
Processes 2013, 1, 203-237; doi:10.3390/pr1020203
OPEN ACCESS

processes
ISSN 2227-9717

www.mdpi.com/journal/processes

Article

A Real-Time Optimization Framework for the Iterative
Controller Tuning Problem
Gene A. Bunin, Grégory François and Dominique Bonvin *

Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015,
Switzerland; E-Mails: gene.bunin@epfl.ch (G.A.B.); gregory.francois@epfl.ch (G.F.)

* Author to whom correspondence should be addressed; E-Mail: dominique.bonvin@epfl.ch;
Tel.: +41-21-6933843; Fax: +41-21-6932574.

Received: 7 June 2013; in revised form: 1 August 2013 / Accepted: 27 August 2013 /
Published: 12 September 2013

Abstract: We investigate the general iterative controller tuning (ICT) problem, where the
task is to find a set of controller parameters that optimize some user-defined performance
metric when the same control task is to be carried out repeatedly. Following a repeatability
assumption on the system, we show that the ICT problem may be formulated as a
real-time optimization (RTO) problem, thus allowing for the ICT problem to be solved
in the RTO framework, which is both very flexible and comes with strong theoretical
guarantees. In particular, we propose the use of a recently released RTO solver and outline
a simple procedure for how this solver may be configured to solve ICT problems. The
effectiveness of the proposed method is illustrated by successfully applying it to four case
studies—two experimental and two simulated—that cover the tuning of model-predictive,
general fixed-order and PID controllers, as well as a system of controllers working in parallel.

Keywords: controller autotuning; real-time optimization; data-driven tuning methods

1. Introduction

The typical task of a controller consists in tracking a user-specified trajectory as closely as possible
while observing certain additional specifications, such as stability, the satisfaction of safety limits and the
minimization of expensive control action when it is not needed. Mathematically, we may define such a
controller by the mapping Gc(ρ), where ρ ∈ Rnρ denote the parameters that dictate the controller’s

Processes 2013, 1 204

behavior and represent decision variables (the “tuning parameters”) for the engineer intending to
implement the controller in practice. In the simplest scenario, this often leads to a closed-loop system
that may be described by the schematic in Figure 1. No assumptions are made on the nature of Gc, which
may represent such controllers as the classical PID, the general fixed-order controller, or even the more
advanced MPC (model-predictive control). To be even more general, Gc may represent an entire system
of such controllers—one would need, in this case, to simply replace yref (t), y(t,ρ), u(t,ρ) and e(t,ρ)

by their vector equivalents.

Figure 1. Qualitative schematic of a single-input-single-output system with the
controller Gc(ρ). Elements such as disturbances and sensor dynamics, as well as any
controller-specific requirements, are left out for simplicity. We use the notation y(t,ρ) to
mark the (implicit) dependence of the control output on the tuning parameters ρ (likewise
for the input and the error).

()cG ρ Plant

+

−

()refy t (, ρ)e t (, ρ)u t (, ρ)y t

(, ρ)y t

As with any set of decision variables, it should be clear that there are both good and bad choices
of ρ, and in every application, some sort of design phase precedes the actual implementation and acts
to choose a set of ρ that is expected to track the reference, yref , “well”, while meeting any additional
specifications. The classic example for PID controllers is the Ziegler-Nichols tuning method [1], with
methods such as model-based direct synthesis [2] and virtual reference feedback tuning [3] acting as
more advanced alternatives. Though not as developed, both theoretical and heuristic approaches exist
for the design of MPC [4] and general fixed-order controllers [5,6] as well.

In the majority of cases, the set of controller parameters obtained by these design methods will not be
the best possible with respect to control performance. There are many reasons for this, with some of the
common ones being:

• assumptions on the plant, such as linearity or time invariance, that are made at the design stage,
• modeling errors and simplifications,
• conservatism in the case of a robust design,
• time constraints and/or deadlines that give preference to a simpler design over an advanced one.

To improve the closed-loop performance of the system, some sort of data-driven adaptation of the
parameters from their initial designed values, denoted here by ρ0, may be done online following
the acquisition of new data. These are generally classified as “indirect” and “direct” adaptations [7]
depending on what is actually adapted—the model (followed by a model-based re-design of the
controller) in the indirect variant or the controller parameters in the direct one. This paper investigates
direct methods that attempt to optimize control performance by establishing a direct link between the
observed closed-loop performance and the controller parameters, with the justification that such methods

Processes 2013, 1 205

may be forced to converge—at least, theoretically—to a locally optimal choice, ρ∗, regardless of the
quality or the availability of the model, which cannot be said for indirect schemes [8].

Many of these schemes attempt to minimize a certain user-defined performance metric (e.g., the
tracking error) for a given run or batch by playing with the controller parameters as one would in
an iterative optimization scheme—i.e., by changing the parameters between two consecutive runs,
trying to discover the effect that this change has on the closed-loop performance (estimating the
performance derivatives), and then using the derivative estimates to adapt the parameters further in some
gradient-descent manner [9–13]. This is essentially the iterative controller tuning (ICT) problem, whose
goal is to bring the initial suboptimal set, ρ0, to the locally optimal ρ∗ via iterative experimentation on
the closed-loop system, all the while avoiding that the system become dangerously unstable from the
adaptation (a qualitative sketch of this idea is given in Figure 2). A notable limitation of such methods,
though rarely stated explicitly, is that the control task for which the controller is being adapted must be
identical (or very similar) from one run to the next—otherwise, the concept of optimality may simply
not exist, since what is optimal for one control task (e.g., the tracking of a step change) need not be
so for another (e.g., the tracking of a ramp). A closely related problem where the assumption of a
repeated control task is made formally is that of iterative learning control [14], although what is adapted
in that case is the open-loop input trajectory, rather than the parameters of a controller dictating the
closed-loop system.

Figure 2. The basic idea of iterative controller tuning. Here, a step change in the setpoint
represents the repetitive control task. We use ρ∗ to denote a sort of “anti-optimum” that
might be achieved with a bad adaptation algorithm.

t

t
refyy

Performance with Initial Design

Performance after Good Adaptation

0ρ
→

*
ρ

t

Performance after Bad Adaptation
0

ρ
→

*

ρ

Processes 2013, 1 206

We observe that, as the essence of these tuning methods consists in iteratively minimizing a
performance function that is unknown, due to the lack of knowledge of the plant, the ICT problem
is actually a real-time optimization (RTO) problem as it must be solved by iterative experimentation.
Recent work by the authors [15–17] has attempted to unify different RTO approaches and to standardize
the RTO problem as any problem having the following canonical form:

minimize
v

ϕp(v)

subject to Gp(v) ≼ 0

G(v) ≼ 0

vL ≼ v ≼ vU

(1)

where v ∈ Rnv denote the RTO variables (RTO inputs) forced to lie in the relevant RTO input space
defined by the lower and upper limits, vL and vU , ϕp denotes the cost function to be minimized, and Gp

and G denote the sets of individual constraints, gp, g : Rnv → R (i.e., safety limitations, performance
specifications), to be respected. We use the symbol ≼ to denote componentwise inequality.

