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Abstract: Laboratory tests play an essential role in the early and accurate diagnosis of diseases. In
this paper, we propose SUNRISE, a visual analytics system that allows the user to interactively
explore the relationships between laboratory test results and a disease outcome. SUNRISE integrates
frequent itemset mining (i.e., Eclat algorithm) with extreme gradient boosting (XGBoost) to develop
more specialized and accurate prediction models. It also includes interactive visualizations to
allow the user to interact with the model and track the decision process. SUNRISE helps the user
probe the prediction model by generating input examples and observing how the model responds.
Furthermore, it improves the user’s confidence in the generated predictions and provides them the
means to validate the model’s response by illustrating the underlying working mechanism of the
prediction models through visualization representations. SUNRISE offers a balanced distribution
of processing load through the seamless integration of analytical methods with interactive visual
representations to support the user’s cognitive tasks. We demonstrate the usefulness of SUNRISE
through a usage scenario of exploring the association between laboratory test results and acute kidney
injury, using large provincial healthcare databases from Ontario, Canada.

Keywords: visual analytics; frequent itemset mining; extreme gradient boosting; ensemble tech-
niques; electronic health records; interactive visualization; human-data interaction

1. Introduction

Accurate and early clinical diagnoses play an important role in the successful treatment
of diseases. Every disease stems from or causes changes at a molecular and cellular level,
and some of these changes can be detected through changes in urine and blood parameter
values [1]. Patterns within laboratory test results may contain additional information
relevant to patient care that are not detected or appreciated by even the most experienced
physicians [2,3]. Laboratories typically report test results as individual categorical and
numerical values, but some individual results, particularly when studied in isolation, may
have limited clinical value. Physicians often integrate several individual tests from a patient
and interpret them in the context of medical knowledge and experience to use them for
disease diagnosis and management. Furthermore, patients might have many individual
tests, spanning years. There is a higher chance of overlooking important patterns in the
increasing numbers of parameters that laboratories measure. While the manual approach to
test interpretation is the routine procedure in most cases, data analytics offers the potential
to improve the laboratory tests’ diagnostic value [4]. Several studies have been conducted
to develop risk prediction models using laboratory test data, and some of these models were
developed using data analytics techniques [5–19]. These studies rely solely on performance
metrics, such as high accuracy scores, to assess model performance. Furthermore, due to
their unclear working mechanisms and their incomprehensible functions, the analytics
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techniques used in these studies are often treated by users as black boxes. Therefore, the
question arises whether the user can trust these analytics techniques or not, especially in
medical settings, where the model makes a critical decision about patients [20,21]. One
way to increase the model’s interpretability is by getting the user involved in the analytics
process through an integrated approach called visual analytics [22,23].

Visual Analytics (VA) is an emerging research discipline that integrates data analytics
and interactive visualizations [22,24]. It has the potential to enhance the user’s confidence
in the prediction results by improving their understanding of the modeling process and
output [25–27]. VA is capable of illustrating the model’s rationale, presenting the prediction
result, and providing the user with the means to validate the model’s response. In addition,
VA allows the user to access, modify, and restructure the displayed data as well as guide
the data analytics techniques. This, in turn, sets off internal computational reactions
that result in further analytical processes. VA aims to make the best possible use of the
massive amounts of data stored in electronic health records (EHRs) by combining the
strength of analytical processes, the user’s visual perception, and analysis capabilities of the
model [28–31]. It enhances the user’s ability to accomplish data-driven tasks by allowing
them to analyze EHRs in ways that would be difficult to do otherwise [32,33].

The goal of this paper is to show how VA systems can be developed systematically
to create disease prediction models using laboratory test result data. To this end, we
present a novel proof-of-concept system called SUNRISE (viSUal aNalytics for exploring
the association between laboRatory test results and a dIsease outcome using xgbooSt and
Eclat). SUNRISE allows healthcare providers to examine associations between different
groups of laboratory test results and a specific disease by tweaking the test values and
inspecting how the predictive model responds. It aims to support the user to go beyond
judging predictive models based on their performance measures. Instead of just relying
on the evaluation metrics, SUNRISE helps the user better understand how predictions
are generated by illustrating their underlying working mechanisms. While several VA
systems have been developed for other areas in healthcare [30,31,34–46], SUNRISE is novel
in that it incorporates the extreme gradient boosting technique (i.e., XGBoost), frequent
itemset mining (i.e., Eclat algorithm), visualization, and human-data interaction in an
integrated manner. We demonstrate the usefulness of SUNRISE through a case study of
exploring associations between laboratory test results and acute kidney injury (AKI) using
large provincial healthcare databases from Ontario, Canada stored at ICES (ICES is an
independent, non-profit, world-leading research organization that uses population-based
health and social data to produce knowledge on a broad range of healthcare issues).

The rest of this paper is organized as follows. In Section 2, we provide a summary
of the conceptual background that is required to understand the design of SUNRISE.
In Section 3, we explain the methods used for the design of SUNRISE by providing a
description of its structure and modules. In Section 4, we present a usage scenario of
SUNRISE to demonstrate the potential utility of the system. In Section 5, we discuss
the usefulness and limitations of the proposed VA system. Finally, Section 6 concludes
the paper.

2. Background

This section presents the necessary concepts for understanding the design of SUNRISE.
First, we describe the components of visual analytics. Afterwards, we briefly describe the
machine learning techniques used in this paper.

2.1. Visual Analytics

Visual analytics is a multidisciplinary field that helps the user gain insights from
data via integration of analytics techniques and interactive visualization with human
judgment [47]. It can support the execution of data-driven cognitive tasks such as sense-
making, knowledge discovery, and decision-making, to name a few [32,48,49]. The primary
challenge these tasks present is that the user needs to rapidly analyze, interpret, compare,
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and contrast large amounts of information. VAs are capable of providing cognitive and
computational assistance to the user in performing these cognitive tasks by combining
machine learning techniques, analytical processes, visualizations, and various interaction
mechanisms [50,51]. In summary, VA is composed of two integrated modules: an analytics
module and an interactive visualization module [49,52].

The analytics module combines machine learning with data processing techniques to
reduce the cognitive load of the user when performing data-intensive tasks [33,51,53–55].
The analytics module is technology-independent, and it includes the use of processing
techniques and data mining algorithms that best fit the needs of a domain. This module is
composed of three primary steps: pre-processing, transformation, and analysis [56,57]. In
the pre-processing step, the raw data retrieved from multiple sources gets pre-processed.
This includes tasks such as cleaning, integration, fusion, and synthesis [57]. Then, the
pre-processed data gets transformed into forms that are more appropriate for analysis. Ex-
amples of tasks that can be integrated into this stage are feature construction, normalization,
aggregation, and discretization [57]. Finally, different data mining algorithms and machine
learning techniques are applied to discover useful, unknown patterns from the data in the
analysis stage. Despite all the benefits, most of these computational techniques are treated
as black-box models and not developed with interpretability constraints. VA can provide
the user with the underlying working mechanisms of these models to make them more
trustworthy, informative, and easier to understand through interactive visualization.

Interactive visualization in VA involves mapping processed and derived data from
the analytics module to visual structures [49,52]. It allows the user to interactively control
and validate the analytical processes towards better interpretability and performance.
It provides the user with new analytical possibilities that can be utilized in an iterative
manner [58]. In the context of VA, these iterations can be regarded as discourses between the
user and the VA. This back-and-forth communication supports the user by distributing the
processing load between the user and the VA system during their analysis and exploration
of the data [49,59,60].

2.2. Machine Learning Techniques

In this section, we provide a brief overview of the machine learning techniques used
in this paper.

2.2.1. Frequent Itemset Mining (Eclat)

Frequent itemset mining, which was first introduced by Agrawal and Srikant [61],
is a task of discovering features that frequently appear together in a database. Although
frequent itemset mining was initially proposed to find groups of items that frequently
co-occur in transactions made by customers, it is now viewed as a general mining task that
can be applied in many other domains, such as image classification [62], bioinformatics [63],
network traffic analysis [64,65], customer reviews analysis [66], activity monitoring [67],
and disease prediction [68,69], to name just a few.

