
 informatics

Article

Automated Configuration of NoSQL Performance and
Scalability Tactics for Data-Intensive Applications

Davy Preuveneers * and Wouter Joosen

imec—DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; wouter.joosen@cs.kuleuven.be
* Correspondence: davy.preuveneers@cs.kuleuven.be; Tel.: +32-16-327853

Received: 3 July 2020; Accepted: 4 August 2020; Published: 8 August 2020
����������
�������

Abstract: This paper presents the architecture, implementation and evaluation of a middleware
support layer for NoSQL storage systems. Our middleware automatically selects performance
and scalability tactics in terms of application specific workloads. Enterprises are turning to NoSQL
storage technologies for their data-intensive computing and analytics applications. Comprehensive
benchmarks of different Big Data platforms can help drive decisions which solutions to adopt.
However, selecting the best performing technology, configuring the deployment for scalability
and tuning parameters at runtime for an optimal service delivery remain challenging tasks, especially
when application workloads evolve over time. Our middleware solves this problem at runtime
by monitoring the data growth, changes in the read-write-query mix at run-time, as well as
other system metrics that are indicative of sub-optimal performance. Our middleware employs
supervised machine learning on historic and current monitoring information and corresponding
configurations to select the best combinations of high-level tactics and adapt NoSQL systems to
evolving workloads. This work has been driven by two real world case studies with different QoS
requirements. The evaluation demonstrates that our middleware can adapt to unseen workloads of
data-intensive applications, and automate the configuration of different families of NoSQL systems
at runtime to optimize the performance and scalability of such applications.

Keywords: resource optimization; hyperparameter tuning; machine learning; smart environments

1. Introduction

The amount and diversity of data that is being created, collected, stored and processed in
enterprises is growing at an unprecedented pace. However, sophisticated data processing demands
for predictable performance guarantees, as a potential degradation in performance introduces
a risk where the time needed to complete the processing and analysis exceeds the window of
opportunity to exploit the results by the application. This is for example the case in an online payment
processing application that processes historical and contextual data to improve risk assessment without
introducing unacceptable delays for customers and merchants.

Application architects are adopting NoSQL storage technologies that have been designed to
provide good horizontal scalability for data-intensive computing and analytics applications. Not only
are architects faced with the curse of choosing the technology [1] that best matches their data model,
consistency and availability requirements, yet it is far from trivial to compare the relative impact
and trade-offs between different performance and scalability tactics that must be applied when
configuring the chosen storage technology [2,3]. Standard benchmarks can help evaluators in testing
different storage systems and in facilitating performance comparisons. For example, the Yahoo!
Cloud Serving Benchmark (YCSB) [4] is a well-known standard benchmark that tests storage systems
with different mixes of read (single-record gets and range scans) and write (single-record inserts
and updates) workloads. However, YCSB benchmark reports do not always paint the required accurate

Informatics 2020, 7, 29; doi:10.3390/informatics7030029 www.mdpi.com/journal/informatics

http://www.mdpi.com/journal/informatics
http://www.mdpi.com
https://orcid.org/0000-0001-6279-4430
http://dx.doi.org/10.3390/informatics7030029
http://www.mdpi.com/journal/informatics
https://www.mdpi.com/2227-9709/7/3/29?type=check_update&version=2

Informatics 2020, 7, 29 2 of 25

picture on a distributed system’s performance and scalability because the amount of stored data
and the generated artificial workload is typically not representative for the workload imposed by
today’s real world applications. Indeed, application architects are faced with the following challenges:

• There is no one-size-fits-all solution to select and configure storage technology for supporting
data-intensive applications, because (1) different applications may impose workloads
(e.g., in terms of mixing read and write operations, in terms of data aggregation and querying) that
are better serviced by a particular type of data storage, (2) the suitability of storage technologies
for adaptation may vary, and (3) they come with specific configuration options that are not
(and cannot be) represented in standard benchmarks.

• The run-time environment and conditions of a specific data-intensive application may not
allow for a statically optimal configuration, for example because of unpredictable deployment
settings in a cloud-based deployment, but also because of the dynamics of the application itself,
as workloads evolve at run-time. This may jeopardize the effectiveness of performance enhancing
tactics (e.g., performance hits of secondary indices for write-heavy workloads).

• Yet dynamic reconfiguration may not pay off: applying a performance tactic at run-time may
trigger a temporary overhead and a delay before the tactic becomes effective, and the cost of run-time
adaptation may not outweigh the benefit if the window of opportunity is short lived.

Selecting the best performing technology and configuring the deployment for scalability
and tuning parameters for an optimal service delivery are challenging tasks that should not be
re-executed from scratch by knowledgeable application architects. This task should be addressed
and facilitated by special purpose middleware.

In this paper, we present a Performance and Scalability Tactics Architecture (PaSTA)
and implementation (see Figure 1 for a conceptual view) of a configuration (deployment time) and a
dynamic re-configuration (run-time) middleware layer for data-intensive applications that select
and map performance and scalability tactics in terms of application specific characteristics and needs
by monitoring create, read, update and delete (CRUD) as well as query and aggregation operations.
Our middleware design absorbs the know-how through supervised machine learning based on data
gathered in performance and scalability experiments in two real-world, industrial application cases
that impose complementary Quality of Service (QoS) requirements. The contributions of this paper
are threefold:

1. We have investigated and quantified the impact of different performance and scalability tactics,
including vertical and horizontal scaling, sharding, caching, replication, in-memory stores
and secondary indices. These benchmarking results and newly collected monitoring information
is used to automatically tune at runtime the configuration of NoSQL systems through supervised
machine learning on streaming monitoring data with Adaptive Hoeffding Trees.

2. The impact analysis sketched above is at the basis of a middleware support layer
that offers mapping capabilities to associate these high-level tactics, evolving application
workloads, and preferences of the architect with the configuration interfaces of a range of
underlying NoSQL technologies, with representative platforms for key-value pair, column-based
and document-based stores, as depicted in Table 1.

3. We have validated and applied our solution in the context of industry-level case studies of
data-intensive applications where performance and scalability are key. The acquired insights
have been embedded into the design of our PaSTA middleware. The evaluation demonstrates
that the machine learning based mapping by our middleware can adapt NoSQL systems to
unseen workloads of data-intensive applications.

Informatics 2020, 7, 29 3 of 25

�����������	
�����	���	��
����	���	�����	��

����������
���������

�	������� � ��������	����

�������������
��� !
������	�"������!#�����������������!#�������������

���	���$���	��

� �%&�
� '���
� ��������	��

Figure 1. Performance and Scalability Tactics Architecture (PaSTA) middleware with reconfiguration layer.

Ultimately, the role of our PaSTA middleware is to identify and apply NoSQL system
configurations for multiple concurrent optimization objectives (e.g., throughput, latency, cost)
based on a quantitative assessment of various performance and scalability tactics. Our middleware
solves this problem at runtime by monitoring the data growth, changes in the read/write/query
mix at run-time, as well as other system metrics that are indicative of sub-optimal performance.
Our middleware employs supervised machine learning on historic and current monitoring information
and corresponding configurations to select the best combinations of high-level tactics and adapt NoSQL
systems to evolving workloads.

Related work on autonomic computing contains point solutions that optimize some of
the presented configuration tactics in a more finely grained and sometimes more sophisticated way.
The presented middleware in this paper services the comprehensive goal of statically and dynamically
managing and tuning the configuration of distributed storage systems that support data-intensive
applications that utilize distributed NoSQL technology.

The remainder of the paper is structured as follows. We discuss two real world case studies
and the corresponding QoS requirements in Section 2. In Section 3 we review representative
NoSQL storage systems and the distributed deployment infrastructures. Section 4 elaborates on
the characterization of workloads and the mapping of system configurations. In Section 5, we explain
how the acquired insights have been embedded in the design of our middleware and how our
prototype configures NoSQL technology based on high-level tactics and preferences imposed by
the application architect. We illustrate the feasibility and performance of our solution in Section 6.
In Section 7, we discuss and compare with related work. We conclude in Section 8.

Table 1. Performance and scalability tactics in contemporary NoSQL storage systems.

MongoDB Cassandra CouchDB Elasticsearch Riak HBase Redis

Storage Type Doc Col Doc Doc Key-Val Col Key-Val

Sharding 3 3 3 3 3 3 3

Replication 3 3 3 3 3 3 3

Secondary index 3 3 3 3 3 7 3

In-memory mode 3 3 7 7 3 7 3

Cache tuning 3 3 7 3 7 3 ?

Quorums 3 3 7 3 3 7 7

Compression 3 3 3 3 3 3 ?

Informatics 2020, 7, 29 4 of 25

2. Motivating Use Cases

In this section, we document two real world industry use cases of data-intensive applications with
complementary QoS requirements. These case studies emerge from industrial collaboration and are
the motivating examples for this work. We highlight some of the challenging aspects application owners
are facing while aiming to deliver predictable performance guarantees and/or a highly responsive
customer experience.

