Acid [76]

Chlorthalidone [77]

Clonidine Hcl [78]

Fenofibrate [45]

Dipyridamole [79]

Olanzapine [80]

Digoxin [45]

Lisinopril [45]

Methyldopa [81]

Oseltamivir Phosphate [82]

Metolazone [83–85]

Cyclosporine [86]

Dexamethasone [87,88]

Moxifloxacin Hcl [89]

Sulfamethoxazole [45]

Through the medication combination analysis, we found that out of 25 thousand patients with
AKI in our dataset, about 85% were prescribed multiple medications within 120 days prior to the
index date. The incidence rate of developing AKI is usually higher among patients who are prescribed
multiple medications. For instance, in a study of 38,782 adverse drug reaction events, out of 1254
reported AKI cases, about 66% included two or more concomitantly prescribed medications [45].
Another study suggested that there were statistically significant associations between the duration
of simultaneous medication use and the development of AKI [90]. Similarly, a study of Taiwan’s
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National Health Insurance system showed that the concurrent use of certain medication classes
(such as Diuretics, Beta Blockers, Calcium Channel Blockers, Alpha Blockers, Ace Inhibitors, Digoxin,
and Platelet Aggregation Inhibitors) was strongly associated with the development of AKI [91].
In order to compare our findings with the existing literature, we discussed the results of medication
combination analysis using medication classes, since most of the previous studies presented their
results this way. As shown in Table 3, some of the AKI-associated combinations are Alpha Adrenergic
Blocking Agents-and-Ace Inhibitors, Corticosteroids-and-Ace Inhibitors, Diuretics-and-Ace inhibitors,
Potassium Sparing Diuretics-and-Ace Inhibitors, Diuretics-and-Analgesics & Antipyretics, Tricyclic
Antidepressant-and-Analgesics & Antipyretics, Alpha Adrenergic Blocking Agents-and-Angiotensin
II Antagonist, and Antilipemic: Fibrates-and-Angiotensin II Antagonist. We have identified that
using a combination of Diuretics with some specific medication classes are associated with increasing
the risk of developing AKI. In line with our findings, the effect of using Diuretics with Renin
Angiotensin Aldosterone Agents, Ace Inhibitors, or Penicillin on AKI has been investigated in several
researches [92–98].

In order to verify the results of the medication combination analysis, we compared our findings
with a recent study [22]. In their study, Rivosecchi et al. identified 76 unique combinations of
medication classes that were associated with AKI by assessing 2139 citations. Overall, 73.7% of selected
medication classes were categorized as very low quality, 15.8% were of low quality, and 10.5% were
considered medium quality. We found that our results are consistent with the studies included in this
literature review. It is important to note that there were 19 medications in our study that were not
statistically significant individually but were found to be strongly associated with AKI when used
with another medication (Tables 2 and 3). There are also a few combinations of medication classes
in our study, such as Antipsychotic Agents-and-Anti-Inflammatory, Diuretics-and-Xanthine Oxidase
Inhibitor, to name a few, which have been studied individually, but there is a lack of evidence in the
literature on how these combinations are associated with AKI [99–103].

The main strength of the study presented in this paper was its exhaustive analysis of medication
usage patterns of the one million hospitalized patients within a 120-day look-back window. It is
noteworthy that all the patients were elderly (65 years or older), suffering from multiple diseases,
and taking several potentially nephrotoxic medications. We included most of the frequently prescribed
medications and investigated all possible combinations among these medications in our study. Next,
to assess the true impact of medications on AKI, we incorporated the patients’ demographic and
comorbidity features as covariates in the regression analysis. In addition, we performed a stratified
analysis to investigate the synergistic effect of medication combinations on AKI. To our knowledge,
this study introduced a novel analysis technique by integrating frequent itemset mining, regression,
and stratification, to identify medications and combinations that can potentially be associated with AKI.

This research also demonstrates how machine learning can be used to address a well-known
problem in the medical domain. It highlights what needs to be considered when designing studies that
are intended to incorporate machine learning techniques to support data-driven tasks using health
administrative datasets.

5. Limitations

Our study has some limitations. First, our results can only be generalized to the elderly, as we
only had complete medication data on those aged 65 and older. Second, our study population might
have included clinically unstable patients who were admitted to the hospital or emergency department.
This could be a confounding factor, as clinically unstable patients are more likely to take multiple
concomitant medications, increasing their chances of developing AKI. Third, our findings can only
be generalized to the population of Ontario, since the models were derived and validated in cohorts
from hospitals in Ontario. Lastly, there could be multiple reasons for which a patient is prescribed
with medication, and these reasons may lead to the development of AKI rather than the medication
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itself. The study was designed to assist healthcare researchers at the ICES-KDT program in identifying
potential candidates for their future medication-safety studies.