The frequent itemset mining can be formally defined as follows. Let I be a set of
items where I = {i1, i2, . . . , im}. A transactional database T includes a set of transactions
{t1, t2, . . . , tn} where every transaction is a set of items (ti ⊆ T) that can be identified by
a unique transaction identifier (TID). An itemset x is a collection of items, and it can be
characterized by a notion called support value (sup(x)). Support is defined as the ratio
of the number of transactions in T that contain x and the total number of transactions
in T. It shows the frequency of appearance of an itemset in the database. An itemset
is considered frequent if its support value is higher, or equal to, the smallest minimum
support threshold (minsup) that is defined by the user. The task of frequent itemset mining
consists of extracting all frequent itemsets from database T, given a minimum support
threshold. Several techniques have been proposed to address this task. One of the most
common frequent itemset mining techniques is the Eclat algorithm.
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Eclat [70] is a depth-first search approach that uses a vertical database format. A
vertical database format represents the list of transactions where each item appears (i.e.,
tid− list or tid(x) for itemset x). The main benefit of this format is that it makes it possible
to obtain the tid− list of an itemset by simply intersecting the tid− lists of its included
items without requiring a full scan of the dataset. The main idea of Eclat is to utilize the
tid− lists intersections to obtain the support value of an itemset by using the property
that sup(x) = |tid(x)|. This algorithm first, scans the dataset to obtain all frequent itemsets
with k items, and then, it generates all candidate itemsets that include k + 1 items from
frequent k—itemsets. In the next step, it gets all frequent (k + 1)—itemsets by leaving out
all the non-frequent itemsets. It repeats these steps until no other candidate itemset can
be generated.

2.2.2. Extreme Gradient Boosting

Extreme Gradient Boosting (i.e., XGBoost) belongs to a class of learning algorithms that
aim to create a strong classifier by combining many “weak” classifiers—namely boosting
techniques [71]. XgBoost is chosen due to its scalability, excellent performance, and efficient
training speed [72–74]. This technique is an enhancement of the gradient boosting decision
tree, and it is used for both regression and classification problems [75].

The idea of XGBoost is to build decision trees sequentially such that each subsequent
tree seeks to reduce the residuals of the previous trees. At each iteration, the tree that grows
next in the sequence learns from its predecessors by fitting a new model to the last predicted
residuals and then minimizing the loss when adding the latest prediction. XGBoost adds
an additional custom regularization to the loss function to establish the objective function.

obj = L(Θ) + Ω(Θ) (1)

L is the loss function that measures how well the model fits the training data, and Ω
represents the regularization term that measures the model’s complexity.

For a training data set with n samples, the model is given by a function of the sum of
K tress:

ŷi =
k

∑
i=1

fk(xi), fk ∈ F (2)

where xi is the independent variable, ŷi is the predicted value corresponding to the de-
pendent variable yi, fk represents the tree structure, and F is the collection of all possible
trees. When the model is additive, we can write the prediction value at iteration t using the
following equation:

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (3)

Then, the objective function at iteration t can be defined as:

obj(t) =
n

∑
i=1

l(yi, ŷ(t)i ) +
t

∑
k=1

Ω( fk) (4)

where n represents the number of samples. Chen et al. [71] define the regularization term
using the following equation:

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (5)

where γ is the minimum loss reduction required to make a further split to a terminal node
in the tree, T is the number of terminal nodes in the tree, λ is the regularization parameter,
and w represents the vector of scores on terminal nodes.
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We can re-write the objective function as:

obj(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ γT +

1
2

λ
T

∑
j=1

w2
j + constant (6)

At each iteration, a tree that optimizes the objective function defined in Equation (6) is
created. In order to optimize this function, the second-order Taylor expansion of the loss
function is taken.

obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
i (xi)

]
+ γT +

1
2

λ
T

∑
j=1

w2
j (7)

where gi and hi are the first and second derivatives of the loss function. By solving this
equation, the optimal values for wj (weights for a given tree structure) can be calculated as:

wj =
Gj

Hj + λ
(8)

where Gj and Hj can be defined as:

Gj = ∑
i∈Ij

gj (9)

Hj = ∑
i∈Ij

hj (10)

where Ij represents all the samples assigned to the j-th terminal node of the tree.
Now that we have a way to learn the weights for a given tree structure, the next step

is to learn the structure of the tree. A set of candidate splits are proposed for each split, and
the one that minimizes the loss function is selected. This is the criterion that we seek to
minimize to find the optimal split in the tree, and it can be defined as:

s = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (11)

Equivalently, we seek the split that maximizes the gain:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
(12)

Given an input data, each tree will identify a root-to-leaf path (i.e., decision path)
accordingly, which results in the prediction generated by each tree. If we assume the
decision path is composed of M non-leaf nodes d(p) = {d1, . . . , dm, . . . , dM}, the path can
be represented as:

p = {(x fd1 ⊗ τd1), (x fd2 ⊗ τd2), . . . , (x fdM ⊗ τdM )} (13)

where fdm is the feature at the node dm,τdm is the corresponding threshold that is used
to split node dm into two child nodes, and ⊗ ∈ {“ � ”, “ 4 ”} represents the boolean
condition on each node dm [76]. The final prediction is the weighted sum of the predictions
for each individual tree.

3. Materials and Methods

In this section, we explain the methods used to design SUNRISE. In Section 3.1, we
describe the design process and participants. Then, in Section 3.2, we briefly explain
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how the overall system works. Sections 3.3 and 3.4 describe the analytics and interactive
visualization modules of SUNRISE, respectively.

3.1. Design Process and Participants

We adopted a participatory design approach in the development of SUNRISE. The
participatory design approach helps with a better understanding of EHR-driven tasks
from the perspective of the healthcare providers. It helps generate design solutions, collect
feedback iteratively, and thus, it is conducive to the continuous improvement of our
proposed VA system such that it can meet the needs and expectations of the healthcare
providers [77–79]. Participatory design is an iterative group effort that requires all the
stakeholders (e.g., end-users, partners, or customers) to work together to ensure the end
product meets their needs and expectations [80]. Several computer scientists, data scientists,
an epidemiologist, and a clinician-scientist were involved in the conceptualization, design,
and evaluation of SUNRISE. It is critical to enhance the communication between all the
members of the design team since healthcare experts might have a limited understanding
of the technical background of the analytical processes, and medical terms might not be
very comprehensible to the members of the team with a technical background. In light of
this, we asked healthcare providers to provide us with their feedback on different design
decisions and performed formative evaluations at every level of the design process. In our
collaboration with healthcare providers, we discovered that they want SUNRISE to enable
them to perform two essential tasks: (1) to examine the relationship between different
groups of laboratory test results and the disease and (2) to investigate the prediction result
and track the decision path to determine how reliable the prediction is, based on their
domain knowledge.

3.2. Workflow

As shown in Figure 1, SUNRISE has two components: the Analytics module and the
Interactive Visualization module. The Analytics module utilizes Eclat and XGBoost to
generate prediction models. The Interactive Visualization module encodes the data items
generated by the Analytics module to four main sub-visualizations: (1) selection panel,
(2) control panel, (3) probability meter, and (4) decision path panel. These sub-visualizations
support multiple interactions to assist the user in achieving their tasks. These interactions
include selecting, drilling, searching, measuring, and inserting/removing (for a list of
possible interactions, see [81]).