2.1. Fraud Analytics in Anywhere-Commerce

The first use case involves an industry offering innovative, fast and secure payment services to
its “anywhere-commerce” clients (e.g., brick-and-mortar shop owners and online retail merchants).
The payment products handle electronic transactions with credit cards, voucher and gift cards,
micro- and mobile payments, and stored value accounts. Their objective is to improve the overall
end-user experience and identify fraudulent transactions in real-time by customizing the payment
transaction flow based on the context of the customer, vendor, products and transaction value.
The risk assessment of such context-dependent payment transactions is subject to hard response time
constraints. Decisions should be taken without any noticeable delay for the end-user or merchant.
The online fraud analytics is based on fraud rules that merchants can customize in terms of their own
business needs:

• Blacklists/whitelists: shipping and billing countries, IP address ranges, credit card PAN numbers,
countries derived from IP address and/or card number, and so forth, will affect the risk that is
dynamically associated with a particular transaction.

• Velocity rules with sliding windows: In addition, the number of transactions and the cumulative
amount spent per customer, the IP address, card/account number and so forth over given period
do constitute a second data source for online risk assessment.

• Other thresholds: Additional factors are taken into account, for example the number of credit
cards per IP address, and IP addresses per card/account number in absolute values and over a
given period.

When violated, each of these fraud rules contributes to a risk score for the transaction that
will influence the remainder of the payment flow. The overall risk assessment of a single transaction
(excl. network delay) should take less than 10 ms in 99.9% of the transaction requests. Additionally,
to account for seasonal variations in the spending behavior (e.g., summer sales), merchants can tune
their thresholds and reevaluate historic transactions offline at a rate of at least 10,000 transactions per
minute (depending on the Service Level Agreement (SLA)).

Replicating data to an in-memory only storage node eliminates time consuming flushes from
memory to disk and compression. This tactic can help in reducing the variability in the request
latency to meet the stringent QoS constraints. Additionally, a Time To Live (TTL) secondary index can
automatically discard old records to efficiently evaluate the velocity rules. Clearly, these tactics are
essential to configure the storage capabilities to support the application level SLA.

2.2. Interactive Situational Awareness

The second application case involves software components that enable the rapid assembly of
applications that offer high-performance geospatial situational awareness. The resulting products are
used in mission critical systems that handle a large variety and volume (terabytes) of static and moving
data covering relevant geographical information. The live data is produced by an ever increasing
number of remote devices and sensors, and is stored and processed by high-end enterprise back-end
systems. Relevant examples of live data and large-scale historic data sets include car (http://www.
ndw.nu/en), air (http://www.flightradar24.com) and marine (http://www.marinetraffic.com) traffic
information, or geotagged metadata in maps [5].

http://www.ndw.nu/en
http://www.ndw.nu/en
http://www.flightradar24.com
http://www.marinetraffic.com

Informatics 2020, 7, 29 5 of 25

A typical scenario is an incident near a harbor (e.g., a hazardous chemical spill) where emergency
response teams must quickly identify vessels that are heading towards the incident, or vessels that left
the region hours ago. With interactive visualization being a key concern, the objective is to provision
the right data with minimal latency to decision makers. Such geospatial queries should be executed in
less than a second, and the system must be able to process 10,000 concurrent updates of vehicles or
other sensors per second.

Geospatial applications typically retrieve records from data stores holding terabytes of data with
queries having location, region or distance constraints. Sharding can distribute the workload for such
sophisticated queries. For large data sets, spatial secondary indices are critical to guarantee efficient
record retrieval. If not supported, one can construct a geohash [6] based primary key (with a drawback:
queries with other fields used as filters require inefficient scanning through all records). Given that
the relevant information − and hence the nature of the geospatial queries − highly depends on the role
of the stakeholder and the situation at hand, it is clear that dynamic optimization at run-time is key.
Again, specific tactics are essential to configure and dynamically re-configure the storage capabilities
to support the application needs.

3. NoSQL Deployment Environment Overview

This section elaborates on the 3 NoSQL storage systems that we used as storage backends,
and the infrastructures on which these technologies and our middleware were deployed.

3.1. Representative NoSQL Storage Systems

The previous industry cases have been implemented on top of three NoSQL technologies for
comparison, and these can be considered to be representative for essential NoSQL categories: Riak for
key-value pairs, HBase for column-based technologies and MongoDB for document-based platforms.

3.1.1. Riak

Riak 2.1.4 is a key-value NoSQL database inspired by Amazon’s Dynamo architecture [7] that
adopts a masterless architecture (see Figure 2) in which every node in the cluster is capable of serving
read and write requests. Requests are routed to nodes through standard load balancing. Riak offers
replication with consistent hashing and automatically shards data to ensure even distribution (based on
mapping each object to a point on the edge of a circle). Depending on the backend used, Riak supports
secondary indices through tagging objects, but recommends Solr for indexing instead.

��������	

��	��

��������	

��������	

�
�
�
��

�
��

�
�
	
�

��������	

Figure 2. Deployment of a Riak key-value pair cluster.

3.1.2. HBase

Figure 3 depicts our HBase 1.2.0 setup, a distributed column family database providing
low-latency random reads and writes on top of the Hadoop Distributed File System (HDFS). A clustered
deployment has one HMaster (master) and multiple Region Servers (slaves) that serve data for reads
and write. Clients communicate with the Region Servers directly. The BlockCache read cache stores

Informatics 2020, 7, 29 6 of 25

frequently read data in memory with a least recently used (LRU) eviction policy. The MemStore write
cache stores new data which has not yet been written to disk. Each region server hosts multiple regions
and stores the data in HDFS in HFile format. ZooKeeper maintains the server state of the cluster.

���������	
�	

�����

�����	

���������	
�	

������

��������	

�������������������������

�����

�����

���

���������� ����������

�����	�

������

�����

�����

�����	�

������

�����

�����

���
�����	�

������

�����

�����

�����	�

Figure 3. Deployment of an HBase column store cluster.

3.1.3. MongoDB

The last system that has been tested was MongoDB Enterprise 3.4. The deployment setup is
shown in Figure 4, both a stand-alone MongoDB instance, and a sharded MongoDB cluster. The mongod
nodes are the nodes that contain the actual data in the database. In the clustered setup all data is
distributed across three mongod shard nodes, without replication. The mongos node is a proxy that
is aware of the data placement. Depending on the query, this node forwards the query and update
operations to one or more shards.

������

����	
�����
��������

����	���	�

��������	�

������

�����	

�������������

����	���	�

�����	

����	���	�

����	���	�

�����	

����	�	�
�������

���

���
�����	

Figure 4. Deployment of (a) a single stand-alone MongoDB document store and (b) a sharded
MongoDB cluster.

3.2. Distributed Deployment Infrastructures

The three NoSQL storage systems and our PasTA middleware are evaluated on three different
deployment infrastructures: on high-end Dell PowerEdge servers, on low-end Dell OptiPlex desktop

Informatics 2020, 7, 29 7 of 25

machines and on low-end virtual machines in a multi-tenant OpenStack private cloud environment
with eight compute nodes. An overview of the specification of these machines is shown in Table 2.
The cloud environment is optimized for a high degree of resource sharing. One physical CPU can be
mapped to multiple virtual CPUs, depending on the workload of the cluster. The desktop machines
are performance-wise comparable to the virtual machines in the private cloud. However, native
deployments operate with performance isolation and without virtualization overhead or influences of
the underlying distributed file system of the private cloud stack.

Table 2. Hardware configuration and specification of the 3 deployment environments.

Dell PowerEdge R620 (Server) Dell OptiPlex 755 (Desktop) OpenStack (vm)

Deployment Native Native Virtual machine

OS Ubuntu 16.04 (64-bit) Ubuntu 16.04 (64-bit) Ubuntu 16.04 (64-bit)

CPU 2 × Intel Xeon E5-2650 (8 cores) at 2 GHz Intel Core 2 Duo E6850 (2 cores) at 3 GHz 2 × vCPU

Memory 64 GB 4 GB 4 GB

Hard drive 2 × 900 GB SAS 6 Gbps 10 K RPM 250 GB Seagate Barracuda 7200.10 ATA virtual

Network 1 Gigabit 1 Gigabit 3 × 1 Gigabit

4. Workload Characterization and System Configuration Mapping

The performance and scalability of the above data-intensive applications not only depend on
the distributed NoSQL storage system deployment and configuration, but also on the workload
that the data-intensive application imposes on the underlying storage system in terms read/write
and query operations.