The subscript p (for “plant”) is used to indicate those functions that are unknown, or “uncertain”, and
can only be evaluated by applying a particular vk and conducting a single experiment (with k denoting
the experiment/iteration counter), from which the corresponding function values may then be measured
or estimated:

ϕ̂p(vk) = ϕp(vk) + wϕ,k

ĝp(vk) = gp(vk) + wg,k

(2)

with some additive stochastic error, w. Conversely, the absence of p indicates that the function is easily
evaluated by algebraic calculation without any error present.

Owing to the generality of Problem (1), casting the ICT problem in this form is fairly straightforward
and, as will be shown in this work, has numerous advantages, as it allows for a fairly systematic and
flexible approach to controller tuning in a framework where strong theoretical guarantees are available.
The main contribution of our work is thus to make this generalization formally and to argue for its
advantages, while cautioning the potential user of both its apparent and hypothetical pitfalls.

Our second contribution lies in proposing a concrete method for solving the ICT problem in this
manner. Namely, we advocate the use of the recently released open-source SCFO (“sufficient conditions
for feasibility and optimality”) solver that has been designed for solving RTO problems with strong
theoretical guarantees [17]. While this choice is undoubtedly biased, we put it forward as it is, to the
best of our knowledge, the only solver released to date that solves the RTO problem (1) reliably, which
is to say that it consistently converges to a local minimum without violating the safety constraints in
theoretical settings and that it is fairly robust in doing the same in practical ones. Though quite simple
to apply, the SCFO framework and the solver itself need to be properly configured, and so we guide the
potential user through how to configure the solver for the ICT problem.

Finally, as the theoretical discussion alone should not be sufficient to convince the reader that there
is a strong potential for solving the ICT problem as an RTO one, we finish the paper with a total of
four case studies, which are intended to cover a diverse range of experimental and simulated problems
and to demonstrate the general effectiveness of the proposed method, the difficulties that are likely to

Processes 2013, 1 207

be encountered in application, and any weak points where the methodology still needs to be improved.
Specifically, the four studies considered all solve the ICT problem for:

• the tracking of a temperature profile in a laboratory-scale stirred tank by an MPC controller,
• the tracking of a periodic setpoint for a laboratory-scale torsional system by a general fixed-order

controller with a controller stability constraint,
• the PID tracking of a setpoint change for various linear systems (previously examined in [13,18]),
• the setpoint tracking and disturbance rejection for a five-input, five-output multi-loop PI system

with imperfect decoupling and a hard output constraint.

In each case, we do our best to concretize the theory discussed earlier by showing how the resulting ICT
problem may be formulated in the RTO framework, followed by the application of the SCFO solver with
the proposed configuration.

2. The RTO Formulation of the Iterative Controller Tuning Problem

In this section, we go through the different components of the RTO problem (1) and state their ICT
analogues, together with any assumptions necessary to make the links between the two clean. We then
finish by reviewing the benefits and limitations of this approach.

2.1. The Cost Function ϕp→ The Control Performance Metric

The intrinsic driving force behind iteratively tuning a controller so that it performs “better” is the
somewhat natural belief that there is some sort of deterministic link between the parameters and the
observed performance. We qualify this via the following assumption, which was originally stated in the
MPC context in [19] and then extended to the general controller in [20].

Assumption 1 (Repeatability). Let ρ ∈ Rnρ denote the tuning parameters of a controller and Jk the
observed value of the user-defined performance metric at run k for a fixed control task that is identical
from run to run. The closed-loop process is repeatable with respect to performance if:

Jk = J(ρk) + δk (3)

where ρk are the parameters of the controller at run k, J : Rnρ → R is a purely deterministic relation
between the performance metric and the parameters, and δk is the “non-repeatability noise”, a purely
stochastic element that is independent of ρk.

In layman’s terms, the (unknown) function, J , is precisely the intrinsic link that we believe in, while
δk is a representation of reality, which most often manifests itself by means of measurement noise and
differs unpredictably from run to run. The discussion of the validity of such an assumption is deferred
to the end of the section.

Comparing (2) and (3), both of which involve a deterministic function that is sampled with additive
noise, we establish our first RTO→ ICT connection:

minimize
v

ϕp(v)→ minimize
ρ

J(ρ) (4)

Processes 2013, 1 208

A common general performance metric, given here in continuous form for the
single-input-single-output (SISO) case, may be defined as:

Jk := λ1

∫ tb

0

[yref (t)− y(t,ρk)]
2 dt+λ2

∫ tb

0

u2(t,ρk)dt+λ3

∫ tb

0

ẏ2(t,ρk)dt+λ4

∫ tb

0

u̇2(t,ρk)dt (5)

where tb denotes the total length of a single run and where the weights, λ ≽ 0, may be set as needed
to trade off between giving preference to tracking error, the control action, the smoothness of the output
response, and the aggressiveness of the controller. Modifications that include other criteria, such as
frequency weighting [10], or that modify the time interval for which the performance is analyzed by
adding a “mask” [18], are of course possible as well.

2.2. The Uncertain Inequality Constraints Gp→ Safety and Economic Constraints

Many control applications may have strict safety specifications that require a given output, y(t,ρ), to
remain within a certain zone, defined by y and y, throughout the length of the run:

y ≤ y(t,ρ) ≤ y, ∀t ∈ [0, tb] (6)

While it is not difficult to propose methods to enforce such behavior for the general controller, many
of which would likely try to incorporate the constraints as setpoint objectives, such approaches remain
largely ad hoc. This drawback has shifted particular emphasis to MPC as being the advanced controller
to be able to deal with output constraints systematically [21], but even here no rigorous conditions for
satisfying (6) are available for the general case where any amount of plant-model mismatch is admissible.

Since rigorous theoretical conditions are available for satisfying Gp(v) ≼ 0 in the RTO
framework [15], we may exploit this advantage by casting the hard output constraints for the ICT
problem in RTO form. To do this, we start by replacing the two semi-infinite constraints of Equation (6)
by their equivalent finite versions:

y ≤ min
t∈[0,tb]

y(t,ρ)

max
t∈[0,tb]

y(t,ρ) ≤ y

At this point, we need to apply a version of Assumption 1 for the constraints. For a particular run, k,
we assume that the closed-loop process is repeatable with respect to the control output range:

min
t∈[0,tb]

y(t,ρk) = ymin(ρk) + δmin,k

max
t∈[0,tb]

y(t,ρk) = ymax(ρk) + δmax,k

, (7)

i.e., that the minimum and maximum values of the trajectory y(t,ρk) observed for a given run k are
(unknown) deterministic functions (ymin, ymax) of the parameters plus a stochastic element (δmin,k,
δmax,k).

Making the link with Equation (2), we may now restate the hard output constraints in RTO form as:

Gp(v) ≼ 0→ −ymin(ρ) + y ≤ 0

ymax(ρ)− y ≤ 0
(8)

where the function values ymin and ymax can be measured for a given ρ with the additive errors δmin

and δmax.

Processes 2013, 1 209

Alternatively, it may occur that there are economic constraints with respect to the inputs. As an
example, consider a reactor where one of the control inputs is the feed rate of a reagent. While effective
for the purposes of control, the reagent may be expensive and so only a limited amount may be allotted
per batch, with the constraint: ∫ tb

0

u(t,ρ)dt ≤ uT

imposed, where uT is some user-defined limit. Following the same steps as above, we suppose that:∫ tb

0

u(t,ρk)dt = uT (ρk) + δu,k

with uT the deterministic component and δu the non-repeatability noise, and make the connection:

Gp(v) ≼ 0→ uT (ρ)− uT ≤ 0

It should be clear that extension to multiple-input-multiple-output (MIMO) cases is trivial, as this
only adds more elements to Gp.