The basic workflow of SUNRISE is as follows. First, we create an integrated dataset
from different databases. Next, features in the laboratory test data are encoded and trans-
formed into appropriate forms for analysis. In the next step, we apply the Eclat algorithm
to the pre-processed dataset to obtain the frequent laboratory groups (i.e., frequent com-
binations of laboratory tests). For each laboratory group, we then create a subset of data
with all the tests included in the group. In each subset, we only include rows where all
the tests in the group are available. We then split each subset into train, validation, and
test sets. We use the validation set to adjust the tuning parameters. Then, the XGBoost
technique is applied to each subset with its corresponding tuning parameters. We de-
velop four sub-visualizations in the Interactive Visualization module to allow the user to
examine associations between laboratory groups and the outcome. The user can choose
multiple laboratory tests using the selection control panel based on the result of the Eclat
algorithm. When the user selects a test from the selection panel, the system then inserts a
slider, associated with the selected test, in the input control panel. The user can probe the
prediction models by creating input examples with their desired values using the input
control panel. Upon clicking the “submit” button, SUNRISE passes the input (i.e., the
chosen laboratory group and selected test values) to the Analytics module. The Analytics
module uses the XGBoost model, corresponding to the chosen laboratory group, to predict
the patient outcome and returns the results to the probability meter and the decision path
panel. Finally, the user is able to observe the final prediction outcome and track the decision
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process that leads to the outcome to gain a deeper insight into the working mechanism of
the prediction model.
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3.3. Analytics Module

The Analytics module of SUNRISE generates prediction models using laboratory test
data stored in EHRs by integrating the XGBoost techniques with Eclat. In this section, we
describe how these techniques are combined to build the prediction models.

First, we create an integrated dataset from different databases. This dataset includes
laboratory test data and the outcome for every patient. For a laboratory test, a patient
might have multiple values from different times. Therefore, a sequence of laboratory test
results can be formed. In order to represent this sequence for each patient, we use the
average result. The outcome is considered positive if the patient develops the disease, and
it is considered negative otherwise. If there is a large number of laboratory tests available,
we cannot consider every possible combination of these tests because of limited memory
and computational resources. Therefore, we use a frequent itemset mining technique
to obtain the most frequent combinations and make the computations manageable. In
order to generate more specialized prediction models, we use the Eclat algorithm to obtain
frequent combinations of laboratory tests. Eclat is a fast algorithm that reduces memory
requirements due to the use of the depth-first search technique. We use the “arules” library
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to implement the Eclat algorithm with a specified minimum support to create several
laboratory groups (i.e., frequent itemsets) from laboratory tests included in the dataset.
Then, for each group, we create a subset of data with all the laboratory tests that were
included in the group. In order to get more accurate predictions, we only include rows
where all the laboratory variables in the group are available in each subset. This approach
allows us to deal with a more specialized model based on the available laboratory tests in
the prediction phase rather than a generalized model using the whole dataset.

In the next stage, we apply the XGBoost technique to each group. For each laboratory
group, we split its corresponding subset into train, validation, and test sets to generate the
prediction model. We use 80% of patients for training the model, 10% for validation and
10% for testing. The validation set is used to tune the hyperparameters, when building the
XGBoost model, to avoid overfitting and to control the "bias-variance" trade-off. We adjust
the complexity of the model by modifying values of the tuning parameters maximum tree
depth (max_depth) and minimum leaf weight (min_child_weight). Minimum leaf weight
is the minimum weight that is required to generate a new node in the tree. Generation of
children that correspond to fewer samples can be achieved by selecting a smaller value
for this parameter, which allows for creation of more complex trees that are more likely
to overfit. Maximum tree depth is defined as the maximum number of nodes that are
allowed from the root of the tree to its farthest leaf. A large value for this parameter makes
models more complex by letting the algorithm create more nodes. However, as we go
deeper in the tree, splits become less relevant, thus causing the model to overfit. Another
approach to avoid overfitting is to add randomness to make the model more robust to
noise. Randomness is tuned by setting the sub-sampling rate (i.e., subsample parameter)
at each sequential tree. Another parameter that can get adjusted is the model’s learning
rate (i.e., eta), which determines the contribution of each tree to the overall model. A low
learning rate should result in better performance, but it will increase the computational
cost. The final XGBoost model is a linear combination of all individual decision trees in the
series, along with their contributions to the model, weighted by the learning rate. In order
to detect the best combination of parameters for each laboratory group, we use the random
search approach, which is shown to have higher efficiency compared to a manual search
and grid trials when given the same computation time. Another advantage of random
search is that, as opposed to the manual search, results obtained through random search
are reproducible [82]. We use the combination of parameters with the best performance on
the validation set to train the final model for each laboratory group.

We use the XGBoost library in R to implement XGBoost and use the area under the
receiver operating characteristic curve (i.e., AUROC) [83,84] to measure the performance of
all the models and choose the best combination of tuning parameters. A ROC curve shows
the trade-off between specificity and sensitivity across different decision thresholds (i.e.,
threshold that is used for interpreting probabilities to class labels). Sensitivity measures
how often a model classifies a patient as “at-risk” correctly. On the other hand, specificity
is the capacity of a model to classify a patient as “risk-free” correctly [85].

3.4. Interactive Visualization Module

The Interactive Visualization module is composed of four main sub-visualizations:
the selection panel, control panel, probability meter, and decision path panel (Figure 2). In
this section, we describe how data items that are generated in the Analytics module are
mapped into visual representations to allow healthcare providers to accomplish their tasks.
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3.4.1. Selection Panel

The selection panel displays the hierarchical structure of the laboratory data, using
horizontally stacked rectangles ordered from left to right (Figure 2A). The first rectangle
to the left (i.e., root) that represents the laboratory tests takes the entire height. Each child
node is placed to the right of its parent with the height proportional to the percentage it
consumes, relative to its siblings.

The selection panel utilizes the result of the Eclat algorithm from the Analytics module
to allow the user to select their desired group of laboratory tests. The user can choose a
test by clicking on its corresponding rectangle in the selection panel. This action changes
the color of the selected rectangle from green to blue. When a test is selected, all the
other rectangles, corresponding to tests that are not in any laboratory group with the
selected test, become un-clickable and greyed out. The user can also insert/remove a
slider corresponding to a test in the control panel by clicking/unclicking the rectangle
corresponding to that test in the selection panel. We will describe the control panel in more
detail in the next section.

The selection panel allows the user to observe the full name of laboratory tests that
belong to a category by clicking on the rectangle corresponding to that category. In addition,
when the user hovers the mouse over any of the rectangles, a tooltip with information
regarding the test shows up. The selection panel is supported by a search bar. If the user
enters the name of a specific laboratory test in the search bar, the border of the rectangle,
corresponding to the specified test, becomes orange.

3.4.2. Control Panel

The control panel includes sliders corresponding to the laboratory tests that the user
has chosen in the selection panel (Figure 2B). It allows the user to probe the prediction
models by creating input examples with their desired values and observe the output the
model generates. When the user selects a test from the selection panel, the system inserts a
slider, associated with the selected test, in the input control panel. Each slider is composed
of a label including the full name and unit of measurement of its corresponding test, a
horizontal axis with a linear scale representing the possible values of its associated test, and
a rectangular handle that allows the user to change the values of the test. This panel allows
the user to interactively tweak the values of the selected tests and see how the predictive
model responds. The user can hover the mouse over the handle to observe the chosen value
in any of the sliders.
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When the user clicks on the “submit” button, after selecting multiple tests from the
selection panel and choosing the values of each test using their corresponding sliders, the
system passes the information regarding the chosen laboratory group and selected test
values to the Analytics module. The Analytics module uses the corresponding XGBoost
prediction model that is associated with the selected group to predict the outcome and
returns the results to the probability meter and the decision path panel.

3.4.3. Probability Meter

The probability meter is a radial gauge chart with a circular arc that shows the proba-
bility of developing the outcome (Figure 2C). This probability is the outcome prediction
after the system feeds the input (i.e., chosen laboratory group and laboratory test values) to
its corresponding XGBoost model. The value inside the arc represents the probability. If the
probability is less than 50 percent, then the shading of the arc is green; otherwise, it is red.

3.4.4. Decision Path Panel

The Decision Path Panel allows the user to audit the decision process of a prediction
outcome to make sure its corresponding XGBoost model works appropriately when given
an input (i.e., chosen laboratory group and laboratory test values) (Figure 2D). The final
prediction outcome in the XGBoost model is the additive sum of all the interim predictions
from each individual tree, where these interim predictions have unique decision paths.
Therefore, summarizing the structure of all the decision paths that lead to the final predic-
tion can deepen the understanding of the working mechanism of the model. Thus, this
panel is designed to help the user audit the decision paths by summarizing the critical
ranges of the laboratory tests involved in the chosen laboratory group and providing the
detailed information of the decision paths layer by layer.