However, selecting the best performing technology, configuring the deployment for scalability
and tuning parameters at runtime for an optimal service delivery remain challenging tasks. To tune
distributed NoSQL storage systems for performance and scalability, our PaSTA middleware monitors
the data growth, changes in the read/write/query mix at run-time, as well as other system metrics that
are indicative of sub-optimal performance and SLA violations. Using supervised machine learning on
historic and current monitoring information and corresponding configurations, our middleware then
maps application workloads on distributed system configurations to adapt to evolving workloads.
The overall approach is depicted in Figure 5.

���������	
���������
�������	�

������
�����������
��	
���������

������
�����������

�����������
���������
�����

��������	
 ��!"
	���������

�������

#
�
�
�
�
�
�
$
��
	

��

��
�

�
�

��
�
��
��

��
�

�
�
�
�
�

��
��
��
��
�

 ��!"
%���$������
��	
#���$�����
&��������

�������
���������

�������������

���������� ����������

��������� ���������

������������

!��"#

$%��
&!%'%�
&!%'(

������������

���)�
*�������+
�

&�����

��'*�
���
�������

!��,�����������

!��,��������
����������������

!��,��������
����������������

%��,��-������

.���#����,��-������

������

Figure 5. Machine learning based mapping of performance and scalability tactics through runtime
configuration on NoSQL systems.

Informatics 2020, 7, 29 8 of 25

4.1. Data Collection and Feature Extraction

To validate the practical feasibility of our middleware, we will collect system metric statistics of
(1) performance benchmarking tools and (2) those of genuine end-users of the application cases to test
with realistic workloads and produce convincing experimental evidence under different operating
conditions and distributed deployment environments.

4.1.1. Application Agnostic Performance Benchmarks

The motivation to leverage monitoring information from application agnostic benchmarking tools
is that they usually cover a broader spectrum of albeit simulated application workloads. This way,
our middleware can tap into coarse grained insights to deal with unseen workloads of real world
applications. To quantify the effect of the aforementioned trade-offs in practice in an application
agnostic manner, the YCSB benchmarking tool (https://github.com/brianfrankcooper/YCSB) has
been applied in different experiment setups varying the above tactics. This tool is widely used in
research to compare the performance of distributed storage systems, and allows simulating a certain
amount of users (client threads) that execute CRUD (create, read, update and delete) operations on a
specific storage system under 6 standard and built-in core workloads.

A: 50% read; 50% update; request distribution=zipfian
B: 95% read; 5% update; request distribution=zipfian
C: 100% read; request distribution=zipfian
D: 95% read; 5% insert; request distribution=latest
E: 95% scan (0 to 100 records with uniform probability); 5% insert; request distribution=zipfian
F: 50% read; 50% read-modify-write; request distribution=zipfian

4.1.2. User and Application Specific Workloads

There are several limitations with generic technology benchmarking tools to make well-informed
adaptation or reconfiguration decisions. For example, they cannot give any guarantees that
the application specific QoS requirements of the industry cases in Section 2 will be met. Furthermore,
they usually only test the common denominator of storage system functionality, usually CRUD
operations based on the primary key field. There is no way to systematically compare the impact
of secondary indices, aggregations or more complex queries. Also, client-side benchmarks do not
monitor resource consumption on the servers (CPU, memory, network), making it difficult to explain
bottlenecks in terms of NoSQL technologies vs. resource saturation. Tools like YCSB initialize a database
with a preset number of records and executes the CRUD operations with a fixed ratio. In practice,
the size of the data set and the ratio of read vs. write operations evolve continuously.

That is why our middleware not only uses monitoring information from synthetic workloads,
but also traces of real world application specific workloads from genuine end-users. To anticipate
a growing user base and increasing amounts of data, we use Scalar [8] to automate the behavior of
users and replay realistic application workloads in a controlled manner and monitor the performance
and scalability of the distributed storage system in different configurations.

4.1.3. Feature Extraction

Our middleware monitors resource consumption, the data growth, changes in the read/write/query
mix at run-time, as well as other system metrics that are indicative of sub-optimal performance with
a variety of tools. For example, we use Dstat (http://dag.wiee.rs/home-made/dstat/) for system
monitoring, and NoSQL database specific performance monitoring tools (e.g., mongostat for MongoDB)
to collect run-time statistics and metrics about the transactions itself (e.g., latency and throughput,
cache usage, read vs. write mix).

The feature set we use as input to our machine learning pipeline in order to map application
workloads on NoSQL system configurations consists of the following features:

https://github.com/brianfrankcooper/YCSB
http://dag.wiee.rs/home-made/dstat/

Informatics 2020, 7, 29 9 of 25

• Resource consumption: For each node in the cluster, we collect system metrics about
CPU, memory and network usage and this aggregated over different sliding windows (5 s,
30 s and 5 min).

• Data transactions: Amount of read, scan, write, update and query operations, their duration,
size of data processed, again aggregated over the same time intervals.

• Storage system configuration and transition: We continuously maintain two sets of attributes
(describing the performance and scalability tactics), the first one representing the current
configuration, and the second list representing the intended system state. This way we keep track
of configuration transitions.

• Key performance indicators: These numeric attributes indicate to what extent the application
specific SLAs have been met (or violated).

• Status information: Amount of users and data in the NoSQL system, and whether the current
system configuration is stable or changing (including the ongoing duration of the change
in seconds).

With the above set of attributes, we obtain a continuous operational overview of the state
and performance of the distributed NoSQL system. For a cluster deployment of 5 nodes, we obtain
about 200–230 attributes that are fed to the machine learning algorithm for configuration mapping.
The reason for this large amount of attributes is that certain categorical features (e.g., the current
and planned storage system configuration) are expanded with one-hot encoding into a format that
makes them more suitable for classification and regression algorithms.

4.2. Machine Learning Based Configuration Mapping

In Section 2, we identified several performance and scalability tactics for the given applications
cases. However, these configuration changes are only effective under specific operating conditions.
For example, replication for write-intensive workloads increases the network traffic between the replica
nodes jeopardizing the application throughput, and it may also negatively influence the query
latency due to quorum or consistency management and conflict resolution. Sharding also incurs a
performance overhead as the proxy lookup service has to determine to which shard an operation must
be directed or even merge query results from different shards. Secondary indices are mostly beneficial
for read-intensive workloads (imposing minimal index maintenance overhead) when the indices
themselves can be stored in memory. As such, there is a trade-off between using memory for (partial)
caching or secondary indices. Furthermore, changing workloads may render existing secondary indices
useless. We therefore use a machine learning approach, as the manual mapping of (re)configurations
in uncertain operating conditions is not straightforward.

As the monitoring data and extracted features have a streaming nature, we use Adaptive
Hoeffding Trees (AHT) [9] as an incremental classifier that is capable of learning from massive data
streams. Traditional decision tree methods like C4.5 require that all training data is available in memory
so that the data can be processed in multiple passes. Also, many methods do not handle well data
distributions that change over time. These observations have motivated our decision for adopting
the AHT classifier, implemented in the MOA machine learning library [10], for the decision logic in
our PaSTA middleware. It only does one pass over the collected information, with low processing
times per record, low memory consumption, and not requiring any disk accesses. Furthermore,
compared to the original Hoeffding Trees (a.k.a. VFDT, an abbreviation of Very Fast induction of
Decision Trees) and enhanced Concept-adapting VFDTs [11] that can adaptively learn from data streams
that drift over time, AHTs have the benefit that they do not need any user-defined configuration
parameters to guess how fast a stream will change. Also, they have been shown to perform better than
CVFDTs. These properties make them ideal candidates to effectively map NoSQL configurations for
data-intensive application workloads that evolve over time.

Informatics 2020, 7, 29 10 of 25

5. The PaSTA Middleware Implementation

The PaSTA middleware in Figure 6 includes three layers; At the top level, the middleware offers
a management dashboard to the application owner, supporting (a) the observation of performance
and QoS/SLA compliance that is achieved, and (b) potentially the approval of configuration changes
that are proposed by the core of the middleware. The Performance Monitoring component of our
middleware collects resource consumption metrics for the nodes in the cluster using off-the-shelf
performance monitoring tools. Additionally, NoSQL database specific performance monitoring tools
(e.g., mongostat for MongoDB) collect run-time statistics and metrics about the transactions itself
(e.g., latency and throughput, cache usage, read vs. write mix). The Unified Runtime Metrics collects,
aggregates, normalizes and interprets metrics, and signals events regarding saturated resources
(i.e., above a 90% capacity threshold for cpu, memory, network and hard drive). The normalized
metrics are computed with Esper (http://www.espertech.com/), a Complex Event Processing (CEP)
engine. The raw measurements and normalized metrics are fed into the SLA Policy Monitoring
component which verifies compliance with QoS/SLA goals configured by the application architect in
the SLA Policy Administration component through the Management Dashboard. The SLA Policy Monitoring
component autonomously triggers the Configuration Selection and Mapping component that leverages
knowledge and input from the Tactics Knowledge Base and the Configuration Repository of current
and previous configurations.

