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Abstract: With advances in science and technology and changes in industry, research on promising
future technologies has emerged as important. Furthermore, with the advent of a ubiquitous and
smart environment, governments and enterprises are required to predict future promising technolo-
gies on which new important core technologies will be developed. Therefore, this study aimed to
establish science and technology development strategies and support business activities by predicting
future promising technologies using big data and deep learning models. The names of the “TOP
10 Emerging Technologies” from 2018 to 2021 selected by the World Economic Forum were used
as keywords. Next, patents collected from the United States Patent and Trademark Office and the
Science Citation Index (SCI) papers collected from the Web of Science database were analyzed using a
time-series forecast. For each technology, the number of patents and SCI papers in 2022, 2023 and 2024
were predicted using the long short-term memory model with the number of patents and SCI papers
from 1980 to 2021 as input data. Promising technologies are determined based on the predicted
number of patents and SCI papers for the next three years. Keywords characterizing future promising
technologies are extracted by analyzing abstracts of patent data collected for each technology and
the term frequency-inverse document frequency is measured for each patent abstract. The research
results can help business managers make optimal decisions in the present situation and provide
researchers with an understanding of the direction of technology development.

Keywords: future promising technologies; technology forecasting; LSTM; deep learning; patents;
SCI papers

1. Introduction

Owing to the development of science and technology and changes in industry, re-
search on promising future technologies has become important. With the advent of a
ubiquitous and smart environment, governments and enterprises are required to predict
future promising technologies on which new important and core technologies will be
developed [1]. Technology forecasting focuses on supporting business managers to make
optimal decisions in the present situation and helps researchers understand the direction of
technology development by predicting the future in detail through quantitative techniques.
Through technological forecasting, it is possible to effectively link science and technology
with economic development by forecasting the future situation and integrating economic
needs and research opportunities. Technology forecasting is becoming an important tool
to support the forecasting of industry and technological development [2]. As globaliza-
tion accelerates and the industrial paradigm changes rapidly, technology forecasting for
rapidly changing important technologies has emerged in response to the needs of the
private and public sectors [3,4]. With quantitative analysis techniques being applied to
technical forecasting [5,6], the reliability and validity of technical forecasting using papers
and patents are increasing [7]. As patents and papers are representative data of technical
information, these attempts of forecasting help solve the problem of subjective bias of
experts [8,9]. In recent years, scholars have begun predicting technology based on the
number of publications of papers and patents [10]. The common methods of technology
forecasting through analysis of the number of papers and patents are regression, machine
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learning, and deep learning [11]. Deep learning has a more in-depth network structure than
machine learning, which can significantly improve the prediction accuracy for the problems
that require complex solutions [12]. Mudassir et al. [13] used a long short-term memory
(LSTM) network for forecasting bitcoin price fluctuations. Cai et al. [14] forecasted wind
power using a generalized regression neural network (GRNN) and showed that the deep
learning approach has higher prediction accuracy. Gui and Xu [15] used a deep learning
text classification model to extract relevant Science Citation Index (SCI) papers from the
Web of Science database for the period 1996–2019 for topic classification and used Ensemble
Empirical Mode Decomposition (EEMD) and LSTM neural networks to predict the future
development of each research field. Zhou et al. [16] used a deep learning algorithm to
predict emerging technologies in Gartner’s hype curve in 2017 based on patent data from
2000 to 2016. Lee et al. [17] devised a deep learning model based on meta-knowledge (i.e.,
text information including citations, abstracts, and area codes) for prediction of future
growth potential.

This study aimed to establish science and technology development strategies and
support business activities by predicting future promising technologies using big data and
deep learning models. Herein, the promising technology names of the “TOP 10 Emerging
Technologies” from 2018 to 2021 selected by the World Economic Forum (WEF) are used as
keywords to analyze the patents collected from the United States Patent and Trademark
Office (USPTO) and SCI papers collected from the Web of Science database by time-series
forecast (TSF). For each technology, the number of patents and SCI papers in 2022, 2023
and 2024 are predicted using the LSTM model with the number of patents and SCI papers
collected from 1980 to 2021 as input data. Promising technologies are determined based on
the number of predicted patents and SCI papers for the next three years. This study has
differences in previous works, in that big data are collected from the vast databases of the
USPTO and the Web of Science and future promising technologies are derived based on
it using a deep learning model. Furthermore, this study aimed to extract the keywords
characterizing future promising technologies—this is achieved by calculating the term
frequency-inverse document frequency (TF-IDF) of each word in a patent abstract by using
the abstracts of patent data collected for each technology from the USPTO to compose
the corpus.