2.3. The Certain Inequality Constraints G→ Controller Specifications and Stability Considerations

In some controllers, analytically known inequality relations may need to be satisfied. One such
example is the case of the MPC controller, where one may tune both the control and prediction horizons
(m and n, respectively) with the built-in rule [21]:

m ≤ n (9)

which, if we define ρ1
∆
=m and ρ2

∆
=n, leads to the following link with Equation (1):

G(v) ≼ 0→ ρ1 − ρ2 ≤ 0

As another example, we may want to adapt the parameters of the discrete fixed-order controller:

Gc(ρ) =
ρ1z

2 + ρ2z + ρ3
z2 + ρ4z + ρ5

(10)

but would like to limit our search to stable controllers only. Employing the Jury stability criterion [22],
we generate the first four rows of the Jury table for the denominator of Gc(ρ):

row 1 : 1 ρ4 ρ5

row 2 : ρ5 ρ4 1

row 3 : 1− ρ25 ρ4 − ρ4ρ5 0

row 4 : ρ4 − ρ4ρ5 1− ρ25 0

from which the sufficient conditions for controller stability are obtained as:

|ρ5| < 1

|ρ4 − ρ4ρ5| < |1− ρ25|
→ |ρ5| ≤ 1− ε

|ρ4 − ρ4ρ5| ≤ |1− ρ25| − ε
(11)

with the constraint set on the right representing an implementable non-strict version with negligible
conservatism for ε > 0 small. Controller stability may now be ensured in the RTO form with
the correspondence:

G(v) ≼ 0→ |ρ5| − 1 + ε ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ25|+ ε ≤ 0
(12)

Processes 2013, 1 210

Finally, we note that nominal closed-loop stability constraints may also be incorporated in this
manner. As a simple example, consider the unstable plant that is modeled as:

G(s) =
1

s− 1

and that is to be controlled by a PD controller with ρ1 and ρ2 the proportional and derivative
gains, respectively:

Gc(ρ) = ρ1 + ρ2s

From the analysis of the characteristic equation, 1 +GGc = 0, we have the stability condition, together
with its implementable version:

1− ρ1
1 + ρ2

< 0→ 1− ρ1
1 + ρ2

≤ −ε

which, again, allows the correspondence:

G(v) ≼ 0→ 1− ρ1
1 + ρ2

+ ε ≤ 0 (13)

Extensions to robust nominal stability follow easily and would simply involve a greater number
of constraints.

2.4. The Box Constraints vL ≼ v ≼ vU → Controller Parameter Limits

Given the RTO-ICT correspondence of v→ ρ, the box constraints of the RTO problem are simply the
lower and upper limits, ρL and ρU , on the adapted controller parameters. We note that certain limits will
be obvious for certain controllers—e.g., the integral time should be superior to zero in a PI controller,
while the prediction and control horizons of an MPC controller should be equal to or greater than one.
In other cases, one may have to think a little before deciding on appropriate limits. In Section 3, an easy
way to set parameter bounds for the general controller will be provided.

2.5. The ICT Problem in RTO Form: Summary

Having now gone through all the components of Problem (1) and having provided their ICT
analogues, we may make certain remarks and observations.

To start with the positive, almost all of the possible desired specifications in a standard ICT problem
are easily stated in RTO terms, although this is not surprising, given the generality of the formulation (1).
Of particular interest with regard to this point are the constraint terms, as the flexibility of the RTO
formulation has allowed for us to include limits on the control outputs and inputs, as well as any
controller specifications, very easily. To the best of the authors’ knowledge, constraints are generally
avoided in the majority (though not all [23]) of direct tuning formulations. This is likely because the
most commonly used method—the gradient descent—is not well-equipped to deal with them (apart from
certain simple kinds, such as the box constraints [19]). Casting the ICT problem in the RTO framework
therefore allows us to ignore this limitation.

The other big advantage is that no assumptions are needed on the nature of the controller (or
their number, if a system of controllers is considered)—it simply has to be something that can be
parametrically tuned, and so one could adapt just about anything. Likewise, the standard restricting

Processes 2013, 1 211

assumption of linearity is also not needed, even formally, as the black-box nature of the RTO formulation
does not make use of such assumptions since it ignores the actual dynamic behavior of the closed loop
and only considers the RTO inputs (the tuning parameters) and RTO outputs (performance, proximity
to constraints), both of which are static quantities with a static map between them. As such, the
methodology applies just as readily to nonlinear systems as it does to linear ones.

There are, however, points to be contested. The key linking element between RTO and ICT is
Assumption 1, which is, at best, only an approximation and merits justification. The driving force
behind this assumption is the fact that any deterministic controller with fixed tuning parameters, when
applied repeatedly to a closed-loop process to perform the same control task, should always yield the
exact same performance (and the exact same input/output trajectories) in the absence of non-repeatable
effects such as input/measurement noise, process degradation and disturbances. Indeed, the absence
of such effects implies that the δk term in Equation (3) is equal to zero and that the repeatability
assumption holds exactly. For cases when these effects are minor and do not influence controller behavior
significantly, we expect that a given controller will yield the same performance “more or less”, with
variations being lumped into δk and the major deterministic trends being described by J . This neat way
of decoupling the deterministic and stochastic components may not be valid when the non-repeatable
effects become large and exert a significant influence on the controller behavior, however. As such, we
may view this assumption as an approximation of reality that tends to perfection as the magnitude of the
noise/degradation/disturbances in the closed-loop system tends to zero.

There is, as well, the issue of stability. Even with the direct incorporation of constraints in the RTO
problem formulation (e.g., via Equations (12) or (13)), there is no true way to incorporate a real constraint
on closed-loop stability, as stability is not a real-numbered value that can be measured following a
closed-loop experiment (if it were, it would be trivial to include it as an uncertain constraint in Gp).
Unfortunately, this is a much bigger problem that is not limited to just ICT—one cannot, for the general
unknown plant, ever guarantee stability via any means without making additional assumptions on the
nature of the plant. The bright side is that any of the standard stability-guaranteeing methods are easily
incorporated into the RTO formulation as certain constraints, G, and may be used to limit the adaptations
to those controllers that are at least nominally stable. Other workarounds could also be proposed—if the
fear of having an unstable closed-loop system stems from having some control output leave its safe
operating range, then one could simply introduce an output constraint on that quantity, which, as already
shown, is easily integrated into the RTO formulation as Gp.