�����������	�
�	�������
�	��
�
�	��������	

					�����	������

��������	
���
����
����	��
�	�����

���������
�������
�	
���

�
�
��
�
��
��
	

	

��������	
���
����������

��	��
�����

��	�
�����

�������
�����

���

��������

��
��	
���

��	� ��	�� �������
�������
�
��
�����
�

					����	�
�
���	� �������
� 																														
��
���
�
���!�����

 �	���
��	�
���

��
�	
���	�
�!	������

"
�
�
#
�
��
�
�
�	

�
�
�
�

"��#��$��
��������

����������
����
�����

����	���

%	�
���
&��!����

�	��

'������
���
���
��
����

��������	
���
������
���

����

����

�������

�����

�����

����	�

����������

Figure 6. PaSTA: middleware to tune performance and scalability.

At the bottom level, the middleware includes monitoring support to feed the core functionality
with online measurements to actually quantify the performance and scalability characteristics
of the running applications. This essential monitoring support is not tightly integrated with
the core of the middleware, in order to flexibly leverage upon existing and emerging third part
monitoring components.

http://www.espertech.com/

Informatics 2020, 7, 29 11 of 25

At the heart of the middleware architecture is a core that can, in principle, autonomously configure
and reconfigure the storage layer to optimize performance characteristics of the data-intensive
application at run-time. The Tactic Knowledge Base component maintains generic knowledge about
the benchmarks and a list of tactics that have a positive or negative impact on the throughput in
terms of NoSQL operations per second, the latency distribution of these NoSQL operations, resource
consumption and type of operation. Last but not least, the Deployment Automation component
provisions and configures replication or shard nodes in the NoSQL cluster using the Chef [12]
deployment and configuration management tool.

The remainder of this section will elaborate in more detail on the Configuration Selection and Mapping
component that embeds the machine learning logic, and more specifically the Adaptive Hoeffding
Trees algorithms for streaming data classification, to map application workloads and operational
conditions on NoSQL system configurations.

5.1. Bootstrapping the Adaptive Hoeffding Tree Machine Learning Model with Application Agnostic Workloads

Adaptive Hoeffding Trees need sample data to learn which configurations are more effective.
As this parameter-free classifier can automatically deal with sliding windows and concept drifts in
data streams, we initialize the classifier by means of artificial simulated workloads generated by
the YCSB [4] benchmark tool for different distributed NoSQL system configurations. Below follows a
subset of the series of benchmark experiments we carried to help bootstrap the adaptive Hoeffding
tree model with application agnostic workloads.

Table 3 shows a performance comparison of a stand-alone database system for different
technologies, namely MongoDB, HBase and Riak. A surprising observation is that MongoDB performs
a lot better in terms of throughput and average latency compared to HBase and Riak. One would
assume that these more advanced features of MongoDB would lead in principle to a slower database
system, but this is not the case. In fact, Riak performs the worst while it has the simplest data model,
that is, a key-value store.

Table 3. Performance of a stand-alone MongoDB, HBase and Riak database on a OptiPlex desktop
and PowerEdge server (workload C).

OptiPlex Desktop

MongoDB HBase Riak

Overall throughput 35,198 ops/s 3325 ops/s 2505 ops/s
Average Latency 445 µs 4747 µs 3174 µs

Min Latency 118 µs 211 µs 480 µs

Max Latency 103,615 µs 914,431 µs 164,223 µs

95th Percentile Latency 837 µs 8631 µs 4359 µs

99th Percentile Latency 1859 µs 73,407 µs 26,271 µs

PowerEdge Server

MongoDB HBase Riak

Overall throughput 39,478 ops/s 19,233 ops/s 12,466 ops/s

Average Latency 390 µs 772 µs 1253 µs

Min Latency 236 µs 330 µs 783 µs

Max Latency 127,679 µs 255,103 µs 173,439 µs

95th Percentile Latency 638 µs 1041 µs 2171 µs

99th Percentile Latency 1032 µs 1699 µs 3039 µs

Informatics 2020, 7, 29 12 of 25

Another interesting observation is that the performance of a database system does not necessarily
increase when the database server is deployed on a more powerful machine.

• When moving a stand-alone MongoDB server from an OptiPlex desktop machine
(throughput = 35,198 ops/s) to a PowerEdge server (throughput = 39,478), the performance
does barely increase. The same holds for the average latency.

• For HBase and Riak, on the other hand, performance increases a lot when moving to
the PowerEdge server. HBase, for example, achieves 3325 operations per second on an OptiPlex
machine, while it achieves a throughput of 19,233 operations per second on a PowerEdge server.
This observation indicates that MongoDB is probably reaching a network boundary, which
prevents it from further increasing its throughput.

Figure 7 shows the throughput of a MongoDB database for a given deployment configuration
on OptiPlex desktop machines. The different deployment configurations covered in this figure are:
a stand-alone configuration, a configuration with three replicas each containing the full dataset and a
sharded setup with three nodes where all data is split across these three nodes. The figure shows that
the stand-alone setup is able to process a significantly larger amount of requests per second, compared
to the distributed setups. Intuitively, the sharded setup should increase the throughput, since all query
and modify operations are loadbalanced over the three shards. The results show that this is not true.
Even worse, the sharded setup is the poorest performing setup for workload E, while the sharded
setup should allow the scan operations to run in parallel on the nodes of the different shards. A second
observation is that the replicated setup and the sharded setup perform more or less the same. As a
conclusion, sharding the database does not have a performance advantage when all data can fit into
the cache of a stand-alone database.

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

workload_a workload_b workload_c workload_d workload_e workload_f

T
hr

ou
gh

pu
t (

op
s/

se
c)

1 node 1 replicaset with 3 nodes sharded setup with 3 single-node shards

Figure 7. Impact of the deployment configuration on the throughput when the data fits in the cache of
a stand-alone MongoDB database.

Figure 8 shows the results for the same experiment in case the data does no longer fit into
the cache of a stand-alone MongoDB database system, but it does fit into the cache when the data is
sharded across three nodes. The three shards increase the total cache size of the database system by a
factor of three. The workloads C, D, E and F show an increased throughput compared to the previous
experiment. Of course, these workloads represent the more read-oriented workloads, which benefit
from the larger cache size. This indicates that the performance of a data store not only depends on
the workload, but obviously also on the amount of data present in the store.

Informatics 2020, 7, 29 13 of 25

0

100

200

300

400

500

600

700

800

900

1000

workload_a workload_b workload_c workload_d workload_e workload_f

T
hr

ou
gh

p
ut

 (
o

ps
/s

ec
)

1 node 1 replicaset with 3 nodes sharded setup with 3 single-node shards

Figure 8. Impact of the deployment configuration on the throughput when the data does not fit in
the cache of a stand-alone MongoDB database.

Figure 9 shows the impact of the workload on the latency of read and update operations that
the workload consists of. The figure gives an overview of the average latency, the 95th and the 99th
percentile of the latency for workloads A, B and C. These workloads consist of different distributions
of read and update operations. The results show that the 99th percentile of the latency of workload
A is significantly larger than the 99th percentile latency of workloads B and C. This indicates that
the variance on the latency increases when the proportion of modify operations of the workload
increases. This can be explained by the fact that these operations require more disk I/O, while a lot of
read operations can be served from the database cache.

read (50%) update (50%) read (95%) update (5%) read (100%)
workload_a workload_b workload_c

0

1000

2000

3000

4000

5000

6000

average 95th percentile 99th percentile

R
e

qu
es

t l
a

te
n

cy
 (

µ
s)

Figure 9. Impact of read/update mix on operation latency in a stand-alone MongoDB server deployed
on an OptiPlex machine.

5.2. Dynamic Reconfiguration for Real World Application-Specific Workloads

The above YCSB benchmarks are simulations of workloads and therefore cannot accurately
represent the performance and scalability impact of the motivating case studies of Section 2. However,
they do provide indications of what the relative influence is of one performance enhancing tactic
compared to another, and how they interfere with one another. The insights and observations were
elicited from the previous off-line NoSQL technology benchmark experiments:

Informatics 2020, 7, 29 14 of 25

• Memory and caching are key, that is, a faster machine does not necessarily increase
the throughput.

• A less complex data model does not necessarily lead to better performance.
• Sharding is not useful if the data fits in the cache of a stand-alone system.
• A virtualized environment leads to more latency jitter for write operations that require disk access.

While these observations might be trivial or obvious, the goal is to use the measurements of
the above benchmark experiments as baseline to pre-train the adaptive Hoeffding decision trees.
As our supervised machine learning method can handle classification of data streams with concept
drifts, our middleware will then let the real world application workloads automatically further
optimize the adaptive decision tree model. The advantage of this approach is two-fold. Not only can
the mapping and reconfiguration decision logic within our middleware automatically adapt from
artificial workloads to real world application workloads, but it can achieve the same capability at
runtime when the workload of the data-intensive application itself evolves over time. The dynamic
modifications that are currently supported include:

• Secondary index: Add a secondary index for frequently read attributes. The index computation
takes time. The index will consume additional memory and will slow down write operations to
maintain the secondary index.