2. Data and Methods
2.1. Data

In this study, the input dataset of LSTM was constructed using the number of patents
collected from the USPTO registered between 1980 and 2021 for each technology and the
number of SCI papers collected from the Web of Science database by keyword search for
the promising technology names of the “TOP 10 Emerging Technologies” from 2018 to 2021
selected by the WEF, as shown in Table 1.

Table 1. World Economic Forum “Top 10 Emerging Technologies” (2018–2021).

No. 2018 2019 2020 2021

1 Augmented
reality

Bioplastics for a circular
economy

Microneedles for
painless injections

and tests

Decarbonization
rises

2 Personalized
medicine Social robots Sun-powered

chemistry
Crops that

self-fertilize

3 AI-led molecular
design

Lenses for miniature
devices Virtual patients Breath sensors

diagnose disease

4 More capable
digital helpers

Disordered proteins as
drug targets Spatial computing On-demand drug

manufacturing
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Table 1. Cont.

No. 2018 2019 2020 2021

5
Implantable

drug-making
cells

Smarter fertilizers can
reduce environmental

contamination
Digital medicine Energy from

wireless signals

6 Gene drive Collaborative
telepresence Electric aviation Engineering better

ageing

7
Algorithm for

quantum
computers

Advanced food tracking
and packing Lower-carbon cement Green ammonia

8 Plasmonic
materials Safer nuclear reactors Quantum sensing Biomarker devices

go wireless

9 Lab-grown meat DNA data for storage Green hydrogen
Houses printed

with local
materials

10 Electroceuticals Utility-scale storage of
renewable energy

Whole-genome
synthesis

Space connects
the globe

Table 2 shows the total number of patents collected from the USPTO between 1980 and
2021 for each technology and the total number of SCI papers collected from the Web of Sci-
ence database for technology in Table 1. The input dataset of the LSTM model was created
by composing the number of patents and SCI papers collected for technology and year as
follows. To predict the number of patents for the next three years for each technology, vec-
tor ((t, patent_numt), (t + 1, patent_numt+1), · · · , (t + 9, patent_numt+9) ) with length
10 was constructed for year t (t = 1980, 1981, · · · , 2012).

Table 2. Number of patents and papers collected for technology in Table 1 (the left shows the number
of patents and the right shows the number of papers).

No. 2018 2019 2020 2021 Sum

1 41,088/16,204 0/234 0/5 0/25

2 134/745 91/4267 0/1 0/3

3 0/14 0/31 91/8923 0/16

4 0/51 0/11 209/46,898 0/13

5 0/5 0/124 49/16,237 0/0

6 152/737 6/154 7/1594 0/0

7 2/7 0/6 0/32 12/455

8 360/1735 1/980 279/4732 0/0

9 0/0 18/128 40/3314 0/0

10 27/14 0/36 5/27 0/0

Sum 41,763/19,512 116/5971 680/81,763 12/512 42,571/107,758

To predict the number of SCI papers for the next three years for each technology, vector
((t, paper_numt), (t + 1, paper_numt+1), · · · , (t + 9, paper_numt+9) ) with length 10 was
constructed for year t (t = 1980, 1981, · · · , 2012). The LSTM model was modeled to
predict the number of patents for the next three years ((t + 10, patent_num(t + 10)), (t +
11, patent_num(t + 11)), (t + 12, patent_num(t + 12))) for input data ((t, patent_numt), (t+1,
patent_num(t+1)),· · · , (t + 9, patent_num(t + 9)) ) and the number of SCI papers for the next
three years ((t + 10, paper_numt+10), (t + 11, paper_numt+11), (t + 12, paper_numt+12) )
for input data ((t, paper_numt), (t + 1, paper_numt+1), · · · , (t + 9, paper_numt+9) ). An
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increase in the number of patents and SCI papers predicted for the next three years com-
pared to that of 2021 indicated a promising technology in the future. To extract keywords
that characterize future promising technologies, the abstract of each patent was considered
one document for each technology and the set of abstracts as a corpus through data mining
to calculate the term frequency (TF), document frequency (DF), and term frequency-inverse
document frequency (TF-IDF). Keywords characterizing future promising technologies
were extracted from words with a calculated TF-IDF.