In order to reveal the structure and properties of the decision paths that lead to the
final prediction, we first summarize the features (i.e., laboratory tests included in the chosen
group) at the layer level. A feature may occur multiple times at each layer of all the decision
paths (Equation (13)) for an input data point of x =

{
x1, x2, . . . , xH} with H features of

Q =
{

q1, q2, . . . , qH}. In each layer li of all the decision paths, for each feature qh ∈ qli , we

merge the ranges on qh to [τ
qh,l

li
, τ

qh,u

li
], where τ

qh,l

li
= Min{τdh

|qdh
= qh,⊗ = “ � ”, dh ∈ li},

and where τ
qh,u

li
= Max{τdh

|qdh
= qh,⊗ = “ 4 ”, dh ∈ li}.

We represent these summarized features using feature nodes. Each feature node
summarizes the feature ranges for each laboratory test in each layer using a horizontal bar
chart. The x-axis uses a linear scale to represent the possible values of the laboratory test
associated with the feature node. The vertical bar represents the laboratory test value of the
current input. The color of the feature node is identical to the color of its corresponding
laboratory test slider in the input control panel. The user can hover the mouse over the
feature node to observe the summarized ranges associated with the node.

We create a decision path flow by connecting the feature nodes from different layers
using ribbons. The tooltip of a ribbon displays the pair of feature nodes that are connected
by the hovered ribbon. This allows the user to examine the order of the features that
appeared in the decision paths—very critical in measuring the importance of each feature.
In the decision path panel, each column represents a layer where the right side represents
higher layer depth. This supports the user in understanding how the ranges from each
feature evolve from the root layer to the terminal node (i.e., leaf). We append a circle to the
decision path flow to encode the leaf that represents the final prediction outcome. If the
probability of developing the outcome for the input data point is less than 50 percent, then
the color of the circle is green; otherwise, it is red (i.e., similar to the probability meter). The
tooltip of the circle displays the probability of the outcome for the given input.



Informatics 2022, 9, 17 11 of 28

4. Usage Scenario

In this section, we demonstrate how SUNRISE can assist healthcare experts in studying
associations between laboratory test results and acute kidney injury (AKI) using the data
stored at ICES.

4.1. Data Description

We used a data cut that contained nine laboratory test results and the outcome of
AKI for 229,620 patients, which were obtained from three health administrative databases
(as shown in Table A1) from ICES. These datasets were linked using unique, encoded
identifiers that were derived from patient health card numbers and were analyzed at
ICES. We obtained outpatient albumin/creatinine ratio (ACr), serum creatinine (SCr),
serum sodium (SNa), serum potassium (SK), serum bicarbonate (SBC), serum chloride
(SCl), hemoglobin (HGB), white blood cell count (WBC), and platelets (Pl) measurements
from the Dynacare medical laboratories, which represents around one third of outpatient
laboratory results for Ontarians. A 365 days lookback window was used to obtain the
outpatient laboratory test data. Hospital admission codes and emergency department visits
were identified from the National Ambulatory Care Reporting System (ED visits) and the
Canadian Institute for Health Information Discharge Abstract Database (hospitalizations).
ICD-10 (i.e., International Classification of Diseases, post-2002) codes were used to identify
the incidence of AKI from ED visit and hospital admission data. The cohort included
senior patients, aged 65 years or older, who visited the emergency department (ED) or were
admitted to hospital between 1 April 2014 and 31 March 2016. The hospital admission date
or ED visit date served as the index date. If an individual had multiple hospital admissions
or ED visits, the first incident was selected.

4.2. Outcome

AKI was the outcome variable for all the prediction models in this case study [80,82,
83,85–87]. AKI is defined as a sudden deterioration of the kidney function in a short period
of time [87,88]. The management and diagnosis of AKI can be a challenging task because
of its complex etiology and pathophysiology. In the process of AKI diagnosis, the available
information is complemented by additional data, which is obtained from patients’ medical
history and different diagnostic tests, including laboratory tests. Laboratory tests play
a crucial role in the detection and diagnosis of AKI. The incidence of AKI was captured
using the National Ambulatory Care Reporting System and Canadian Institute for Health
Information Discharge Abstract Database, based on the ICD-10 (International Classification
of Diseases–Tenth Revision) diagnostic codes (i.e., “N17”). If an individual had multiple
episodes of AKI, the first episode was selected. Positive cases were the ones in which AKI
was acquired during the index date (i.e., 6743), and negative cases were those when AKI
was never developed (i.e., 222,877).

4.3. Case Study

First, the features in the laboratory test data are encoded and transformed into appro-
priate forms for analysis. For instance, if there is more than one result for a test on a patient,
the average result is used. Thus, we created nine variables for each laboratory test reported
in the past year prior to the index date for each patient. Then, we apply Eclat with the
minimum support of 0.05 to obtain the most frequent combinations of laboratory tests. At
this stage, a total of 263 laboratory groups (i.e., frequent itemsets) were created from nine
laboratory tests, as shown in Table A2. Next, we create a subset of data for each group only,
including the rows where all the tests in the group are available.

Generally, in most of the laboratory groups the prevalence of AKI was lower than
2.5 percent, which led to an imbalanced class ratio. This issue can severely reduce the
prediction performance, as most classifiers are developed to maximize the total number
of correct predictions, and thus are more sensitive to the majority class. Therefore, if
the imbalance issue is not addressed properly, then the classification result can be biased



Informatics 2022, 9, 17 12 of 28

towards the majority class, leading to poor performance on the prediction of AKI. The
misclassification of AKI, including false positive and false negative cases affects the choice
of treatment and prognosis, which consequently might increase the overuse of clinical
resources and the risk of deterioration in patient’s condition. To address this issue, we set
the weight of positive class (i.e., scale-pos_weigth) parameter in the XGBoost models using
the following equation:

Scale− pos−weight =
√

number of non−AKI cases in each subset/number of AKI cases in each subset (14)

After adjusting tuning parameters for each subset, we applied XGBoost with 100 trees
and its corresponding tuning parameters, as well as scale-pos-weight parameter to each
subset (Table A1). Thus, we created 263 XGBoost prediction models in total.

As shown in Figure 3, the laboratory tests are classified into four categories: Creatinine,
Complete Blood Count (CBC), Serum electrolyte, and Urine. Creatinine refers to SCr. CBC
is composed of HGB, WBC, and Pl. Serum electrolyte contains SNa, SK, SBC, and SCl, and
Urine includes ACR. Now, let’s assume the user is interested in exploring the relationship
between SCr, SK, SCl, and AKI. The user can first select the rectangle corresponding to
serum electrolytes to open it up and observe the full laboratory names included in that
group and then select the rectangles corresponding to SCr, SK, and SCl in the selection
panel. Upon selection, the system inserts a slider corresponding to the chosen test in the
control panel. The system allows the user to probe the prediction model by generating input
examples for their chosen tests using sliders in the control panel. As shown in Figure 3, the
user has selected the SCr value of 70 umol/L, SK of 4 mmol/L, and SCl of 102 mmol/L
through corresponding sliders. Upon submission, the analytics module uses the XGBoost
model, generated with the subset of data, including SCr, SK, and SCl, to predict AKI with
the input values and returns the result to the probability meter and the decision path panel.
The probability meter in Figure 3 shows that the probability of developing AKI, for a patient
with the chosen values for SCr, SK, and SCl, is 22 percent.
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Figure 3. Shows how the probability meter and the decision path panel, updated upon submission,
with the user input of SCr value of 70 umol/L, SK of 4 mmol/L, and SCl of 102 mmol/L.