3. The SCFO Solver and Its Configuration

Having now presented the formulation of the ICT problem as an RTO one, we go on to describe how
Problem (1) may be solved. Although (1) is posed like a standard optimization problem, the reader is
warned that it is experimental in nature and must be solved by iterative closed-loop experiments on the
system—i.e., one cannot simply solve (1) by numerical methods, since evaluations of functions ϕp and
Gp require experiments. A variety of RTO (or “RTO-like”) methodologies, all of which are appropriate
for solving (1), have been proposed over the years and may be characterized as being model-based (see,
e.g., [24–27]), model-free [28,29], or as hybrids of the two [30,31]. In this work, we opt to use the

Processes 2013, 1 212

SCFO solver recently proposed and released by the authors [15–17], as it is the only tool available to
theoretically guarantee that:

• the RTO scheme converges arbitrarily close to a Karush-Kuhn-Tucker (KKT) point that is, in the
vast majority of practical cases, a local minimum,
• the constraints Gp(v) ≼ 0 and G(v) ≼ 0 are never violated,
• the objective value is consistently improved, with ϕp(vk+1) < ϕp(vk) always,

with these properties enforced approximately in practice.
The basic structure of the solver may be visualized as follows:

Solver

Configurationy
SCFO Solver ←− Measurementsy

vk+1

where the majority of the configuration is fixed once and for all, while the measurements act as the true
iterative components, with the full set of measured data being fed to the solver at each iteration, after
which it does all of the necessary computations and outputs the next RTO input to be applied. This is
illustrated for the ICT context in Figure 3 (as an extension of Figure 1).

The natural price to pay for such simplicity of implementation is, not surprisingly, the complexity of
configuration. Table 1 provides a summary of all of the configuration components, how they are set, and
the justifications for these settings. Noting that most of these settings are relatively simple and do not
merit further discussion, we now turn our focus to those that do.

Figure 3. The iterative tuning scheme, where the results obtained after each closed-loop
experiment on the plant (denoted by the dashed lines) are sent to the RTO loop (denoted by
the dotted box), which then appends these data to previous data and uses the full data set to
prompt the SCFO solver, as well as to update any data-driven adaptive settings (we refer the
reader to Table 1 for which settings are fixed and which are adaptive).

()cG ρ

ρ

Plant
+

−

SCFO Solver

1: k+= v

Calculation of

Performance and

Constraint Values

Augment

Data Set

ˆ ()p kφ v ˆ ()p kG v

0
ˆ (),...,pφ v ˆ ()p kφ v

Adaptive

Settings

Fixed

Settings

k

0
ˆ (),...,pG v ˆ ()p kG v

t

()refy t (, ρ)e t (, ρ)u t (, ρ)y t

(, ρ)y t

k k k

k

k

1k+

v0 ,...,vk

: 1k k= +

ρ
k

Processes 2013, 1 213

Table 1. Summary of SCFO configuration settings for the ICT problem.

Solver Setting Chosen As Justification Type

Initialization nρ + 1 closed-loop experiments See Section 3.1 –

Optimization target Scaled gradient descent See Section 3.2 Adaptive

Noise statistics Initial experiments at ρ0 See Section 3.3 Fixed

Constraint concavity None assumed No reason for assuming this
property in ICT context

Fixed

Constraint relaxations None assumed For simplicity (should be added
if some constraints are soft)

Fixed

Cost certainty Cost function is uncertain The performance metric is an
unknown function of ρ

Fixed

Structural assumptions Locally quadratic structure Recommended choice for
general RTO problem [17]

Fixed

Minimal-excitation radius 0.01
(
ρU1 − ρL1

)
Recommended choice for
general RTO problem [17]

Fixed

Lower and upper limits, vL

and vU

Controller-dependent or set
adaptively

See Section 3.4 Fixed/Adaptive

Lipschitz and quadratic
bound constants

Initial data-driven guess
followed by adaptive setting

See Section 3.5 Fixed/Adaptive

Scaling bounds Problem-dependent; easily
chosen

See [17] Fixed

Maximal allowable adapta-
tion step, ∆vmax

0.1
(
ρU − ρL

)T Recommended choice for
general RTO problem [17]

Fixed

3.1. Solver Initialization

Prior to attempting to solve Problem (1), it is strongly recommended that the problem be well-scaled
with respect to both the RTO inputs and outputs. For the former, this means that:

vU1 − vL1 ≈ vU2 − vL2 ≈ ... ≈ vUnv
− vLnv

≈ 1

where “≈” may be read as “on the same order of magnitude as”. For the RTO outputs, it is advised that
both the cost and constraint functions are such that their values vary on the magnitude of 100. Once this
is done, one may proceed to initialize the data set.

As the solver needs to compute gradient estimates directly from measured data, it is usually needed
to generate the nv + 1 measurements (whose corresponding RTO input values should be well-poised for
linear regression) necessary for a rudimentary (linear) gradient estimate (see, e.g., [25,32]). In the case
that previous measurements are already available (e.g., from experimental studies carried out prior to
optimization), one may be able to avoid this step partially or entirely.

We will, for generality, assume the case where no previous data are available. We will also assume that
the initial point, v0 := ρ0, has been obtained by some sort of controller design technique. In addition,

Processes 2013, 1 214

we require that the initial design satisfy Gp(v0) ≺ 0, G(v0) ≺ 0, and vL ≺ v0 ≺ vU—this is expected
to hold intrinsically, since one would not start optimizing performance prior to having at least one design
that is known to meet the required constraints with at least some safety margin. The next step is then to
generate nv additional measurements, i.e., to run nv (nρ) closed-loop experiments on the plant.

A simple initialization method would be to perturb each controller parameter one at a time, as this
would produce a well-poised data set with sufficient excitation in all input directions, thereby making the
task of estimating the plant gradient possible. However, such a scheme could be wasteful, especially for
ICT problems with many parameters to be tuned. One alternative would be to use smart, model-based
initializations [25], but this would require having a plant model. In the case of no model, we propose to
use a “smart” perturbation scheme that attempts to begin optimizing performance during the initialization
phase, and refer the reader to the appendix for the detailed algorithm.

3.2. The Optimization Target

The target, v∗
k+1, represents a nominal optimum provided by any standard RTO algorithm that is

coupled with the SCFO solver and, as such, actually represents the choice of algorithm. This choice is
important as it affects performance, with some of the results in [16] suggesting that coupling the SCFO
with a “strong” RTO algorithm (e.g., a model-based one) can lead to faster convergence to the optimum.
However, the choice is not crucial with respect to the reliability of the overall scheme, and so one does
not need to be overly particular about what RTO algorithm to use, but should prefer one that generally
guides the adaptations in the right direction.

For the sake of simplicity, the algorithm adopted in this work is the (scaled) gradient descent with a
unit step size:

v∗
k+1 = vk −H†

k∇ϕ̂p(vk) (14)

where both Hk and∇ϕ̂p(vk) are data-driven estimates. We refer the reader to the appendix for how these
estimates are obtained.

3.3. The Noise Statistics

Obtaining the statistics (i.e., the probability distribution function, or PDF) for the stochastic error
terms δ in Equations (3) and (7) is particularly challenging in the ICT context. One reason for this is
that these terms do not have an obvious physical meaning, as both Equations (3) and (7), which model
the observed performance/constraint values as a sum of a deterministic and stochastic component, are
approximations. Furthermore, even if this model were correct, the actual computation of an accurate
PDF would likely require a number of closed-loop experiments on the plant that would be judged as
excessive in practice.

As will be shown in the first two case studies of Section 4, some level of engineering approximation
becomes inevitable in obtaining the PDF for an experimental system. The basic procedure advocated
here is to carry out a certain (economically allowable) number of repeated experiments for v0 := ρ0

prior to the initialization step. In the case where each experiment is expensive (or time consuming) and
the total acceptable number is low, one may approximate the δ term by modeling the observed values by
a zero-mean normal distribution with a standard deviation equal to that of the data. If the experiments

Processes 2013, 1 215

are cheap and a fairly large number (e.g., a hundred or more) is allowed, then the observed data may be
offset by its mean and then fed directly into the solver (as the solver builds an approximate PDF directly
from the fed noise data).