2.2. Model

A recurrent neural network (RNN) is a deep learning model that uses time-series
data from the past as input and outputs future data; for example, a river level predic-
tion model [18,19], solar power generation prediction model [20,21], fine dust predic-
tion model [22,23], energy demand prediction model [24], and stock price prediction
model [25,26]. In this study, using the dataset in Section 2.1 as input data, the predictions
made by LSTM for promising future technologies showed excellent performance even with
a dataset having long-term dependencies.

The mathematical model of the LSTM is expressed as Equation (1) and illustrated in
Figure 1. The output ht, output gate ot, new memory content c̃t, forget gate ft, and input
gate it of the LSTM are expressed as Equation (1).
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Figure 1. Long short-term memory (LSTM) model (source: [27]).

Output ht = ot tanh(ct)

Output gate ot = σ(Woxt + Uoht−1 + Voct)

Memory cell ct = ftct−1 + it c̃t

New memory content c̃t = tanh(Wcxt + Ucht−1) (1)

Forget gate ft = σ
(

W f xt + U f ht−1 + Vf ct−1

)
Input gate it = σ(Wixt + Uiht−1 + Vict−1)

Equation (1) can be illustrated as an image in Figure 1.
To improve the prediction accuracy of LSTM, a stacked LSTM, as shown in Figure 2,

was used as a model by stacking two LSTM layers with a hidden size of 100. The experiment
was configured as follows, and it was confirmed that the predicted values converged when
the epochs were set to 200.

Epochs: 200, Hidden size: 100, Loss function: MSE, Optimizer: SGD, Learning
rate: 0.001.

2.3. Patent Analysis Results

Technologies with less than three patents in the patent dataset were excluded from the
analysis due to difficulties in constructing a sufficient training dataset for the LSTM. Table 3
shows the results of calculating the rate of increase (patent_num2024 − patent_num2021)/4
in the number of patents in 2024 compared to 2021 based on the number of patents expected
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to be applied in the next three years using the LSTM model for 16 technologies. In Table 3,
the accuracy was calculated as follows.
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paper_numt for SCI paper analysis.

Table 3. Rate of increase and prediction accuracy of the predicted number of patents by technology.

No. Technology Rate of Increase Accuracy (%)

1 Augmented reality 106.8433 78.62

2 Collaborative telepresence 0.049675 73.44

3 Digital medicine 0.2259 94.50

4 DNA data storage 0.00825 96.85

5 Electric aviation 0.037975 82.18

6 Electroceuticals 0.40255 93.50

7 Gene drive 0.092075 94.76

8 Green ammonia −0.00878 79.60

9 Green hydrogen 0.22745 90.70

10 Personalized medicine 0.447675 94.41

11 Plasmonic materials 2.45425 95.53

12 Quantum sensing 1.8588 97.55

13 Social robots 0.82 92.17

14 Spatial computing 2.295025 94.50

15 Virtual patients 2.4056 92.62

16 Whole-genome synthesis 0.0077 89.36

With the maximum number of patents patent_numt collected under each technology
for year t (t = 1980, 1981, · · · , 2012) as max, the number of patents, which was the input
data of the LSTM, and the number of patents, the output data, were multiplied by 100/max
to normalize the number of patents to a number from 0 to 100. Let differencet be the absolute
value of the difference between normalized patent_numt, which represents input data,
and normalized patent_numt, which represents output data in the same year. Prediction
accuracy was calculated as accuracy = 100 − mean(differencet).

Based on the predicted increase in the number of patents over the next three years,
“Augmented reality” was predicted to be the most promising technology in the future,
followed by “Plasmonic materials,” “Virtual patients,” “Spatial computing,” “Quantum
sensing,” “Social robots,” “Personalised medicine,” · · · . Figure 3 shows the input data of
future promising technologies and the predicted number of patents as a graph. Since the
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model used in this study is a predictive model based on past data, it tends to underestimate
when a sudden increase in a short period of time is observed in the input data.
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Figure 3. Number of patents in the input data and the predicted number of patents by year for the
technologies predicted as the future promising technologies.

The number of patents in the next three years predicted by the LSTM model using
the number of patents of the past 10 years as input data showed a tendency to conserva-
tively predict the number of patents with a smaller variation from the number of patents
actually observed.

In this study, the abstracts of patent data collected by technology were used to compose
the corpus to calculate the TF of each abstract word appearing in the corpus; the DF, the
number of documents in which each abstract word appeared; and the TF-IDF [28], a
statistical number indicating how important each abstract word was in the corpus, and
to extract the keywords characterizing future promising technologies. Table 4 shows the
results of extracting the keywords of future promising technologies based on the TF-IDF
for each technology. Keywords for technologies are not shown in Table 4 but are included
in the Supplementary Data in the online resource.