To ensure that the prediction is reliable, the user examines the decision path panel to
check the result (Figure 4). As shown in 4, the user can observe that SCr is the only feature
that appears in the first and second layers. Since we expect features near the root of the
path to be more important than features near the leaves, SCr has higher importance than
SCl, and SK when predicting AKI, given the input. If the user hovers the mouse over the
SCr feature node in the root layer, they can see the split threshold for that specific node (i.e.,
SCr > 121.1 umol/L). This information can guide the user to observe how the probability
of developing AKI changes if they increase the SCr from 70 to 140 (i.e., a value greater
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than 121.1 umol/L for SCr). Figure 5 shows that the AKI probability is risen to 68 percent
by increasing the SCr value. The user, then, might be curious to explore the association
between SK, SCl, and AKI. In this case, they can click on SCr rectangle in the selection
panel to remove its corresponding slider from the control panel. Let’s assume the user
wants to observe how the changes in SK level would affect the probability of AKI. If the
user increases SK to 6 mmol/L (high potassium level), the probability of AKI becomes
80 percent (Figure 6). The user can then observe the feature ranges and the path that led to
this probability. For instance, they can observe that the split points for SK are around 4.7 to
5.1 mmol/L, which suggests that this range is critical when using SK in predicting AKI.
They can also observe that SK and SCl have similar importance in AKI prediction based on
the order they appear on the decision path.
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5. Discussion and Limitations

The purpose of this paper is to: (1) show how VA systems can be designed to examine
relationships between laboratory test results and a specific disease outcome and (2) study
the structure and the working mechanism of the risk prediction models. To accomplish
these tasks, we have reported the development of SUNRISE, a VA system designed to
support healthcare providers. SUNRISE incorporates two main components: an analytics
module and an interactive visualization module. The analytics module integrates a fre-
quent itemset mining technique (i.e., Eclat) with XGBoost to develop risk prediction models.
The interactive visualization module then maps the data items generated by the analyt-
ics module to four main sub-visualizations—namely, the selection panel, control panel,
probability meter, and the decision path panel. SUNRISE is unique in how it integrates
XGBoost with Eclat to develop prediction models, and it allows the user to interact with
the model and audit the decision process through multiple interactive sub-visualizations.
SUNRISE provides a balanced distribution of processing load by seamless integration
of computational techniques (i.e., frequent itemset mining and XGBoost in the analytics
module) with interactive visual representations (i.e., sub-visualizations in the interactive
visualization module) to support the user’s cognitive tasks. It provides the user with the
means to probe the prediction model by creating input instances and observing the model’s
output. Furthermore, it allows the user to examine how a particular input example’s risk
might change if it had different values. Finally, SUNRISE helps the user gain deeper insight
into the underlying working mechanism of the model, increasing their confidence in the
generated predictions.

Through a case study using the ICES-KDT dataset, we have shown that outputs
generated by SUNRISE are consistent with what has been found in the literature. For
instance, Chen et al. [89] has shown that higher serum potassium and lower levels of serum
sodium were more likely to lead to the development of AKI. A similar output is observed
in results generated by our system. As shown in Figure 7, in the case study presented
in the paper, if the user selects SK value of 6 mmol/L and SNa of 96 mmol/L through
corresponding sliders, upon submission, the probability meter shows the probability
of developing AKI for a patient with the high value of SK, and low levels of SNa is
81 percent. Another example can be seen in Figure 8, where a low serum bicarbonate level
(16 mmol/L) is shown to be significantly associated with the development of AKI (74%)
while a normal serum bicarbonate level (26 mmol/L) is less likely to progress to AKI (43%).
A similar association has been shown by Lim et al. [90], where patients who have low
serum bicarbonate levels are estimated to develop AKI 1.57 times the patients with normal
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bicarbonate levels. According to the study done by Oh et al. [91], the incidence of AKI
was significantly higher for patients with high and low serum Chloride levels compared
to patients with normal chloride levels. As shown in Figure 9, a similar conclusion can
be reached using SUNRISE. When the user selects a high chloride level of 110 mmol/L
(Figure 9A) or a low chloride level of 86 mmol/L (Figure 9B), the probability of development
of AKI is 62% and 60% consecutively, which are significantly higher than the probability of
developing AKI (23%) with normal chloride levels (Figure 9C). Several studies have shown
the association between lower hemoglobin, which is frequent in hospitalized patients, and
AKI [92,93]. A similar outcome is generated using our tool. As shown in Figure 10, a low
hemoglobin level (64 g/L) is shown to be significantly associated with the development
of AKI (82%), while a normal hemoglobin level (166 g/L) is less likely to progress to AKI
(22%). In addition to these examples, there are many other hypotheses that can be generated
from the results of the system. Although most of them are aligned with theories from
medical literatures, some of them have not been studied yet. This is especially true for
combinations of different test results and their associations with the outcome. SUNRISE
can be used by domain experts to identify such hypotheses, which can further be verified
through formal clinical studies. It is important to note that the system can be used with any
dataset with laboratory test results to interactively explore the relationships between test
results and an outcome. The accuracy of generated hypotheses depends on the quality of
data that has been used to train the models.
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In terms of generalizability, SUNRISE is designed in a modular way to make sure new
data sources and data types can be incorporated easily. SUNRISE can be used to study other
healthcare problems, such as exploring the association between medication dosage and
diabetes. Although SUNRISE focuses on making XGBoost interpretable, we can apply a
similar approach to other tree-based ensemble techniques such as Random forest. Random
forest uses several decision trees and generates a final prediction model by aggregating the
output of all internal trees. Unlike XGBoost, decision trees in Random forest are trained
independently. One potential enhancement to support Random forest is to summarize the
paths based on whether they generate positive predictions or negative ones and then let
the user compare them in the same view.

One of the primary considerations in the design of SUNRISE is scalability. To make the
control and decision path panels less cluttered (because of the user’s limited visual capacity
when the number of laboratory tests increases), we restrict the maximum number of tests
that can get inserted into the control panel by adjusting the minimum support parameter
of Eclat.

This research has several limitations. The first limitation is that, although we used a
participatory design approach, and medical researchers have assessed SUNRISE and found
it valuable, we did not conduct any usability studies to assess SUNRISE’s performance and
the efficiency of its interaction mechanisms. Second, the decision path panel sometimes
does not function properly if the number of layers in the XGBoost trees gets higher due
to screen space limitations and computational resources. Third, as we use curves to
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link the feature cells from different layers in the decision path panel, these curves might
have overlapping problems. Another limitation is that the prediction models might be
prone to overfitting because a small validation set might lead to an unstable model at a
particular hyperparameter set. This will result in validation error measurements that are
overoptimistic. Additionally, large variations in the dataset may drive the input vector
to the model outside the probability density functions of the training data. Thus, the
system may show inaccurate results in low probability density function areas. Finally, we
aggregated laboratory test results for a patient by taking the average of their test results
in the past 365 days before the index date. As such, we might have lost vital information
regarding laboratory tests. To address this issue, in future versions, we plan to offer the
user different aggregation functions, such as the trend of change (i.e., increase/decrease) in
tests over a certain period of time.

6. Conclusions

The overall goal of this paper is to show how VA systems can be designed systemati-
cally in order to support the investigation of various clinical problems. To achieve this, we
report the development of SUNRISE and demonstrate how it can be employed to assist
healthcare providers explore associations between laboratory test results and a disease
outcome. SUNRISE’s novelty and usefulness stems from its design, as it incorporates
frequent itemset mining, XGBoost, visualization, and human-data interaction in an in-
tegrated manner to support complex EHR-driven tasks. We illustrate SUNRISE’s value
and usefulness through a usage scenario of investigating and exploring the relationship
between laboratory test results and AKI using the data stored at ICES. We demonstrate
how it can help clinicians and researchers at ICES probe the AKI risk prediction models
by hypothesizing input examples and observing the model’s output. Researchers can also
audit the decision process to verify the reliability of the prediction models. Finally, the
design concepts employed in SUNRISE are generalizable. These concepts can be utilized to
systematically design any VA system whose purpose is to support clinical tasks involving
investigation and analysis of EHR data using XGBoost and frequent itemset mining.
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Appendix A

Table A1. List of databases held at ICES (an independent, non-profit, world-leading research organi-
zation that uses population-based health and social data to produce knowledge on a broad range of
healthcare issues).