• Secondary index: Remove unused secondary indices. The impact is mainly noticeable for
write-heavy workloads, but to some extent also for read operations that can benefit from
the recovered memory that is now available for caching.

• Sharding: Add a shard to share to keep more data in memory. Spawning a new virtual machine
takes 10 s, and reshuffling the data to the new shard has an impact on the internal network of
the cluster.

• Replication: Add a node to a replica set to distribute the processing workload over more compute
nodes. This tactic is mainly beneficial for read-heavy workloads with little overhead to guarantee
data consistency across nodes.

• In-memory storage engine: Increase the request throughput by replicating the data to a node with
more processing power or more memory for caching the data and secondary indices. Replicate to
an in-memory node to reduce the latency variability.

Some of the tactics are difficult to achieve with certain technologies. For example, HBase does
not support secondary indices within the same table. That is why the Tactics Knowledge Base groups
supported tactics per technology, with customized implementations of each tactic offered by a NoSQL
platform specific plugin.

6. Evaluation with Application-Specific Workloads

Based on the two application cases defined earlier, we will demonstrate the feasibility of our
middleware to dynamically customize the configuration of NoSQL systems at run-time to meet QoS
constraints. We first initiate genuine application-specific workloads for a growing number of users with
the Scalar [8] benchmark framework in order to gain insights when the maximum capacity of a system
is reached. With Scalar, we are able to create realistic application workloads by taking real-life user
interactions with the system, and replaying those on a much large scale for many more users and/or
transactions to test the limits of a particular system configuration. Scalar is built around Gunther’s
Universal Scalability Law [13] (USL) that combines (a) the initial linear scalability of a system under
increasing load, (b) the cost of sharing resources, (c) the diminishing returns due to contention, and (d)
the negative returns from incoherency into a model that defines the relative capacity C(N):

C(N) =
N

1 + α(N − 1) + βN(N − 1)
, (1)

Informatics 2020, 7, 29 15 of 25

where N represents the scalability of the system in terms of the number of concurrent requests,
α represents the contention penalty, and β defines the coherency penalty, with 0 ≤ α, β < 1.
To benchmark the scalability, N is incremented on a fixed configuration.

As such, the main advantage of Scalar over YCSB, is that the former can create realistic application
workloads in controlled conditions that will stress test the underlying NoSQL storage system
and trigger application specific SLAs violations.

6.1. Fraud Analytics

The first case deals with effective fraud analysis with stringent time constraints. Table 4 illustrates
the difference in latency of MongoDB storage engine technology measured with Scalar benchmarking
at about 40,000 primary key-based read requests per second (the maximum capacity of the system
according to the USL) over a Gigabit connection to the NoSQL datastore. While these results show
better results for the In-Memory engine, the overall results are very conservative as the actual fraud
analytics application runs on the same host as the MongoDB instance, avoiding network traffic
between the application and the NoSQL store.

Table 4. Performance comparison on a PowerEdge server of 2 MongoDB stand-alone storage engines.

Percentile Latency WiredTiger InMemory

50th Percentile 547 µs 472 µs

90th Percentile 877 µs 614 µs

95th Percentile 1082 µs 711 µs

99th Percentile 1693 µs 1002 µs

99.9th Percentile 3273 µs 1778 µs

99.99th Percentile 42,071 µs 38,932 µs

The black- and whitelists are loaded once (per merchant) at startup and do not require any
further NoSQL operations. However, the velocity rules require count() and sum() computations over
transactions within a given time window for several attributes in the request (e.g., the number of
transactions and the cumulative amount for an IP address). Figures 10 and 11 show the capacity of that
system (in terms of concurrent users or threads each submitting 10 requests per second) when there
is a secondary index (Figure 11) or not (Figure 10) on that attribute. Notice the orders of magnitude
of scalability difference in terms of concurrent requests (20 vs. 2500 concurrent users). However,
more important are the results on the end-to-end latency distribution as shown in Table 5 for about
200 transactions per second. Note that these numbers also include the network delay due to end-to-end
measurements at the client.

Table 5. Impact secondary index on latency.

Latency No Index Secondary Index

50.0th Percentile 2667 ms 4.778 ms

99.9th Percentile 26,539 ms 13.642 ms

Informatics 2020, 7, 29 16 of 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

E
ff

e
ct

iv
e
 u

se
rs

 h
a
n
d

le
d

Load (concurrent users)

Linear scaling
Measurements

USL fit

Figure 10. Fraud velocity rule without secondary index.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000

E
�

e
c
ti

v
e
 u

s
e
rs

 h
a
n
d
le

d

Load (concurrent users)

Linear scaling
Measurements

USL �t

Figure 11. Fraud velocity rule with secondary index.

We increased the workload by adding more concurrent realistic user (or merchant) workloads
to the fraud analytics application to investigate the decision and impact of PaSTA’s reconfiguration
automation. We add a new fraud rule relying on an unindexed attribute when the system is under a
load of about of 4 million records/min. The performance counters are reset, and the first evaluation
of the new rule will violate the SLA policy. Figure 12 depicts what happens when the SLA of 10 ms
per transaction is violated. The adaptive Hoeffding tree classifies the current state of the NoSQL
configuration, and decides that adding a secondary index is the best tactic to improve the query
performance to evaluate the fraud velocity rules. It takes about 9 s before the secondary index becomes
effective for those records matching the sliding windows of the velocity rules.

Informatics 2020, 7, 29 17 of 25

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� ��

�

�

�

�

�

��

��

��

�����������������������������

�������

�������

�
�
��

�
�
�
��
�

�

Figure 12. Time required before secondary index becomes effective.

Increasing the workload further with more concurrent transactions, and with all secondary indices
set, the single node can no longer fulfill the SLA constraint of 99.9% in less than 10 ms (excluding
network delay) beyond 1100 requests per second. The Hoeffding decision tree suggests to scale out
with sharding (based on merchant field in the record). The partial migration of half of the data to
the new shard takes about 23 s, so the cost of this tactic is higher than the secondary index. Another
reason for PaSTA (in fact the underlying Hoeffding tree) to make this decision is the slightly worse
latency improvement due to the overhead of routing incoming requests to different shards.

6.2. Situational Awareness

The second use case with geospatial data investigates the effect of changing the read/write
workload at run-time, and the performance effect of query operations when the amount of data in
the increases. Due to the nature of geospatial queries, MongoDB WiredTiger was used as it was
the only one offering the necessary distance computation functionality and query APIs out-of-the-box.
The experiment is based on flight radar data with an average insert rate of spatially indexed 10000 flight
location updates per second as required according to the SLA, the feasibility of which is demonstrated
in Figure 13.

 0

 2000

 4000

 6000

 8000

 10,000

 12,000

 14,000

 16,000

 0 2000 4000 6000 8000 10,000 12,000 14,000

E
ff

e
ct

iv
e

u
se

rs
 h

a
nd

le
d

Load (concurrent users)

Linear scaling
Measurements

USL fit

Figure 13. Linear scalability for location updates up to 4000 concurrent users (threads at 10 updates/s).

Informatics 2020, 7, 29 18 of 25

At a sustained rate of 10,000 updates per second, Figure 14 shows the results of geospatial
queries of flight records near a random airport, with results capped to 100 entries sorted per distance
and filtered with a maximum distance of 100 km. The maximum capacity is reached at 200 concurrent
users (or 2000 requests per second). With MongoDB’s default cache size of 60% of system RAM minus
1 GB, that is, 37 GB for our PowerEdge server, Table 6 and especially the 90% percentile show the effect
of spatial queries hitting the hard disk even if for 70 GB of data still more than half of the queries can
be handled in less than a second (per SLA).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500

E
�

e
c
ti

v
e
 u

s
e
rs

 h
a
n
d
le

d

Load (concurrent users)

Linear scaling
Measurements

USL �t

Figure 14. Maximum capacity reached for 200 concurrent users (threads at 10 queries/s).

Table 6. Impact of data size on spatial query latency.

Latency 35 GB Data 70 GB Data

50.0th Percentile 55.5 ms 432 ms

90.0th Percentile 303 ms 9932 ms

The decision tree within PaSTA evaluated sharding to be the most effective tactic to reduce request
latency. Sharding to a second PowerEdge server based on the flight identifier (MongoDB does not
support sharding based on a spatial index) reduced the number of cache misses. Figure 15 shows that
re-allocation of chunks takes several minutes to complete (due to the amount of geospatial data to
be transferred).