3.4. Lower and Upper Input Limits

Providing proper lower and upper limits vL and vU can be crucial to solver performance. As already
stated, for the ICT problem these are simply vL := ρL and vU := ρU , but, as these values may not be
obvious for certain controller designs, the user may use adaptive limits that are redefined at each iteration
k:

ρL
k := ρk − 0.5

ρU
k := ρk + 0.5

(15)

As the solver can never actually converge to an optimum that touches these limits, the resulting problem
is essentially unconstrained with respect to them, thereby allowing us to configure the solver without
affecting the optimality properties of the problem. We note that, while one could use very conservative
choices and not adapt them (e.g., ρL := −1,000 and ρU := 1,000), this is not recommended as it
would introduce scaling issues into the solver’s subroutines.

3.5. Lipschitz and Quadratic Bound Constants

The solver requires the user to provide the Lipschitz constants (denoted by κ) for all of the functions
ϕp, Gp and G. These are implicitly defined as:

κϕ,i <
∂ϕp

∂vi

∣∣∣
v
< κϕ,i, κp,i <

∂gp
∂vi

∣∣∣
v
< κp,i, κi <

∂g

∂vi

∣∣∣
v
< κi

for all v ∈ {v : vL ≼ v ≼ vU}. Quadratic bound constants (denoted by M) on the cost function are
also required and are implicitly defined as:

M ij <
∂2ϕp

∂vi∂vj

∣∣∣
v
< M ij, ∀v ∈ {v : vL ≼ v ≼ vU}

For G, which is easily evaluated numerically, we note that the choice is simple since one can, in many
cases, compute these values prior to any implementation.

For κϕ,i, κp,i and Mij , the choice is a very difficult one. This is especially true for the ICT problem,
where such constants have no physical meaning, a trait that may make them easier to estimate for some
RTO problems [16]. When a model of the plant is available, one may proceed to compute these values
numerically for the modeled closed-loop behavior and then make the estimates more conservative (e.g.,
by applying a safety-factor scaling) to account for plant-model mismatch.

For the pure model-free case, we have no choice but to resort to heuristic approaches. As a choice of
κϕ,i, we thus propose the following (very conservative) estimate based on the gradient estimate for the
initial nv + 1 points (23):

κϕ,i, κϕ,i := ±10∥∇ϕ̂p∥∞, i = 1, ..., nv

Processes 2013, 1 216

as we expect these bounds to be valid unless ∥∇ϕ̂p∥∞ is small, which, however, would indicate that we
are probably close to a zero-gradient stationary point already and would have little to gain by trying to
optimize performance further if this point were a minimum.

A similar rule is applied to estimate κp,i, with:

κp,i, κp,i := ±2∥∇ĝp∥∞, i = 1, ..., nv

where the estimate∇ĝp is obtained in the same manner as in Equation (23). The choice of 2, as opposed
to 10, is made for performance reasons, as making κp,i too conservative can lead to very slow progress
in improving performance—this is expected to scale linearly, i.e., if the choice of ±2∥∇ĝp∥∞ leads to a
realization that converges in 20 runs, the choice of ±10∥∇ĝp∥∞ may lead to one that converges in 100.
Note, however, that this way of defining the Lipschitz constants does not have the same natural safeguard
as it does for the cost, and it may happen that ∥∇ĝp∥∞ ≈ 0 at the initial point even though the gradient
may be quite large in the neighborhood of the optimum. When this is so, an alternate heuristic choice is
to set:

κp,i, κp,i := ±2
−g

p

vUi − vLi
, i = 1, ..., nv

where g
p

denotes the smallest value that the constraint can take in practice, with g
p
≤ gp(v), ∀v ∈ {v :

vL ≼ v ≼ vU}. Combining the two, one may then use the heuristic rule:

κp,i, κp,i := ±2max

(
∥∇ĝp∥∞,

−g
p

vUi − vLi

)
, i = 1, ..., nv

However, it may still occur that this choice is not conservative enough. This lack of conservatism may
be proven if a given constraint, gp(v) ≤ 0, is violated for one of the runs, since sufficiently conservative
Lipschitz estimates will usually guarantee that this is not the case (provided that the noise statistics are
sufficiently accurate). As such, the following adaptive refinement of the Lipschitz constants is proposed
to be done online when/if the constraint is violated with sufficient confidence:

gp(vk) ≥ 3σg → κp,i := 2κp,i, κp,i := 2κp,i

where σg represents the estimated standard deviation of the non-repeatability noise term, δ, for gp.
For the quadratic bound constants M , which represent lower and upper bounds on the second

derivatives of ϕp, we propose to use the estimate of the Hessian, Hk, as obtained in Section 3.2 (see
Appendix), together with a safety factor, η, to define the bounds at each iteration k as:

M ij,M ij := Hk,ij ± η|Hk,ij| (16)

with η initialized as 1. Since such a choice may also suffer from a lack of conservatism, an adaptive
algorithm for η is put into place. Since a common indicator of choosing M values that are not
conservative enough is the failure to decrease the cost between consecutive iterations, the following
law is proposed for any iterations where the solver applied the SCFO conditions but increased (with
sufficient confidence) the value of the cost [17]:

• If ϕ̂p(vk)− 4σϕ ≥ min
i=0,...,k−1

ϕ̂p(vi), then set η := η + 1;

• otherwise, set η := η − 0.5, with η < 0→ η := 0,

Processes 2013, 1 217

where σϕ is the estimated standard deviation for the non-repeatability noise term in the measurement
of Jk. The essence of this update law is to make M more conservative (by increasing η) whenever the
performance is statistically likely to have increased in the recent adaptation and to relax the conservatism
otherwise, though at only twice the rate that it would be increased. Such a scheme essentially ensures
that the M constants become conservative enough to continually guarantee improved performance with
an increasing number of iterations.

4. Case Studies

The proposed method was applied to four different problems, of which the first two are of
particular interest, as they were carried out on experimental systems and demonstrate the reliability
and effectiveness of the proposed approach when applied in settings where neither the plant nor the
non-repeatability noise terms are known. Of these two, the first represents a typical batch scenario
with fairly slow dynamics and time-consuming, expensive experiments for which an MPC controller
is employed (Section 4.1), while the latter represents a much faster mechanical system, where the
optimization of the controller parameters for a general fixed-order controller must be carried out quickly
due to real-time constraints, but where a single run is inexpensive (Section 4.2).

The last two studies, though lacking the experimental element, are nevertheless of interest as they
make a link with similar work carried out by other researchers (Section 4.3) and generalize the method
to systems of controllers with an additional challenge in the form of an output constraint (Section 4.4).
In both of these cases, we have chosen to simplify things by assuming to know the noise statistics of the
relevant δ terms and to let the repeatability assumption hold exactly.

In each of the four studies, we have used the configuration proposed in Section 3 and so will not
repeat these details here. However, we will highlight those components of the configuration that are
problem-dependent and will explain how we obtained them for each case.