Data Source Description Study Purpose

Canadian Institute for Health
Information Discharge Abstract

Database and National
Ambulatory Care Reporting

System

The Canadian Institute for Health Information Discharge Abstract
Database and the National Ambulatory Care Reporting System

collect diagnostic and procedural variables for inpatient stays and ED
visits, respectively. Diagnostic and inpatient procedural coding uses

the 10th version of the Canadian Modified International
Classification of Disease system 10th Revision (after 2002).

Cohort creation,
description, exposure,

and outcome
estimation

Dynacare (formerly known as
Gamma-Dynacare Medical

Laboratories)

Database that contains all outpatient laboratory test results from all
Dynacare laboratory locations across Ontario since 2002. Dynacare is
one of the three largest laboratory providers in Ontario and contains

records on over 59 million tests each year.

Outpatient laboratory
tests

Table A2. Laboratory groups created by Eclat algorithm and their corresponding XGBoost tuning
parameters and AUROC.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

1 SBC,SCr,SK,SNa 0.78 9 0.08 0.84 0 3

2 SBC,SCr,SNa 0.77 8 0.03 0.96 10 2

3 SBC,SK,SNa 0.66 3 0.18 0.72 7 4

4 SBC,SCr,SK 0.76 7 0.07 0.97 10 2

5 SBC,SCr 0.76 9 0.05 0.91 5 5

6 SBC,SK 0.61 3 0.29 0.96 0 5

7 SBC,SNa 0.66 6 0.18 0.77 0 3

8 ACr,HGB,Pl,SCl,SCr,SK,SNa,WBC 0.81 7 0.16 0.99 5 3

9 ACr,Pl,SCl,SCr,SK,SNa,WBC 0.82 8 0.12 0.75 6 0

10 ACr,HGB,Pl,SCl,SK,SNa,WBC 0.76 3 0.27 0.72 4 3

11 ACr,HGB,Pl,SCl,SCr,SK,SNa 0.81 10 0.29 0.82 4 0

12 ACr,Pl,SCl,SCr,SK,SNa 0.81 8 0.20 0.79 0 2

13 ACr,HGB,Pl,SCl,SK,SNa 0.75 3 0.25 0.95 8 2

14 ACr,Pl,SCl,SK,SNa,WBC 0.75 4 0.30 0.74 1 5

15 ACr,HGB,SCl,SCr,SK,SNa,WBC 0.81 7 0.27 0.76 4 0

16 ACr,SCl,SCr,SK,SNa,WBC 0.81 6 0.21 0.82 9 0

17 ACr,HGB,SCl,SK,SNa,WBC 0.77 3 0.28 0.83 3 2

18 ACr,HGB,SCl,SCr,SK,SNa 0.81 9 0.28 0.95 0 2

19 ACr,SCl,SCr,SK,SNa 0.80 7 0.21 0.86 7 0

20 ACr,HGB,SCl,SK,SNa 0.75 3 0.29 0.96 0 5

21 ACr,SCl,SK,SNa,WBC 0.76 10 0.22 0.94 5 3

22 ACr,Pl,SCl,SK,SNa 0.74 7 0.23 0.77 2 5

23 ACr,HGB,Pl,SCl,SCr,SNa,WBC 0.81 8 0.27 0.86 3 4

24 ACr,Pl,SCl,SCr,SNa,WBC 0.81 10 0.27 0.72 0 1

25 ACr,HGB,Pl,SCl,SNa,WBC 0.76 9 0.19 0.93 7 4
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

26 ACr,HGB,Pl,SCl,SCr,SNa 0.81 7 0.27 0.95 1 2

27 ACr,Pl,SCl,SCr,SNa 0.80 7 0.28 0.73 5 4

28 ACr,HGB,Pl,SCl,SNa 0.74 3 0.28 0.71 7 3

29 ACr,Pl,SCl,SNa,WBC 0.74 10 0.08 0.92 5 3

30 ACr,HGB,SCl,SCr,SNa,WBC 0.81 10 0.27 0.91 6 5

31 ACr,SCl,SCr,SNa,WBC 0.81 6 0.17 0.75 9 2

32 ACr,HGB,SCl,SNa,WBC 0.77 4 0.26 0.77 6 3

33 ACr,HGB,SCl,SCr,SNa 0.80 9 0.27 0.98 5 2

34 ACr,SCl,SCr,SNa 0.80 9 0.03 0.71 2 0

35 ACr,HGB,SCl,SNa 0.75 4 0.30 0.74 1 5

36 ACr,SCl,SNa,WBC 0.74 6 0.22 0.81 3 4

37 ACr,Pl,SCl,SNa 0.72 3 0.26 0.70 0 2

38 ACr,SCl,SK,SNa 0.73 5 0.28 0.82 9 5

39 ACr,HGB,Pl,SCl,SCr,SK,WBC 0.81 9 0.11 0.98 3 5

40 ACr,Pl,SCl,SCr,SK,WBC 0.81 6 0.23 0.70 9 4

41 ACr,HGB,Pl,SCl,SK,WBC 0.78 6 0.29 0.76 3 4

42 ACr,HGB,Pl,SCl,SCr,SK 0.81 10 0.19 0.73 0 3

43 ACr,Pl,SCl,SCr,SK 0.8 5 0.29 0.75 3 0

44 ACr,HGB,Pl,SCl,SK 0.75 3 0.28 0.71 7 3

45 ACr,Pl,SCl,SK,WBC 0.75 3 0.27 0.92 0 1

46 ACr,HGB,SCl,SCr,SK,WBC 0.80 10 0.28 0.93 7 4

47 ACr,SCl,SCr,SK,WBC 0.80 7 0.29 0.83 3 0

48 ACr,HGB,SCl,SK,WBC 0.76 3 0.29 1.00 6 0

49 ACr,HGB,SCl,SCr,SK 0.81 9 0.27 0.94 9 1

50 ACr,SCl,SCr,SK 0.79 5 0.29 0.75 3 0

51 ACr,HGB,SCl,SK 0.75 3 0.27 0.86 7 1

52 ACr,SCl,SK,WBC 0.75 8 0.23 0.70 8 1

53 ACr,Pl,SCl,SK 0.74 4 0.30 0.74 1 5

54 ACr,HGB,Pl,SCl,SCr,WBC 0.81 10 0.25 0.99 9 0

55 ACr,Pl,SCl,SCr,WBC 0.8 8 0.23 0.83 1 4

56 ACr,HGB,Pl,SCl,WBC 0.77 4 0.29 0.93 4 3

57 ACr,HGB,Pl,SCl,SCr 0.80 9 0.21 0.93 3 1

58 ACr,Pl,SCl,SCr 0.79 9 0.28 0.72 1 2

59 ACr,HGB,Pl,SCl 0.75 3 0.28 0.76 8 1

60 ACr,Pl,SCl,WBC 0.74 5 0.28 0.96 5 2

61 ACr,HGB,SCl,SCr,WBC 0.80 7 0.27 0.77 4 3

62 ACr,SCl,SCr,WBC 0.80 5 0.26 0.81 2 4

63 ACr,HGB,SCl,WBC 0.76 3 0.27 0.90 6 1

64 ACr,HGB,SCl,SCr 0.80 10 0.19 0.73 0 3

65 ACr,SCl,SCr 0.80 8 0.30 0.99 4 3

66 ACr,HGB,SCl 0.74 3 0.22 0.83 8 2
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