� �� �� �� ��
�

��
�

��
�

��
�

�	
�

�

�

��
�

��
�

��
�

��
�

	�
�

	�
�

	�
�

��
�

�	
�

�

�

��
�

��
�

��
�

��
�

�
�

�
�

�
�

�

���

	��

���

���

����

����

�	��

����

����

����

�������������������

�������

��������

�
�
��

�
�
�
��
�

�
�

Figure 15. Time required before sharding becomes effective.

Informatics 2020, 7, 29 19 of 25

6.3. Performance Impact of Adaptive Hoeffding Trees

One of the reasons for using Adaptive Hoeffding Trees to map application workloads to system
configurations is that it processes performance metrics only once and does not need to maintain all
metrics and other data attributes in memory for additional processing later on.

The memory overhead of AHT for the first application case is shown in Figure 16, indeed
illustrating that it remains relatively stable over time. The only scenario where memory does increase
is when new nodes are added to the cluster, as it creates new system metrics to be processed by
the PaSTA middleware.

� �� �� �� �� �� �� �� 	�
� ��� ��� ��� ��� ��� ���

�

��

���

���

���

���

���

���

���

���

���

�����������������������

�����

������������

�
�

�
��

��
�

�
�

Figure 16. Time required before sharding becomes effective.

We also evaluated the computational overhead of AHT, but found that the impact was
relative small (less than 10 ms for a single dynamic reconfiguration decision), and lower than
the overhead imposed by the middleware components that transform all incoming metrics to a
uniform representation for feature extraction and SLA policy monitoring.

6.4. Adaptation to Evolving Workloads

We evaluated the capability to adapt to evolving NoSQL workloads in two different ways.
Although the Adaptive Hoeffding Trees were initialized with synthetic workloads rather than real
world users, we found the PaSTA middleware to be quite capable of making adequate reconfiguration
decisions on real world application workloads, although we did not carry out an exhaustive search to
explore whether the decision taken was always the most optimal.

A clarification for why the AHT was able to adapt to the new workload, is because the decision
of which tactic to initiate depends on the relative comparison with other tactics regarding their costs
and benefits. If, however, the relative ranking would be different between synthetic workloads and real
world application workloads or if the data-intensive application would be deployed on a completely
different distributed infrastructure, it is likely that PaSTA will make a subpar reconfiguration decision.
However, as the cost and impact of new reconfigurations is also continuously monitored, these values
will be fed into the AHT to improve its adaptation decisions in the future.

Another scenario that we cannot rule out, but for which we found no evidence in our
experimentation, is the possibility of inefficient oscillations due to PaSTA going back and forth between
two different NoSQL configurations. An example is the creation of secondary indices that (a) create an
performance overhead for write operations and (b) reduce memory availability for caching. If these are
unused for read operations, PaSTA will delete them, but trigger their re-creation whenever a particular
query could possibly benefit from it (as in the velocity rules for the fraud analytics application case).
However, it is fairly straightforward to circumvent this problem by adding an additional cost to trigger
such unwanted oscillations.

Informatics 2020, 7, 29 20 of 25

7. Related Work

The middleware that is presented in this work essentially has three capabilities. First, it can
be used to observe and monitor the performance of NoSQL technologies under a broad variety of
circumstances and workloads. Secondly, it can be used to statically configure the data storage facility
based on well-known tactics. Third, it can be used in its full strength by applying the monitoring
capabilities at production time, thus enabling dynamic selection of appropriate tactics that are mapped
and configured at run-time. We discuss related work from these three perspectives, and refer to related
work applied in the NoSQL space, as well as other data storage platforms such as RDBMS. This section
is therefore structured as follows. Section 7.3 presents related work regarding dynamic optimizations
of storage systems. Section 7.1 gives an overview of middleware that allows static configuration of
data storage systems.

7.1. Static Workload-Based Optimization

Khattab et al. [14] present a framework to tune a database system layer-by-layer, that is, both at
the software level as well as at the hardware level. They argue that tuning the different configuration
parameters involved, is a complex task and requires a lot of expertise. In this work, a neural network
is trained to capture the complex relationship between the input parameters (DBMS parameters,
performance parameters, workload vectors and server utilization) and the output parameters, which is
the predicted number of transactions the database system will be able to execute.

NoSQL system are also used to execute complex aggregation operations on the stored data
using mapreduce techniques. Gencer et al. [15] say that different hardware, system and software
configuration, can have a significant impact on the time it takes to perform a mapreduce computation.
Since the search space of the amount of possible configuration is very large, trying all different
combinations on a real system is unfeasible, especially if hardware reconfiguration are required.
They apply a combination of coarse-grained filtering, that prunes away the configurations that will
definitely not be able to achieve the required performance, followed by a finer-grained filtering
based on a simulation of the actual computation with the proposed configuration parameters.
Herodotou et al. [16] did similar work in optimizing the performance of mapreduce jobs. They present
an approach named just-in time job optimization which determines proper configuration parameter by
applying rules of thumb and dynamic profiling of a mapreduce job. The middleware in this paper also
monitors the workload based on the type and ratio of read/write operations involved.

7.2. Autonomic Computing

Autonomic computing is a decade old paradigm that focusses on distributed computing systems
that can manage themselves [17,18], with self-optimization being one of the key self-* properties
of autonomic systems. Utility functions are commonly applied for this purpose, both for the initial
deployment of an application and its dynamic reconfiguration. Tesauro et al. [19] explored utility
functions as a way to enable a collection of autonomic elements to continually optimize the use of
computational resources in a dynamic, heterogeneous environment. Later work by Deb et al. [20]
investigated how utility functions can be used to achieve self-optimized deployment of computationally
intensive scientific and engineering applications in highly dynamic and large-scale distributed
computing environments. Utility functions have also found their way into the cloud computing
space [21,22] where they are used to manage virtualized computational and storage resources that can
scale on demand. The problem with utility functions is that their definitions require a fair amount
of domain-specific knowledge to be effective, especially in the presence of many performance
and scalability trade-offs as in our application cases.

Esteves et al. [23] investigated the use of fuzzy nets to specifically deal with real-time processing
demands for continuous and data-intensive processing in complex data-intensive workflows. Similar to
our work, their solution for workload aware resource management for NoSQL systems like HBase

Informatics 2020, 7, 29 21 of 25

also relies on machine learning techniques. They present Fluxy to deliver controlled and augmented
performance, rationalization of resources, and task prioritization, albeit relying on a different machine
learning based decision logic. Van Aken et al. [24] also investigated the use of both supervised an
unsupervised machine learning to automatically tune database management systems. Compared to
our work, their solution called OtterTune focusses on MySQL and Postgres DBMS systems, and can
recommend more fine grained configuration optimizations in less than 60 min. For our application
cases, the recommendation and enforcement should be completed in a matter of minutes.

7.3. Dynamic Workload-Based Optimization

This section presents related work on different middleware platforms that allow dynamic
reconfiguration of NoSQL and RDBMS systems. Section 7.3.1 addresses autonomous addition
and removal of both replicas and sharding in a distributed database system based on the needs
implied by the actual run-time workload. Section 7.3.2 presents related work on dynamically tuning
trade-off between consistency and performance in eventually consistency storage systems. Finally,
Section 7.3.3 presents related work on autonomous index creation.

7.3.1. Sharding and Replication

Sharding and replication are one of the primary tool by which NoSQL systems achieve horizontal
scalability and high availability. Choosing the data placement wisely can substantially contribute
to increased performance, as shown by Curz et al. [25]. Their paper specifically focuses on the data
placement in the HBase system. They show that, for example, collocating the read intensive data
records and collocating the write intensive data records can increase performance significantly as
these shards can be optimized for their specific workload characteristics. Curino et al. [26] target
the performance problems that occur with executing distributed transactions in a sharded or replicated
database system. Their approach tries to analyse the workload of the user to collocate records that
are often used together in a distributed transaction, preventing the need for an expensive distributed
transaction the next time. Our work also applied workload-aware reconfiguration similar to the work
in References [25,26]. Our approach is relatively more coarsely grained as we focus on full workloads
(e.g., by starting from the relative contribution of write-operations.) We expect that dealing with
individual records or groups of records cannot be addressed by general purpose reconfiguration
middleware - though this theme definitely demands for additional research.