4.1. Batch-to-Batch Temperature Tracking in a Stirred Tank

The plant in question is a jacketed stirred water tank, where a cascade system is used to control the
temperature inside the tank by having an MPC controller manipulate the setpoint temperature of the
jacket inlet, which is, in turn, tracked by a decoupled system of two PI controllers that manipulate the
flow rates of the hot and cold water streams that mix to form the jacket inlet (Figure 4). As this system is
essentially identical to what has been previously reported [33], we refer the reader to the previous work
for all of the implementation details.

Processes 2013, 1 218

Figure 4. Schematic of the jacketed stirred tank and the cascade control system used to
control the water temperature inside the tank. The reference (Fj,ref) for the water flow to the
jacket (Fj) was fixed at 2 L/min.

jT

T

TT DecouplerMPC
,j refT

hot water

FCFT

cold water

FCFT

,j refF

jF

As the task of tracking an “optimal” temperature profile is fairly common in batch processes and the
failure to do so well can lead to losses in product quality, a natural ICT problem arises in these contexts as
it is desired that the temperature stay as close to the prescribed optimal setpoint trajectory as possible. In
this particular case study, the controller that is tasked with this job is the MPC controller, whose tunable
parameters include:

• the output weight that controls the trade-off between controller aggressiveness and output tracking,
• the bias update filter gain, which acts to ensure offset-free tracking,
• the control and prediction horizons that dictate how far ahead the MPC attempts to look

and control,

all of which act to change the objective function at the heart of the MPC controller [33]. For this problem,
we decided to vary the output weight between 0.1 and 10 (i.e., covering three orders of magnitude) and
defined its logarithm as the first tunable variable, ρ1. Our reason for choosing the logarithm, instead of
the actual value, was due to the sensitivity of the performance being more uniform with respect to the
magnitude difference between the priorities given to controller aggressiveness and output tracking (e.g.,
changing the output weight from 0.1 to 1.0 was expected to have a similar effect as changing it from
1.0 to 10). The bias update filter gain, defined as the second variable ρ2, was forced to vary between 0
and 1 by definition. The control and prediction horizons, m and n, were both allowed to vary anywhere
between 2 and 50 and, as this variance was on the magnitude of 102, were divided by 100 so as to have
comparable scaling with the other parameters, with ρ3

∆
=m/100 and ρ4

∆
=n/100. We note as well that the

horizons were constrained to be integers, whereas the solver provided real numbers, and so any answer
provided by the solver had to be rounded to the nearest integer to accommodate these constraints.

As this system was fairly slow/stable and controller aggressiveness was not really an issue and as there
was no strong preference between using hot or cold water, the performance metric simply consisted of

Processes 2013, 1 219

minimizing the tracking error (i.e., the general metric in Equation (5) with λ1 := 1 and λ2 := λ3 :=

λ4 := 0) over a batch time of tb = 40 min. The setpoint trajectory to be tracked consisted of maintaining
the temperature at 52 ◦C for 10 min, cooling by 4 ◦C over 10 min, and then applying a quadratic cooling
profile for the remainder of the batch. Each batch was initialized by setting the jacket inlet to 55 ◦C and
starting the batch once the tank temperature rose to 52 ◦C.

The certain inequality constraint ρ3 ≤ ρ4 was enforced as this was needed by definition—see
Equation (9)—thereby contributing to yield the following ICT problem in RTO form:

minimize
ρ

1

J0

∫ 40

0

[Tref (t)− T (t,ρ)]2 dt

subject to ρ3 − ρ4 ≤ 0

−1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

0.02 ≤ ρ3 ≤ 0.50

0.02 ≤ ρ4 ≤ 0.50

}
ϕp(v)}
G(v) ≼ 0vL ≼ v ≼ vU

(17)

where we scaled the performance metric by dividing by its initial value (thereby giving us a base
performance metric value of 1, which was then to be lowered). We also note that in practice
measurements were collected every 3 s, and so the integral of the squared error was evaluated discretely.
The initial parameter set was chosen, somewhat arbitrarily, as ρ0 := [−0.7 0.5 0.3 0.3]T .

Prior to solving (17), we first solved an easier problem where ρ3 and ρ4 were fixed at their initial
values and only ρ1 and ρ2 were optimized over (these two parameters being expected to be the more
influential of the four):

minimize
ρ1,ρ2

1

J0

∫ 40

0

[Tref (t)− T (t, ρ1, ρ2)]
2 dt

subject to −1 ≤ ρ1 ≤ 1

0 ≤ ρ2 ≤ 1

}
ϕp(v)}
vL ≼ v ≼ vU

(18)

In order to approximate the non-repeatability noise term for the performance, a total of 8 batches were
run with the initial parameter set ρ0, with the (unscaled) performance metric values obtained for those
experiments being: 13.45, 13.31, 13.46, 14.25, 13.80, 13.44, 13.72 and 13.98 (their mean then being
taken as the scaling term, J0). Rather than attempt to run more experiments, which, though it could have
improved the accuracy of our approximation, would have required even more time (each batch already
requiring 40 min, with an additional 20–30 min of inter-batch preparation), we chose to approximate
the statistics of the non-repeatability noise term by a zero-mean normal distribution with the standard
deviation of the data, i.e., 0.32.

The map of the parameter adaptations and the values of the measured performance metric are given
in Figure 5, with a visual comparison of the tracking before and after optimization given in Figure 6.
It is seen that the majority of the improvement is obtained by about the tenth batch, with only minor
improvements afterwards, and that monotonic improvement of the control performance is more or
less observed.

Processes 2013, 1 220

Figure 5. The parameter adaptation plot (left) and the measured performance metric (right)
for the solution of Problem (18). Hollow circles on the left indicate batches that were carried
out as part of the initialization (prior to applying the solver). Likewise, the dotted vertical
line on the right shows the iteration past which the parameter adaptations were dictated by
the SCFO solver.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ρ
1
 (Logarithm of Output Weight)

ρ
2
 (

B
ia

s
F

il
te

r
G

a
in

)

0 5 10 15 20
2

4

6

8

10

12

14

16

Batch Number

J
k
 (

u
n

sc
a

le
d

)

SCFO

Figure 6. The visual improvement in the temperature profile tracking from Batch 1 to
Batch 20. The dotted (red) lines denote the setpoint, while the solid (black) lines denote
the actual measured temperature.

0 10 20 30 40
40

42

44

46

48

50

52

54

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
°
C

)

0 10 20 30 40
40

42

44

46

48

50

52

54

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
°
C

)

Batch 1 Batch 20

We also note that the solution obtained by the solver is very much in line with what an engineer
would expect for a system with slow dynamics such as this one, in that one should increase both the
output weight so as to have better tracking and set the bias update filter gain close to its maximal value
(both of these actions could have potentially negative effects for faster, less stable systems, however).
As such, the solution is not really surprising, but it is still encouraging that a method with absolutely no
knowledge embedded into it has been able to find the same in a relatively low number of experiments. It
is also interesting to note that the non-repeatability noise in the measured performance metric originally

Processes 2013, 1 221

puts us on the wrong track, as increasing the bias update filter gain does not improve the observed
performance for Batch 1, though it probably should, and so the solver then spends the first 6 adaptations
decreasing the bias filter gain in the belief that doing so should improve performance. However, it is able
to recover by Batch 7 and to go in the right direction afterwards—this is likely due to the internal gradient
estimation algorithm of the solver having considered all of the batches and having thereby decoupled the
effects of the two parameters.