67 ACr,SCl,WBC 0.73 5 0.29 0.73 4 2

68 ACr,Pl,SCl 0.73 6 0.22 0.89 8 5

69 ACr,SCl,SK 0.73 3 0.28 0.76 8 1

70 ACr,SCl,SNa 0.72 7 0.29 0.72 2 5

71 ACr,HGB,Pl,SCr,SK,SNa,WBC 0.83 6 0.29 0.91 2 0

72 ACr,Pl,SCr,SK,SNa,WBC 0.82 5 0.29 0.95 1 4

73 ACr,HGB,Pl,SK,SNa,WBC 0.77 4 0.29 0.77 6 0

74 ACr,HGB,Pl,SCr,SK,SNa 0.82 10 0.19 0.95 1 5

75 ACr,Pl,SCr,SK,SNa 0.82 6 0.25 0.76 5 5

76 ACr,HGB,Pl,SK,SNa 0.74 5 0.15 0.84 3 1

77 ACr,Pl,SK,SNa,WBC 0.75 5 0.24 0.92 6 4

78 ACr,HGB,SCr,SK,SNa,WBC 0.83 9 0.17 0.72 5 2

79 ACr,SCr,SK,SNa,WBC 0.83 10 0.18 0.76 5 5

80 ACr,HGB,SK,SNa,WBC 0.76 8 0.08 0.73 5 5

81 ACr,HGB,SCr,SK,SNa 0.81 4 0.28 0.92 2 2

82 ACr,SCr,SK,SNa 0.8 4 0.27 0.73 1 3

83 ACr,HGB,SK,SNa 0.75 4 0.23 0.95 7 0

84 ACr,SK,SNa,WBC 0.75 5 0.17 0.96 9 0

85 ACr,Pl,SK,SNa 0.72 4 0.20 0.78 0 4

86 ACr,HGB,Pl,SCr,SNa,WBC 0.82 7 0.28 0.93 2 4

87 ACr,Pl,SCr,SNa,WBC 0.83 7 0.27 0.77 4 3

88 ACr,HGB,Pl,SNa,WBC 0.76 3 0.28 0.99 0 1

89 ACr,HGB,Pl,SCr,SNa 0.82 10 0.19 0.89 4 5

90 ACr,Pl,SCr,SNa 0.81 3 0.22 0.82 8 0

91 ACr,HGB,Pl,SNa 0.74 3 0.10 0.86 3 4

92 ACr,Pl,SNa,WBC 0.74 6 0.29 0.79 9 5

93 ACr,HGB,SCr,SNa,WBC 0.82 9 0.28 0.95 10 4

94 ACr,SCr,SNa,WBC 0.83 8 0.14 0.71 10 1

95 ACr,HGB,SNa,WBC 0.76 4 0.17 0.77 6 4

96 ACr,HGB,SCr,SNa 0.82 7 0.28 0.93 2 4

97 ACr,SCr,SNa 0.81 3 0.30 0.99 9 5

98 ACr,HGB,SNa 0.74 4 0.04 0.73 1 4

99 ACr,SNa,WBC 0.74 5 0.22 0.80 1 3

100 ACr,Pl,SNa 0.71 3 0.27 0.90 6 1

101 ACr,SK,SNa 0.71 5 0.29 0.89 10 5

102 ACr,HGB,Pl,SCr,SK,WBC 0.83 10 0.21 0.83 9 2

103 ACr,Pl,SCr,SK,WBC 0.83 9 0.19 0.89 3 5

104 ACr,HGB,Pl,SK,WBC 0.77 7 0.23 0.77 2 5

105 ACr,HGB,Pl,SCr,SK 0.82 5 0.18 1.00 2 4

106 ACr,Pl,SCr,SK 0.82 5 0.21 0.72 6 3

107 ACr,HGB,Pl,SK 0.75 5 0.09 0.93 5 4
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

108 ACr,Pl,SK,WBC 0.75 3 0.28 0.99 0 1

109 ACr,HGB,SCr,SK,WBC 0.83 6 0.21 0.80 1 4

110 ACr,SCr,SK,WBC 0.83 5 0.24 0.76 1 4

111 ACr,HGB,SK,WBC 0.77 3 0.28 0.76 8 1

112 ACr,HGB,SCr,SK 0.82 10 0.19 0.95 1 5

113 ACr,SCr,SK 0.81 3 0.28 0.93 8 1

114 ACr,HGB,SK 0.74 4 0.03 0.83 9 5

115 ACr,SK,WBC 0.75 9 0.18 0.83 10 4

116 ACr,Pl,SK 0.72 5 0.24 0.92 6 4

117 ACr,HGB,Pl,SCr,WBC 0.82 8 0.25 0.81 6 3

118 ACr,Pl,SCr,WBC 0.82 10 0.28 0.94 6 4

119 ACr,HGB,Pl,WBC 0.76 7 0.28 0.73 5 4

120 ACr,HGB,Pl,SCr 0.82 10 0.19 0.81 4 4

121 ACr,Pl,SCr 0.81 3 0.28 0.83 3 2

122 ACr,HGB,Pl 0.74 4 0.20 0.72 10 4

123 ACr,Pl,WBC 0.73 5 0.25 0.89 0 2

124 ACr,HGB,SCr,WBC 0.81 4 0.28 0.92 2 2

125 ACr,SCr,WBC 0.82 7 0.29 0.72 2 5

126 ACr,HGB,WBC 0.75 4 0.15 0.75 9 5

127 ACr,HGB,SCr 0.82 5 0.28 0.72 10 1

128 ACr,SCr 0.81 4 0.26 0.77 6 3

129 ACr,HGB 0.74 8 0.13 0.72 0 5

130 ACr,WBC 0.73 7 0.27 0.87 8 4

131 ACr,Pl 0.71 3 0.29 0.81 5 2

132 ACr,SK 0.7 3 0.29 0.96 0 5

133 ACr,SNa 0.7 8 0.22 0.76 7 3

134 ACr,SCl 0.72 7 0.15 0.82 5 5

135 HGB,Pl,SCl,SCr,SK,SNa,WBC 0.80 6 0.29 0.76 3 4

136 Pl,SCl,SCr,SK,SNa,WBC 0.79 3 0.29 0.74 8 2

137 HGB,Pl,SCl,SK,SNa,WBC 0.74 9 0.28 0.79 5 5

138 HGB,Pl,SCl,SCr,SK,SNa 0.80 5 0.28 0.82 9 5

139 Pl,SCl,SCr,SK,SNa 0.79 5 0.23 0.72 7 5

140 HGB,Pl,SCl,SK,SNa 0.72 8 0.13 0.72 0 5

141 Pl,SCl,SK,SNa,WBC 0.66 8 0.27 0.95 1 5

142 HGB,SCl,SCr,SK,SNa,WBC 0.80 5 0.28 0.82 9 5

143 SCl,SCr,SK,SNa,WBC 0.78 5 0.17 0.73 0 3

144 HGB,SCl,SK,SNa,WBC 0.72 3 0.26 0.70 0 2

145 HGB,SCl,SCr,SK,SNa 0.80 7 0.20 0.78 7 4

146 SCl,SCr,SK,SNa 0.78 5 0.28 0.82 9 5

147 HGB,SCl,SK,SNa 0.71 7 0.27 0.81 3 5

148 SCl,SK,SNa,WBC 0.65 8 0.26 0.78 1 5
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

149 Pl,SCl,SK,SNa 0.65 9 0.22 0.95 8 3

150 HGB,Pl,SCl,SCr,SNa,WBC 0.80 9 0.15 0.75 10 5

151 Pl,SCl,SCr,SNa,WBC 0.78 6 0.20 0.93 4 3

152 HGB,Pl,SCl,SNa,WBC 0.73 5 0.27 0.88 3 0

153 HGB,Pl,SCl,SCr,SNa 0.79 4 0.26 0.72 0 3

154 Pl,SCl,SCr,SNa 0.78 4 0.25 0.81 4 4

155 HGB,Pl,SCl,SNa 0.71 7 0.13 0.75 5 2

156 Pl,SCl,SNa,WBC 0.65 7 0.26 0.84 0 3

157 HGB,SCl,SCr,SNa,WBC 0.8 5 0.13 0.92 3 1

158 SCl,SCr,SNa,WBC 0.78 4 0.27 0.83 10 4

159 HGB,SCl,SNa,WBC 0.72 5 0.29 0.89 10 5

160 HGB,SCl,SCr,SNa 0.79 5 0.14 0.74 8 4

161 SCl,SCr,SNa 0.78 9 0.28 0.79 5 5