Table 4. Keywords extracted based on TF-IDF.

(a) Keywords of Plasmonic Materials

Word TF DF TF_IDF

Layer 355 103 442.77

Material 353 124 375.36

Surface 326 130 331.36

Structure 158 49 312.78

Peg 133 36 303.34

Light 194 78 295.31

Optical 158 59 283.97

Region 108 26 280.35

Waveguide 126 50 246.94

Plasmonic 206 111 241.67

Metal 105 39 231.29
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Table 4. Cont.

(a) Keywords of Plasmonic Materials

Devices 166 91 227.40

Transducer 186 106 226.70

Least 179 102 224.99

Positioned 109 46 222.52

Magnetic 105 43 221.28

Portion 114 51 221.21

Substrate 150 84 217.35

Nft 109 50 213.62

Dielectric 102 44 212.67

Nearfield 100 48 199.98

Oxide 69 21 193.24

Configured 105 59 188.72

Device 115 74 181.03

Field 131 90 180.88

Film 70 29 174.33

Thereof 73 33 172.67

Conductive 70 30 172.04

Electromagnetic 66 26 171.32

(b) Keywords of Quantum Sensing

Word TF DF TF_IDF

Layer 203 45 369.53

Material 285 93 315.12

Light 181 54 297.14

Quantum 152 42 286.94

Diamond 150 41 286.70

Optical 180 59 279.83

Magnetic 171 67 244.44

Spin 80 13 240.79

Field 122 47 216.89

Excitation 97 32 208.79

Device 183 90 208.27

Semiconductor 132 58 207.43

Nanometers 48 4 193.90

Configured 124 59 192.77

Signal 102 42 192.55

Region 72 20 187.52

Substrate 105 49 182.38

Source 98 44 180.55

Surface 90 41 172.02

Frequency 83 39 162.69

Defect 61 19 161.85
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Table 4. Cont.

(b) Keywords of Quantum Sensing

Diode 55 14 161.75

Detector 97 56 155.77

System 87 53 144.42

Sensor 61 26 143.54

Magnetooptical 46 12 141.87

Unit 41 8 141.52

Micro 44 11 139.22

Array 57 25 136.28
TF, term frequency; DF, document frequency; TF_IDF, term frequency-inverse document frequency.

2.4. Results of SCI Paper Analysis

Among the data of the SCI papers in Section 2.1, technologies with less than four
published papers were excluded from the analysis due to difficulties in constructing a
sufficient training dataset for LSTM. Table 5 shows the results of calculating the rate of
increase (paper_num2024 − paper_num2021)/4 in the number of papers in 2024 compared
to 2021 based on the number of papers predicted to be published in the next three years
using the LSTM model for 32 technologies. Table 5 shows the accuracy calculations, similar
to the calculations presented in the patent analysis results.

Table 5. Rate of increase and prediction accuracy of the predicted number of Science Citation Index
(SCI) papers by technology.

No. Technology Rate of Increase Accuracy (%)

1 Advanced food tracking and packaging 0.039575 84.32
2 AI-led molecular design 0.022825 91.39
3 Algorithms for quantum computers 0.013575 82.32
4 Augmented reality 78.9371 81.91
5 Bioplastics for a circular economy 2.066675 94.70
6 Breath sensors diagnose disease 0.015575 74.27
7 Collaborative telepresence −0.23878 92.32
8 Decarbonization rises −0.04815 88.86
9 Digital medicine 39.60455 85.55
10 Disordered proteins as drug targets 0.003725 76.20
11 DNA data for storage −0.31628 91.49
12 Electric aviation 3.43585 76.81
13 Electroceuticals 0.094375 90.43
14 Gene drive 0.116 81.29
15 Green ammonia 1.25715 94.31
16 Green hydrogen 2.0026 92.00
17 Implantable drug-making cells 0.0007 73.12
18 Lower-carbon cement 0.158525 84.36
19 Microneedles for painless injections and tests 0.0023 73.42
20 More capable digital helpers 0.33175 89.39
21 On-demand drug manufacturing 0.0144 88.04
22 Personalized medicine 1.216357 88.90
23 Plasmonic materials 6.9311 84.02
24 Quantum sensing 5.735575 71.52
25 Safer nuclear reactors −0.0415 84.85

26 Smarter fertilizers can reduce environmental
contamination −0.16527 95.13

27 Social robots 9.46255 76.76
28 Spatial computing 71.04438 70.20
29 Tiny lenses for miniature devices 0.097625 75.01
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Table 5. Cont.