Problem (17) was then solved by similar means, though we used all of the data obtained previously
to help “warm start” the solver. As the results were similar to what was obtained for the two-parameter
case, we only give the measured performance metric values and the temperature profile at the final batch
in Figure 7. We also note that the parameter values at the final batch were ρ30 = [0.89 0.95 0.07 0.12]T ,
from which we see that, while all four variables were clearly adapted and the solver chose to lower
both the control and prediction horizons, any extra performance gains from doing this (if any) appear to
have been marginal when compared to the simpler two-parameter problem. This is also in line with our
intuition (i.e., that the output weight and bias filter gain are more important) and reminds us of a very
important RTO concept: just because one has many variables that one can optimize over does not mean
that one should, as RTO problems with more optimization variables are generally expected to converge
slower and, as seen here, may not be worth the effort.

Figure 7. The measured performance metric for the solution of Problem (17), together with
the tracking obtained for the final batch.

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

Batch Number

J
k
 (

u
n

sc
a

le
d

)

SCFO

0 10 20 30 40
40

42

44

46

48

50

52

54

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
°
C

)

Batch 30

4.2. Periodic Setpoint Tracking in a Torsional System

In this study, we consider the three-disk torsional system shown in Figure 8 (the technical details of
which may be found in [34]). Here, the control input is defined as the voltage of the motor located near
the bottom of the system, with the control output taken as the angular position of the top disk.

Processes 2013, 1 222

Figure 8. The ECP 205 torsional system.

output

input

To define an ICT problem, we generalize the idea of a “run” or a “batch” as seen in the previous
example and consider, instead, a “window” of a periodic sinusoidal trajectory defined by:

yref (t) = −2 cos
πt

6
with t given in seconds. As the same trajectory is repeated every 12 s, we can essentially consider each
12-second window as a “run” (or a “batch”), as shown in Figure 9, and adapt the relevant controller
parameters in the sampling time period between two consecutive windows.

Figure 9. The generalization of “run-to-run” tuning to a system with a periodic setpoint
trajectory. Only the setpoint is given here.

0 6 12 18 24 30 36 42 48 54
−3

−2

−1

0

1

2

3

Time (seconds)

P
o

si
ti

o
n

 o
f

T
o

p
 D

is
k

 (
R

a
d

ia
n

s)

Run 0 Run 1 Run 2 Run 3

Not surprisingly, this presents a computational challenge, as the sampling time for this system is only
60 ms, which is, with the current version of the solver, insufficient—the solver needing at least a few

Processes 2013, 1 223

seconds to provide a new choice of parameters. While a much simpler implementation that satisfies
this real-time constraint has already been successfully carried out on the same system [20], we choose
to apply the methodology presented in this paper by using a wait-and-synchronize approach. Here, the
solver takes all of the available data and starts its computations, with no adaptation of the parameters
being done until the solver’s computations are finished. Afterwards, the solver waits until these new
parameters are applied and the results for the corresponding run obtained, after which the new data is
fed into the solver and the cycle restarts. The noted drawback of this approach is that we have to wait,
on average, 2–3 runs (24–36 s) for an adaptation to take place, although the positive side of this is that
the resulting data is generally less noisy due to the repeated experiments.

The controller employed is the discrete fixed-order controller given in Equation (10), with the
numerator and denominator coefficients being the (five) tuned parameters. The performance metric
used is, again, a case of the general metric (5), but this time equal priority is given to tracking, controller
aggressiveness, and the smoothness of the output trajectory, with λ1 := λ3 := λ4 := 1 and λ2 := 0.

As the poles of the controller are also being adapted (due to the adaptation of the denominator
coefficients), controller stability constraints, as already derived in Equations (11) and (12), are added
to the ICT problem (with a tolerance of ε := 0.01):

|ρ5| − 0.99 ≤ 0

|ρ4 − ρ4ρ5| − |1− ρ25|+ 0.01 ≤ 0

and are recast into differentiable form (as the solver requires G to be differentiable):

ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

where we have used |ρ5| ≤ 0.99⇒ |1− ρ25| = 1− ρ25 in the reformulation of the second set.
The adaptive limits of Equation (15) are used to constrain the individual parameters, thereby leading

to the (adaptive) ICT-RTO problem:

minimize
ρ

1

100

∫ 12

0

(
[yref (t)− y(t,ρ)]2 + u̇2(t,ρ) + ẏ2(t,ρ)

)
dt

subject to ρ5 − 0.99 ≤ 0

−ρ5 − 0.99 ≤ 0

ρ4 − ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

−ρ4 + ρ4ρ5 − (1− ρ25) + 0.01 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

}
ϕp(v)G(v) ≼ 0


vL ≼ v ≼ vU

(19)

where we scale the performance metric by 102 so as to make it vary on the magnitude of 100.

Processes 2013, 1 224

An initial parameter set of ρ0 := [1.00 2.77 − 2.60 1.00 0.50]T was chosen and corresponds to an
ad hoc initial design found by a mix of both simulation and hand tuning. To estimate the noise statistics
of the non-repeatability noise term in the performance metric, the system was operated at ρ0 for 20 min,
which produced a total of 100 performance metric measurements (see Figure 10). These were then offset
by their mean to generate the estimated noise samples, with the latter being fed directly into the solver,
which would then build an approximate distribution function for them.

Problem (19) was solved a total of three times for 20 min of operation (100 runs), with the
performance improvements for the three trials given in Figure 11 and the visual improvement for the
middle case (“middle” with regard to the final performance metric value) given in Figure 12. We note
the variability in convergence behavior for the three cases (both in terms of speed and the performance
achieved after 100 runs), which was largely caused by the solver converging to different minima, but
note as well that all three follow the same “reliable” trend, in that performance is always improved with
a fairly consistent decrease in the metric value over the course of operation.

Figure 10. A twenty-bin histogram representation of the observed scaled performance metric
values for a hundred runs with the initial parameter set (Problem (19)).

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
0

2

4

6

8

10

12

14

16

Observed Scaled Performance Metric Value

N
u

m
b

e
r

o
f

O
b

s
e

rv
a

ti
o

n
s

Figure 11. Performance improvement over 100 runs of operation for three different trials
(dashed lines) of Problem (19).

0 20 40 60 80 100
0

0.5

1

1.5

2

Run

J
k
 (

sc
a

le
d

)

SCFO

Processes 2013, 1 225

Figure 12. Difference in control input and output profiles between the first and final runs of
Problem (19), with the dashed green line used to denote the input (motor voltage) values.

0 2 4 6 8 10 12

−2

−1

0

1

2

Time (sec)

y
(t

)

−0.4

−0.2

0

0.2

0.4

1188 1190 1192 1194 1196 1198 1200

−2

−1

0

1

2

Time (sec)

y
(t

)

−0.4

−0.2

0

0.2

0.4

u
(t

)

u
(t

)

Run 0 Run 100

4.3. PID Tuning for a Step Setpoint Change

We consider the problem previously examined in [13,18], where the parameters of a PID controller
are to be tuned for the closed-loop system given by:

Y (s) =
Gref (s)Gp(s)

1 +Gy(s)Gp(s)
Yref (s)

with the PID parameters Kp, τI , and τD being used to define Gref (s) and Gy(s) as:

Gref (s) = Kp

(
1 +

1

τIs

)
Gy(s) = Kp

(
1 +

1

τIs
+ τDs

)
and Gp(s) being the plant, whose definition will be varied for study purposes. The case of a setpoint
step change (Yref (s) = 1/s) is considered, with only the tracking error to be minimized over a “masked”
operating length, where a mask of tm is applied so as not to penalize for errors on the interval t ∈ [0, tm],
as proposed in [18].