162 HGB,SCl,SNa 0.70 10 0.23 0.78 5 5

163 SCl,SNa,WBC 0.65 8 0.26 0.78 1 5

164 Pl,SCl,SNa 0.63 10 0.19 0.95 1 5

165 SCl,SK,SNa 0.64 6 0.27 0.87 1 1

166 HGB,Pl,SCl,SCr,SK,WBC 0.81 9 0.28 0.79 5 5

167 Pl,SCl,SCr,SK,WBC 0.79 6 0.29 0.79 9 5

168 HGB,Pl,SCl,SK,WBC 0.73 4 0.23 0.95 7 0

169 HGB,Pl,SCl,SCr,SK 0.80 7 0.28 0.93 2 4

170 Pl,SCl,SCr,SK 0.78 5 0.25 0.97 6 0

171 HGB,Pl,SCl,SK 0.71 6 0.13 0.81 7 4

172 Pl,SCl,SK,WBC 0.66 6 0.29 0.76 3 4

173 HGB,SCl,SCr,SK,WBC 0.80 5 0.19 0.79 6 4

174 SCl,SCr,SK,WBC 0.79 4 0.25 0.77 7 4

175 HGB,SCl,SK,WBC 0.72 3 0.24 0.71 9 2

176 HGB,SCl,SCr,SK 0.80 5 0.18 0.76 3 2

177 SCl,SCr,SK 0.78 7 0.16 0.74 6 5

178 HGB,SCl,SK 0.71 9 0.29 0.85 10 3

179 SCl,SK,WBC 0.64 7 0.26 0.73 0 2

180 Pl,SCl,SK 0.63 5 0.28 0.92 4 3

181 HGB,Pl,SCl,SCr,WBC 0.80 7 0.05 0.75 2 5

182 Pl,SCl,SCr,WBC 0.78 5 0.23 0.77 8 2

183 HGB,Pl,SCl,WBC 0.73 3 0.27 0.85 5 0

184 HGB,Pl,SCl,SCr 0.79 5 0.27 0.88 3 0

185 Pl,SCl,SCr 0.78 6 0.15 0.76 7 0

186 HGB,Pl,SCl 0.70 7 0.18 0.88 7 5

187 Pl,SCl,WBC 0.64 9 0.22 0.81 1 4

188 HGB,SCl,SCr,WBC 0.8 3 0.28 0.71 7 3

189 SCl,SCr,WBC 0.78 6 0.08 0.72 7 5
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

190 HGB,SCl,WBC 0.71 3 0.28 0.94 6 0

191 HGB,SCl,SCr 0.80 4 0.25 0.77 7 4

192 SCl,SCr 0.78 3 0.23 0.84 0 0

193 HGB,SCl 0.70 5 0.29 0.75 3 0

194 SCl,WBC 0.62 9 0.28 0.84 9 5

195 Pl,SCl 0.6 8 0.30 0.82 4 0

196 SCl,SK 0.61 9 0.28 0.95 10 4

197 SCl,SNa 0.64 9 0.23 0.87 8 1

198 HGB,Pl,SCr,SK,SNa,WBC 0.8 7 0.22 0.97 1 5

199 Pl,SCr,SK,SNa,WBC 0.8 4 0.29 0.77 6 0

200 HGB,Pl,SK,SNa,WBC 0.73 8 0.13 0.72 0 5

201 HGB,Pl,SCr,SK,SNa 0.80 5 0.27 0.89 5 5

202 Pl,SCr,SK,SNa 0.79 8 0.06 0.71 0 4

203 HGB,Pl,SK,SNa 0.69 7 0.29 0.72 2 5

204 Pl,SK,SNa,WBC 0.66 5 0.27 0.85 0 5

205 HGB,SCr,SK,SNa,WBC 0.80 5 0.20 0.74 3 4

206 SCr,SK,SNa,WBC 0.79 4 0.20 0.78 0 4

207 HGB,SK,SNa,WBC 0.71 7 0.29 0.72 2 5

208 HGB,SCr,SK,SNa 0.80 5 0.29 0.89 10 5

209 SCr,SK,SNa 0.79 6 0.22 0.81 3 4

210 HGB,SK,SNa 0.69 9 0.26 0.77 7 5

211 SK,SNa,WBC 0.64 5 0.28 0.92 4 3

212 Pl,SK,SNa 0.64 6 0.29 0.99 2 3

213 HGB,Pl,SCr,SNa,WBC 0.80 3 0.29 0.81 5 2

214 Pl,SCr,SNa,WBC 0.79 3 0.29 0.81 5 2

215 HGB,Pl,SNa,WBC 0.71 5 0.26 0.85 6 2

216 HGB,Pl,SCr,SNa 0.80 4 0.26 0.72 0 3

217 Pl,SCr,SNa 0.79 5 0.19 0.79 6 4

218 HGB,Pl,SNa 0.69 7 0.21 0.73 4 4

219 Pl,SNa,WBC 0.64 4 0.29 0.77 6 0

220 HGB,SCr,SNa,WBC 0.80 6 0.16 0.88 3 5

221 SCr,SNa,WBC 0.79 4 0.30 0.77 5 2

222 HGB,SNa,WBC 0.70 7 0.16 0.74 6 5

223 HGB,SCr,SNa 0.79 4 0.20 0.86 3 5

224 SCr,SNa 0.79 3 0.17 0.73 9 3

225 HGB,SNa 0.68 8 0.26 0.78 1 5

226 SNa,WBC 0.61 9 0.30 0.75 10 3

227 Pl,SNa 0.61 9 0.19 0.95 7 4

228 SK,SNa 0.63 5 0.28 0.92 4 3

229 HGB,Pl,SCr,SK,WBC 0.80 9 0.10 0.82 4 5

230 Pl,SCr,SK,WBC 0.80 4 0.20 0.72 10 4
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Table A2. Cont.

Group Laboratory Tests in the Group AUROC Max_Depth Eta Subsample Min_Child_Weigth Gamma

231 HGB,Pl,SK,WBC 0.72 7 0.26 0.84 0 3

232 HGB,Pl,SCr,SK 0.80 5 0.25 0.97 6 0

233 Pl,SCr,SK 0.79 8 0.21 0.96 6 5

234 HGB,Pl,SK 0.69 9 0.16 0.95 10 5

235 Pl,SK,WBC 0.66 5 0.17 0.78 3 4

236 HGB,SCr,SK,WBC 0.80 7 0.11 0.78 0 2

237 SCr,SK,WBC 0.79 5 0.25 0.89 0 2

238 HGB,SK,WBC 0.70 5 0.29 0.95 1 4

239 HGB,SCr,SK 0.80 6 0.29 0.76 3 4

240 SCr,SK 0.79 6 0.08 0.79 8 3

241 HGB,SK 0.68 8 0.28 0.92 4 0

242 SK,WBC 0.64 9 0.11 0.74 10 5

243 Pl,SK 0.63 9 0.20 0.89 2 5

244 HGB,Pl,SCr,WBC 0.8 5 0.23 0.77 8 2

245 Pl,SCr,WBC 0.79 4 0.18 0.71 8 5

246 HGB,Pl,WBC 0.71 4 0.20 0.86 3 5

247 HGB,Pl,SCr 0.79 3 0.02 0.70 2 2

248 Pl,SCr 0.79 5 0.18 0.99 4 5

249 HGB,Pl 0.68 7 0.19 0.72 8 2

250 Pl,WBC 0.63 3 0.20 0.75 1 0

251 HGB,SCr,WBC 0.8 4 0.23 0.95 7 0

252 SCr,WBC 0.79 4 0.26 0.77 6 3

253 HGB,WBC 0.70 5 0.05 0.89 10 1

254 HGB,SCr 0.79 7 0.03 0.99 8 5

255 SCr 0.79 10 0.21 0.97 8 4

256 HGB 0.67 8 0.27 0.77 0 0

257 WBC 0.60 8 0.23 0.70 8 1

258 Pl 0.56 8 0.29 0.97 3 2

259 SK 0.62 9 0.26 0.70 1 0

260 SNa 0.59 6 0.13 0.86 0 0

261 SCl 0.60 10 0.05 0.80 10 4

262 ACr 0.70 5 0.16 0.87 3 3

263 SBC 0.62 3 0.14 0.91 10 4
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