No. Technology Rate of Increase Accuracy (%)

30 Utility-scale storage of renewable energy −0.29128 93.85
31 Virtual patients 34.59743 93.26
32 Whole-genome synthesis 0.053025 87.81

Based on the predicted increase in the number of SCI papers over the next three years,
the most promising technology was predicted to be “Augmented reality,” followed by
“Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic
materials,” “Quantum sensing,” · · · . Figure 4 shows the input data of future promising
technologies and the predicted number of SCI papers. As in Figure 3, when a sudden
increase in a short period of time is observed in the input data, the predicted value tends to
be underestimated.
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As shown in Table 6, the technologies predicted by the LSTM to grow in both number
of patents and SCI papers in the next three years included: “Augmented reality,” “Spatial
computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materi-
als,” “Quantum sensing,” “Electric aviation,” “Green hydrogen,” “Personalized medicine,”
“Gene drive,” “Electroceuticals,” and “Whole-genome synthesis.” Figure 5 shows a graph
of the predicted number of patents and SCI papers for the top 10 technologies with a high
growth rate among these 13 technologies.

Table 6. Technologies predicted to grow in both number of patents and Science Citation Index
(SCI) papers.

Technology Rate of Increase
(SCI Papers)

Rate of Increase
(Patents)

Augmented reality 78.9371 106.8433
Spatial computing 71.04438 2.295025
Digital medicine 39.60455 0.2259
Virtual patients 34.59743 2.4056

Social robots 9.46255 0.82
Plasmonic materials 6.9311 2.45425

Quantum sensing 5.735575 1.8588
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Table 6. Cont.

Technology Rate of Increase
(SCI Papers)

Rate of Increase
(Patents)

Electric aviation 3.43585 0.037975
Green hydrogen 2.0026 0.22745

Personalized medicine 1.216357 0.447675
Gene drive 0.116 0.092075

Electroceuticals 0.094375 0.40255
Whole-genome synthesis 0.053025 0.0077
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Figure 5. Predicted number of patents and predicted number of Science Citation Index (SCI) papers
for ten derived future promising technologies: A, SP, D, V, SO, PL, Q, E, G, and PE refer to “Augmented
reality,” “Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic
materials,” “Quantum sensing,” “Electric aviation,” “Green hydrogen,” and “Personalized medicine,”
respectively. In the patent number prediction graph, the number of patents in augmented reality
exceeded 1000 and it did not appear in the graph. The graph of the predicted number of patents for
augmented reality technology is shown in Figure 4.

3. Conclusions

This study used the promising technology names of the “TOP 10 Emerging Technolo-
gies” from 2018 to 2021 selected by the WEF as keywords to analyze the patents collected
from the USPTO and SCI papers collected from the Web of Science database by TSF. Using
the number of patents and SCI papers collected for 40 technologies as input data, the
number of patents and SCI papers in the next three years was predicted for each technology
using a two-layer LSTM model. Promising technologies were derived based on the increase
rate of the predicted number of patents and the increase rate of the predicted number
of SCI papers. This study is meaningful in that it determines promising technologies
with an average accuracy of 86.42% using a deep learning model for two databases for
40 broad technologies.

The 13 technologies predicted to grow in both the number of patents and the number
of SCI papers in the next three years, namely, “Augmented reality,” “Spatial computing,”
“Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materials,” “Quantum
sensing,” “Electric aviation,” “Green hydrogen,” “Personalized medicine,” “Gene drive,”
“Electroceuticals,” and “Whole-genome synthesis,” can be considered future promising
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technologies. Using the research results, business managers can make optimal decisions
in the present situation and researchers can understand the direction of technology devel-
opment. Through technological forecasting, it is possible to effectively link science and
technology with economic development by forecasting the future situation more similarly
and integrating economic needs and research opportunities.

Furthermore, this study differs from other studies in that keywords characterizing
future promising technologies were extracted by calculating the TF-IDF of each word in a
patent abstract by using the abstracts of patent data collected for each technology from the
USPTO to compose the corpus.

In the future, to determine promising technologies, a wider database will be built and
other models that can further improve prediction accuracy will be investigated.
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