6. Conclusions

Medication-induced nephrotoxicity is one of the major causes of AKI worldwide. In the present
study of the ICES database, we identify the individual medications and medication combinations that
are potentially associated with AKI by applying a combination of regression and frequent itemset
mining techniques. We have shown that our results are consistent with previous studies throughout
this paper. Although most of the medications that we identify are already known to be associated
with AKI, some of them have not been thoroughly studied yet. Our findings would raise awareness to
conduct clinical research on these potentially nephrotoxic medications. Attention should be directed at
avoiding nephrotoxic treatments when an at-risk situation is identified to reduce the chance of patients
developing AKI. This requires not only careful monitoring by prescribers but also comprehensive
studies on these medications. Ongoing research in this field might provide us with more reliable
methods in the detection of potentially nephrotoxic medications and their combinations, thus allowing
timely intervention to prevent AKI. This research will also help machine learning researchers to
understand what needs to be considered when designing studies that are intended to incorporate
machine learning methods to accomplish various data-driven tasks using healthcare datasets.
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Appendix A

Table A1. List of databases held at ICES (an independent, non-profit, world-leading research organization
that uses population-based health and social data to produce knowledge on a broad range of
healthcare issues).

Data Source Description Study Purpose

Canadian Institute for Health
Information Discharge Abstract

Database and National Ambulatory
Care Reporting System

The Canadian Institute for Health Information Discharge
Abstract Database and National Ambulatory Care Reporting

System collect diagnostic and procedural variables for
inpatient stays and ED visits, respectively. Diagnostic and

inpatient procedural coding use the 10th version of the
Canadian Modified International Classification of Disease

system 10th Revision (after 2002).

Cohort creation, description, exposure,
and outcome estimation

Ontario Drug Benefits

The Ontario Drug Benefits database includes a wide range of
outpatient prescription medications available to all Ontario

citizens over the age of 65. The error rate in the Ontario
Drug Benefits database is less than 1%.

Medication prescriptions,
description, and exposure

Registered Persons Database

The Registered Persons Database captures demographic (sex,
date of birth, postal code) and vital status information on all

Ontario residents. Relative to the Canadian Institute for
Health Information Discharge Abstract Database in-hospital
death flag, the Registered Persons Database has a sensitivity

of 94% and a positive predictive value of 100%.

Cohort creation, description,
and exposure

Ontario Health Insurance Plan

The Ontario Health Insurance Plan database contains
information on Ontario physician billing claims for medical

services using fee and diagnosis codes outlined in the
Ontario Health Insurance Plan Schedule of Benefits.

These codes capture information on outpatient, inpatient,
and laboratory services rendered to a patient.

Cohort creation, stratification,
description, exposure, and outcome
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Table A2. Coding definitions for comorbid conditions.

Variable Database Code Set Code

Major cancer

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

150, 154, 155, 157, 162, 174, 175, 185, 203, 204,
205, 206, 207, 208, 2303, 2304, 2307, 2330,

2312, 2334

International Classification of Diseases
10th Revision

971, 980, 982, 984, 985, 986, 987, 988, 989, 990,
991, 993, C15, C18, C19, C20, C22, C25, C34,
C50, C56, C61, C82, C83, C85, C91, C92, C93,

C94, C95, D00, D010, D011, D012, D022,
D075, D05

Ontario Health Insurance Plan Diagnosis 203, 204, 205, 206, 207, 208, 150, 154, 155, 157,
162, 174, 175, 183, 185

Chronic liver disease

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

4561, 4562, 070, 5722, 5723, 5724, 5728, 573, 7824,
V026, 571, 2750, 2751, 7891, 7895

International Classification of Diseases
10th Revision

B16, B17, B18, B19, I85, R17, R18, R160, R162,
B942, Z225, E831, E830, K70, K713, K714, K715,
K717, K721, K729, K73, K74, K753, K754, K758,

K759, K76, K77

Ontario Health Insurance Plan
Diagnosis 571, 573, 070

Fee code Z551, Z554

Coronary artery
disease

(excluding angina)

Canadian Institute for Health Information
Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures 4801, 4802, 4803, 4804, 4805, 481, 482, 483