7.3.2. Eventual Consistency

Achieving strong consistency in a distributed database system is not easy, since it involves
a performance overhead and includes risk for data unavailability in the presence of node failure.
For this reason, many NoSQL systems support eventual consistency and allow tuning the required
level of consistency. Quorum-based systems allow the user to define the amount of node that
have to confirm the read and write operation before reporting success to the client. The most
common consistency levels are one, quorum and all. For these level respectively one, a majority
or all the replicas have to confirm the read or write operation. If the amount of nodes in the read
consistency level plus the amount of nodes in the write consistency level are larger or equal than
the replication factor, strong consistency can be achieved. Otherwise, only eventual consistency is
guaranteed. Couceiro et al. [27] focus on achieving strong consistency, with a near-optimal quorum
configuration for the current workload. The hotspot records are assigned a customized quorum
configuration. The remainder of the records is assigned a collective quorum configuration, to keep
the configuration management scalable. So, for read-intensive records, a lower read consistency
level is assigned to the record and a higher write consistency level and the other way around.
McKenzie et al. [28] argue that the current choices for the consistency levels is too discrete, to allow
the consistency-based SLAs. They propose a system that probabilistically chooses between read
and write consistency level one and quorum, depending on the defined SLA. The level of consistency

Informatics 2020, 7, 29 22 of 25

is a configuration feature that is set in the management dashboard, and mapped onto underlying
technology. This middleware currently does not offer any tactics to automatically tune the read/write
consistency level or quorum.

7.3.3. Index Creation

The need for autonomously tuning database systems is not something specific to NoSQL based
systems. In related work effort has been spent on more dynamic configuration management. SMIX,
is an autonomous indexing infrastructure developed by Volgt et al. [29] to support dynamic index
creation as well as the destruction of indexes. SMIX also supports partial index creation in case only
a certain part of a column requires indexing. The authors argue that the more agile application
development and the increasing amount of data make workload changes more frequent. As a
consequence, it would be unfeasible to define the indexes manually every time significant workload
changes occur. The middleware proposed in this paper monitors attribute usage in queries to decide
upon creating or deleting secondary indices, but cannot automatically configure special purpose ones
like TTL, partial or compound secondary indices.

7.4. Threats to Validity

Within the frame of this research, several choices were made with respect to not only the NoSQL
technologies that were tested, but also the machine learning technique used to autonomously tune
the database platforms. In this section, we will offer some critical reflections on these choices and the
implications for our work.

First of all, PaSTA uses Adaptive Hoeffding Trees, as implemented by the MOA software
framework, to map the best configuration for a given NoSQL workload. The MOA framework
offers other algorithms, such as the meta-classifier “Bagging using Adaptive-Size Hoeffding Trees”,
and there may be others that would fit PaSTA’s objectives. A more systematic analysis of different
machine learning models and methods could lead to a better tuning and optimization strategy. In fact,
various AutoML frameworks, such as Auto-WEKA [30] and Auto-sklearn [31], have been proposed
to help automate the best model selection and hyperparameter tuning of the corresponding machine
learning models. However, the underlying Bayesian optimization based exploration can be a time
consuming process, and it is likely that the best model selection and configuration may in the end
depend on the typical workload of the use case or that it is hard to generalize which machine learning
methods work best overall.

Secondly, in terms of the NoSQL types we considered in this work, we only evaluated key-value
pair, column-oriented and document-based databases, as depicted in Table 1. We did not examine
graph data stores, such as Neo4j, Titan, OrientDB or JanusGraph. The main reason is that none of
our use cases demanded the complexity of a graph data store. Furthermore, some of these graph
data stores − such as JanusGraph − support various storage backends such as Cassandra or HBase.
Similar to the YCSB tool that is not well-equipped to test the capabilities of graph databases as it
favors portability and simplicity over relevance, PaSTA cannot yet fully exploit all the configuration
capabilities either. The configuration space to optimize the performance or the scalability of distributed
graph data stores is far more challenging due to the structure of the underlying data, and well-known
tactics such as sharding, are not always available.

Third, zooming in on the NoSQL types we did consider, there are obviously many representative
candidates that could have been tested instead, possibly with different outcomes. For example,
Redis and DynamoDB are popular key-value stores, whereas Cassandra is another widely used
column-oriented store. The availability of NoSQL technologies is growing by the day. The feasibility
to support alternative candidates, as well as the assessment of newer versions or different flavors
of the tested NoSQL technologies is an opportunity for future work. However, it should be pointed
out that to support additional NoSQL databases, PaSTA needs to have an understanding of the
configuration options to enhance the performance and scalability of the database, and how these

Informatics 2020, 7, 29 23 of 25

options may interfere with one another. Additionally, to be effective, the framework also needs to be
able to monitor the queries to make well-informed reconfiguration decisions at runtime in response
to evolving workloads. Perhaps contrary to other benchmarking tools such as YCSB that aim for
portability, extending our PaSTA framework with new functionality requires more effort than merely
implementing some abstract interfaces.

Last but not least, PaSTA relies on application agnostic benchmarking workloads generated by
YCSB and one may question this dependency. YCSB benchmarks lead to valuable insights that help
quantify the relative impact of one configuration over another. For example, increasing the replication
factor will in general slow down database requests. Indeed, for NoSQL systems that support quorum,
i.e., R + W > N with N the replication factor, at least R replicas must be accessed by a read operation
and at least W replicas must be accessed by a write operation. Whenever N increases, so must R
and/or W. Application agnostic benchmarks with YCSB can help characterize the impact for a given
workload mix of read and write operations and a concrete distributed deployment environment.
In practice, it would be possible for PaSTA to not leverage YCSB’s assessments, but this may lead
to ineffective reconfiguration decisions when limited evidence is available to predict the impact of a
reconfiguration tactic.

7.5. Summary

In summary of this section, we argue that the presented middleware in this paper services
the comprehensive goal of statically and dynamically managing and tuning the configuration of
the storage systems that support data-intensive applications that utilize NoSQL technology. Clearly,
related work contains point solutions that optimize some of the presented configuration tactics in
a more finely grained and sometimes more sophisticated way. It is our goal to gradually improve
the presented middleware architecture and its implementation to absorb promising improvements,
while remaining manageable for deployers of data-intensive applications. The latter topic is an
additional and important avenue for future research.

8. Conclusions

This paper has presented a middleware architecture and implementation that supports
data-intensive applications in selecting and mapping performance tactics for the configuration of
a wide variety of NoSQL technologies. The middleware thus leverages upon application specific
characteristics to deliver optimal performance. Our architecture has been driven by two industry
relevant case studies and embeds knowledge generated in extended benchmarking.

These benchmarking results and streaming monitoring information are used to bootstrap
and automatically tune at runtime the configuration of NoSQL systems through supervised machine
learning using Adaptive Hoeffding Trees. This particular stream mining and classification algorithm is
able of associating high-level reconfiguration tactics, evolving application workloads, and capabilities
of underlying NoSQL technologies. The evaluation with realistic application workloads demonstrates
that Adaptive Hoeffding Trees can adapt NoSQL systems to unseen workloads of data-intensive
applications, while maintaining a low and stable memory and computational overhead on the system.
PaSTA enables static and dynamic configuration of multiple NoSQL technologies by dealing with an
extensive set of performance tactics.

The evaluation of the presented middleware, that is covering and addressing a lot of complexity,
is of course non-trivial. We argue that its application and the benchmarking with real world industry
cases delivers a convincing illustration of the middleware’s potential. Further experimentation
and usage reports are beyond the scope of a single paper and subject of our next steps and future work.
Other avenues for further research include improved support for other NoSQL data stores and NoSQL
types. By supporting multiple candidates for a given NoSQL type within the same CAP theorem [32]
classification, a more extensive evaluation could lead to new insights whether optimization tactics can
be reused by means of transfer learning [33], hereby eliminating the need for YCSB benchmarking.

Informatics 2020, 7, 29 24 of 25

The outcome may be that other machine learning methods beyond Adaptive Hoeffding Trees are better
suited for this purpose. A systematic analysis and comparison of other classification techniques is
needed to support this capability to generalize across NoSQL technologies.

Author Contributions: Conceptualization, methodology, software, and validation, D.P.; writing—original draft
preparation, D.P.; writing—review and editing, D.P. and W.J.; supervision, D.P. and W.J.; project administration,
D.P.; funding acquisition, W.J. Both authors have read and agreed to the published version of the manuscript.

Funding: This research is partially funded by the Research Fund KU Leuven.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klein, J.; Gorton, I.; Ernst, N.; Donohoe, P.; Pham, K.; Matser, C. Performance Evaluation of NoSQL Databases:
A Case Study. In Proceedings of the 1st Workshop on Performance Analysis of Big Data Systems, Austin,
TX, USA, 1 February 2015; pp. 5–10. [CrossRef]

2. Mozaffari, M.; Nazemi, E.; Eftekhari-Moghadam, A.M. Feedback control loop design for workload change
detection in self-tuning NoSQL wide column stores. Expert Syst. Appl. 2020, 142, 112973. [CrossRef]

3. Hillenbrand, A.; Störl, U.; Levchenko, M.; Nabiyev, S.; Klettke, M. Towards Self-Adapting Data Migration in
the Context of Schema Evolution in NoSQL Databases. In Proceedings of the 2020 IEEE 36th International
Conference on Data Engineering Workshops (ICDEW), Dallas, TX, USA, 20–24 April 2020; pp. 133–138.

4. Cooper, B.F.; Silberstein, A.; Tam, E.; Ramakrishnan, R.; Sears, R. Benchmarking Cloud Serving Systems
with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing, Indianapolis, IN, USA,
10–11 June 2010; pp. 143–154. [CrossRef]

5. Haklay, M.M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

6. Fox, A.; Eichelberger, C.; Hughes, J.; Lyon, S. Spatio-temporal indexing in non-relational distributed
databases. In Proceedings of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA,
6–9 October 2013; pp. 291–299. [CrossRef]

7. DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Sivasubramanian, S.;
Vosshall, P.; Vogels, W. Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of
the Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, Stevenson, WA, USA,
14–17 October 2007; pp. 205–220. [CrossRef]

8. Preuveneers, D.; Heyman, T.; Berbers, Y.; Joosen, W. Systematic scalability assessment for feature oriented
multi-tenant services. J. Syst. Softw. 2016, 116, 162–176. [CrossRef]

9. Bifet, A.; Gavaldà, R. Adaptive Learning from Evolving Data Streams. In Proceedings of the 8th International
Symposium on Intelligent Data Analysis: Advances in Intelligent Data Analysis VIII, Lyon, France,
31 August–2 September 2009; pp. 249–260. [CrossRef]

10. Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. MOA: Massive Online Analysis. J. Mach. Learn. Res. 2010,
11, 1601–1604.

11. Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
26–29 August 2001; pp. 97–106.

12. Marschall, M. Chef Infrastructure Automation Cookbook; Packt Publishing: Birmingham, UK, 2013.
13. Gunther, N.J. Guerrilla Capacity Planning—A Tactical Approach to Planning for Highly Scalable Applications

and Services; Springer: Cham, Switzerland, 2007. [CrossRef]
14. Khattab, A.; Algergawy, A.; Sarhan, A. MAG: A performance evaluation framework for database systems.

Knowl.-Based Syst. 2015, 85, 245–255. [CrossRef]
15. Gencer, A.E.; Bindel, D.; Sirer, E.G.; van Renesse, R. Configuring Distributed Computations Using

Response Surfaces. In Proceedings of the 16th Annual Middleware Conference, Vancouver, BC, Canada,
7–11 December 2015; pp. 235–246. [CrossRef]

16. Herodotou, H.; Lim, H.; Luo, G.; Borisov, N.; Dong, L.; Cetin, F.B.; Babu, S. Starfish: A Self-tuning System for
Big Data Analytics. CIDR. Available online: https://www-db.cs.wisc.edu/cidr/cidr2011/Papers/CIDR11_
Paper36.pdf (accessed on 3 August 2020).

http://dx.doi.org/10.1145/2694730.2694731
http://dx.doi.org/10.1016/j.eswa.2019.112973
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1109/BigData.2013.6691586
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1016/j.jss.2015.12.024
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1007/978-3-540-31010-5
http://dx.doi.org/10.1016/j.knosys.2015.05.010
http://dx.doi.org/10.1145/2814576.2814730
https://www-db.cs.wisc.edu/cidr/cidr2011/Papers/CIDR11_Paper36.pdf
https://www-db.cs.wisc.edu/cidr/cidr2011/Papers/CIDR11_Paper36.pdf

Informatics 2020, 7, 29 25 of 25

17. Koehler, J.; Koehler, J.; Giblin, C.; Giblin, C.; Gantenbein, D.; Gantenbein, D.; Hauser, R.; Hauser, R.
On Autonomic Computing Architectures. In Research Report (Computer Science) RZ 3487(#99302);
IBM Research: Zurich, Switzerland, 2003.

18. Huebscher, M.C.; McCann, J.A. A survey of autonomic computing-degrees, models, and applications.
ACM Comput. Surv. 2008, 40, 1–28. [CrossRef]

19. Tesauro, G.; Kephart, J.O. Utility Functions in Autonomic Systems. In Proceedings of the First International
Conference on Autonomic Computing, Washington, DC, USA, 17–18 May 2004; pp. 70–77.

20. Deb, D.; Fuad, M.M.; Oudshoorn, M.J. Achieving self-managed deployment in a distributed environment.
J. Comp. Methods Sci. Eng. 2011, 11, 115–125. [CrossRef]

21. Hu, Y.; Wong, J.; Iszlai, G.; Litoiu, M. Resource provisioning for cloud computing. In Proceedings of
the 2009 Conference of the Center for Advanced Studies on Collaborative Research, Toronto, ON, Canada,
2–5 November 2009; pp. 101–111. [CrossRef]

22. Koehler, M.; Benkner, S. Design of an Adaptive Framework for Utility-Based Optimization of Scientific
Applications in the Cloud. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility
and Cloud Computing, Chicago, IL, USA, 5–8 November 2012; pp. 303–308. [CrossRef]

23. Esteves, S.; Silva, J.a.N.; Carvalho, J.a.P.; Veiga, L. Incremental Dataflow Execution, Resource Efficiency and
Probabilistic Guarantees with Fuzzy Boolean Nets. J. Parallel Distrib. Comput. 2015, 79, 52–66. [CrossRef]

24. Van Aken, D.; Pavlo, A.; Gordon, G.J.; Zhang, B. Automatic Database Management System Tuning Through
Large-scale Machine Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1009–1024. [CrossRef]

25. Cruz, F.; Maia, F.; Matos, M.; Oliveira, R.; Paulo, J.; Pereira, J.; Vilaça, R. Met: workload aware elasticity for
nosql. In Proceedings of the 8th ACM European Conference on Computer Systems, Prague, Czech Republic,
15 April 2013; pp. 183–196.

26. Curino, C.; Jones, E.; Zhang, Y.; Madden, S. Schism: A Workload-driven Approach to Database Replication
and Partitioning. Proc. VLDB Endow. 2010, 3, 48–57. [CrossRef]

27. Couceiro, M.; Chandrasekara, G.; Bravo, M.; Hiltunen, M.; Romano, P.; Rodrigues, L. Q-OPT: Self-tuning
Quorum System for Strongly Consistent Software Defined Storage. In Proceedings of the 16th Annual
Middleware Conference, Vancouver, BC, Canada, 7–11 December 2015; pp. 88–99.

28. McKenzie, M.; Fan, H.; Golab, W. Continuous Partial Quorums for Consistency-Latency Tuning in
Distributed NoSQL Storage Systems. arXiv 2015, arXiv:1507.03162.

29. Voigt, H.; Kissinger, T.; Lehner, W. Smix: Self-managing indexes for dynamic workloads. In Proceedings of
the 25th International Conference on Scientific and Statistical Database Management, Baltimore, MD, USA,
29–31 July 2013; p. 24.

30. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic Model Selection
and Hyperparameter Optimization in WEKA. In Automated Machine Learning: Methods, Systems, Challenges;
Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 81–95.

31. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient
and Robust Automated Machine Learning. In Automated Machine Learning: Methods, Systems, Challenges;
Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 113–134.

32. Brewer, E. CAP Twelve Years Later: How the “Rules” Have Changed. Computer 2012, 45, 23–29. [CrossRef]
33. Jamshidi, P.; Velez, M.; Kästner, C.; Siegmund, N.; Kawthekar, P. Transfer Learning for Improving Model

Predictions in Highly Configurable Software. In Proceedings of the 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems; IEEE Press: Piscataway, NJ, USA, 2017; pp. 31–41.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.3233/JCM-2011-0382
http://dx.doi.org/10.1145/1723028.1723041
http://dx.doi.org/10.1109/UCC.2012.48
http://dx.doi.org/10.1016/j.jpdc.2015.03.001
http://dx.doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.14778/1920841.1920853
http://dx.doi.org/10.1109/MC.2012.37
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivating Use Cases
	Fraud Analytics in Anywhere-Commerce
	Interactive Situational Awareness

	NoSQL Deployment Environment Overview
	Representative NoSQL Storage Systems
	Riak
	HBase
	MongoDB

	Distributed Deployment Infrastructures

	Workload Characterization and System Configuration Mapping
	Data Collection and Feature Extraction
	Application Agnostic Performance Benchmarks
	User and Application Specific Workloads
	Feature Extraction

	Machine Learning Based Configuration Mapping

	The PaSTA Middleware Implementation
	Bootstrapping the Adaptive Hoeffding Tree Machine Learning Model with Application Agnostic Workloads
	Dynamic Reconfiguration for Real World Application-Specific Workloads

	Evaluation with Application-Specific Workloads
	Fraud Analytics
	Situational Awareness
	Performance Impact of Adaptive Hoeffding Trees
	Adaptation to Evolving Workloads

	Related Work
	Static Workload-Based Optimization
	Autonomic Computing
	Dynamic Workload-Based Optimization
	Sharding and Replication
	Eventual Consistency
	Index Creation

	Threats to Validity
	Summary

	Conclusions
	References