Canadian Classification of Health Interventions 1IJ50, 1IJ76

International Classification of Diseases
9th Revision 412, 410, 411

International Classification of Diseases
10th Revision I21, I22, Z955, T822

Ontario Health Insurance Plan
Diagnosis 410, 412

Fee code R741, R742, R743, G298, E646, E651, E652, E654,
E655, Z434, Z448

Diabetes

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision 250

International Classification of Diseases
10th Revision E10, E11, E13, E14

Ontario Health Insurance Plan
Diagnosis 250

Fee code Q040, K029, K030, K045, K046

Heart failure

Canadian Institute for Health Information
Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures 4961, 4962, 4963, 4964

Canadian Classification of Health Interventions 1HP53, 1HP55, 1HZ53GRFR, 1HZ53LAFR,
1HZ53SYFR

International Classification of Diseases
9th Revision I500, I501, I509, I255, J81

International Classification of Diseases
10th Revision I21, I22, Z955, T822

Ontario Health Insurance Plan
Diagnosis 428

Fee code R701, R702, Z429

Hypertension
Canadian Institute for Health Information

Discharge Abstract Database

International Classification of Diseases
9th Revision 401, 402, 403, 404, 405

International Classification of Diseases
10th Revision I10, I11, I12, I13, I15

Ontario Health Insurance Plan Diagnosis 401, 402, 403

Kidney stones Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

5920, 5921, 5929, 5940, 5941, 5942, 5948,
5949, 27411

International Classification of Diseases
10th Revision

N200, N201, N202, N209, N210, N211, N218,
N219, N220, N228

Peripheral vascular
disease

Canadian Institute for Health Information
Discharge Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures

5125, 5129, 5014, 5016, 5018, 5028, 5038,
5126, 5159

Canadian Classification of Health Interventions
1KA76, 1KA50, 1KE76, 1KG50, 1KG57,
1KG76MI, 1KG87, 1IA87LA, 1IB87LA,
1IC87LA, 1ID87LA, 1KA87LA, 1KE57

International Classification of Diseases
9th Revision 4402, 4408, 4409, 5571, 4439, 444

International Classification of Diseases
10th Revision I700, I702, I708, I709, I731, I738, I739, K551

Ontario Health Insurance Plan Fee code

R787, R780, R797, R804, R809, R875, R815, R936,
R783, R784, R785, E626, R814, R786, R937, R860,
R861, R855, R856, R933, R934, R791, E672, R794,

R813, R867, E649

Cerebrovascular
disease (stroke or

transient
ischemic attack)

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision 430, 431, 432, 4340, 4341, 4349, 435, 436, 3623

International Classification of Diseases
10th Revision

I62, I630, I631, I632, I633, I634, I635, I638, I639,
I64, H341, I600, I601, I602, I603, I604, I605, I606,
I607, I609, I61, G450, G451, G452, G453, G458,

G459, H340

Chronic kidney
disease

Canadian Institute for Health Information
Discharge Abstract Database

International Classification of Diseases
9th Revision

4030, 4031, 4039, 4040, 4041, 4049, 585, 586, 5888,
5889, 2504

International Classification of Diseases
10th Revision E102, E112, E132, E142, I12, I13, N08, N18, N19

Ontario Health Insurance Plan Diagnosis 403, 585
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Table A3. Diagnostic codes for exclusion criteria.

Variable Database Code Set Code

Dialysis

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of Diagnostic,
Therapeutic and Surgical Procedures 5127, 5142, 5143, 5195, 6698

Canadian Classification of
Health Interventions

1PZ21, 1OT53DATS, 1OT53HATS,
1OT53LATS, 1SY55LAFT, 7SC59QD, 1KY76,
1KG76MZXXA, 1KG76MZXXN, 1JM76NC,

1JM76NCXXN

International Classification of Diseases
9th Revision V451, V560, V568, 99673

International Classification of Diseases
10th Revision T824, Y602, Y612, Y622, Y841, Z49, Z992

Ontario Health Insurance Plan Fee code

R850, G324, G336, G327, G862, G865, G099,
R825, R826, R827, R833, R840, R841, R843,
R848, R851, R946, R943, R944, R945, R941,
R942, Z450, Z451, Z452, G864, R852, R853,
R854, R885, G333, H540, H740, R849, G323,
G325, G326, G860, G863, G866, G330, G331,
G332, G861, G082, G083, G085, G090, G091,
G092, G093, G094, G095, G096, G294, G295

Kidney
transplant

Canadian Institute for Health
Information Discharge

Abstract Database

Canadian Classification of
Health Interventions 1PC85

Ontario Health Insurance Plan Fee code S435, S434
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