Since the controller gain, Kp, is expected to vary on a magnitude of about 100, it does not need
scaling and so we define ρ1

∆
=Kp. For both τI and τD we assume the possibility of greater variations,

on the magnitude of 101 (as has been suggested in both [13,18]), and thus define the scaled second and
third parameters as ρ2

∆
= τI/10 and ρ3

∆
= τD/10. Since we do not know a priori what ρL and ρU for a

PID controller should be, but do realize that both τI and τD should be positive, the adaptive definition of
the lower and upper limits with the positivity constraints respected is chosen to yield the ICT problem in
RTO form:

minimize
ρ

1

J0

∫ tb

tm

[yref (t)− y(t,ρ)]2 dt

subject to ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

max(ρk,2 − 0.5, 0.01) ≤ ρ2 ≤ ρk,2 + 0.5

max(ρk,3 − 0.5, 0.01) ≤ ρ3 ≤ ρk,3 + 0.5

}
ϕp(v)vL ≼ v ≼ vU

(20)

Processes 2013, 1 226

where we scale the cost function by dividing by the performance metric value for the original
parameter set.

As done in [13], the original parameter set is chosen as the set found by Ziegler-Nichols tuning. The
following three studies are considered here:

Study 1 : Gp(s) =
1

1 + 20s
e−5s, tm := 10, tb = 100, ρ0 := [4.06 0.93 0.23]T

Study 2 : Gp(s) =
1

1 + 20s
e−20s, tm := 50, tb = 300, ρ0 := [1.33 3.10 0.65]T

Study 3 : Gp(s) =
1

(1 + 10s)8
, tm := 140, tb = 500, ρ0 := [1.10 7.59 1.90]T

So as to study the effect of non-repeatability noise, each observed performance metric value is
corrupted with an additive error fromN (0, (0.05J0)

2), i.e., by an additive error with a standard deviation
that is chosen as 5% of the original performance metric value (assumed known for solver configuration).
Noiseless scenarios were simulated as well.

Figure 13. Performance obtained by iterative tuning for both the noiseless (left) and noisy
(right) cases of Study 1 of Problem (20), with the solid blue line used to denote the “true”
performance of the closed-loop system and the green dashed line used to denote what is
actually observed (and provided to the solver). In both cases, the SCFO solver brings the
closed-loop performance metric value close to its global minimum of zero (marked by the
black dashed line in the lower plots).

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

Time

y
(t

)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

Time

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

SCFO

SCFO

0(,)y t ρ 0(,)y t ρ

100(,)y t ρ 100(,)y t ρ

Processes 2013, 1 227

Figure 14. Performance obtained by iterative tuning for Study 2 of Problem (20).

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

2

Time

y
(t

)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

2

Time

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

0(,)y t ρ 0(,)y t ρ

100(,)y t ρ 100(,)y t ρ

SCFO SCFO

Figure 15. Performance obtained by iterative tuning for Study 3 of Problem (20).

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

2

Time

y
(t

)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

2

Time

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

Run

0(,)y t ρ 0(,)y t ρ

100(,)y t ρ 100(,)y t ρ

SCFO SCFO

The results for the three studies are provided in Figures 13–15. On the whole, we see that the solver
reliably optimizes control performance in both the noiseless and noisy scenarios, even though we note
that the rate of improvement can vary from problem to problem. For the noisy cases, we generally see
more “bumps” in the convergence trajectory, which should not be surprising given (a) the added difficulty
for the solver in estimating local derivatives and (b) the reduced conservatism in the estimation of the
quadratic bound constants M , for which the safety factor η in Equation (16) is generally augmented less
frequently when noise is present. However, for the latter point, we see that there is an upside with regard
to convergence speed. Because the values of M tend to be less conservative in the presence of noise, the

Processes 2013, 1 228

algorithm tends to take larger steps and progresses quicker towards the optimum, as is witnessed in both
Figures 13 and 15. We do note the occasional danger of performance worsening due to tuning, but this
is almost always restricted to the earlier runs when the solver is relatively “data-starved”.

4.4. Tuning a System of PI Controllers for Setpoint Tracking and Disturbance Rejection

Here, we consider the following five-input, five-output dynamical system:

ÿ1(t) + ẏ1(t) + y1(t) = u1(t)− 0.033u3(t)− 0.067u4(t)− 0.1u5(t)

ÿ2(t) + 0.1ẏ2(t) + y2(t) = 0.1u1(t) + 2u2(t) + 0.033u3(t)− 0.033u5(t)

ÿ3(t) + 5ẏ3(t) + y3(t) = 0.167u1(t) + 0.133u2(t) + 3u3(t) + 0.067u4(t) + 0.033u5(t)

ÿ4(t) + 2ẏ4(t) + y4(t) = 0.233u1(t) + 0.2u2(t) + 0.167u3(t) + 4u4(t) + 0.1u5(t)

ÿ5(t) + 3ẏ5(t) + y5(t) = 0.3u1(t) + 0.267u2(t) + 0.233u3(t) + 0.2u4(t) + 5u5(t)

(21)

While the user cannot be assumed to know the plant (21), we will assume that they have been able to
properly decouple the system with the input-output pairings of ui → yi, i = 1, ..., 5 (as this is evidently
the superior choice if one considers the relative gains). A system of five PI controllers is used for
the pairings:

ui(t) = Kp,i

(
ei(t) +

1

τI,i

∫ t

0

ei(t)dt

)
, i = 1, ..., 5

which, of course, is not perfect, since the decoupling is not either, and so what one controller does will
inevitably affect the others.

The ICT problem that we define for this system consists of starting with all yi(0) = 0 and defining
the setpoints of y1, y3 and y5 as 1 (which makes this a tracking problem with respect to these outputs)
and the setpoints of y2 and y4 as 0 (which makes it a disturbance rejection problem with respect to these
two outputs). The total sum of squared tracking errors for all of the outputs is used as the performance
metric, with the interval of t ∈ [2, 15] being considered in the metric computation (a “mask” of 2 time
units being employed).

The first five tuning parameters are simply defined as the controller gains, with ρi
∆
=Kp,i, i = 1, ..., 5.

As in the previous example, we use a scaled version of the integral times to define the rest, with
ρi+5

∆
= τI,i/10, i = 1, ..., 5. Once again, as we do not know a priori what lower and upper limits should

be set on these parameters (save the positivity of the τI,i), adaptive inputs with the positivity limitation
(as shown in the previous case study) are used.

Furthermore, we suppose the existence of a safety limitation in the form of a maximal value that y1 is
allowed to take, with the constraint y1(t) ≤ 1.2 to be met at all times. Using the reformulation shown in
Section 2.2, we may proceed to state this problem in RTO form as:

Processes 2013, 1 229

minimize
ρ

1

J0

5∑
i=1

∫ 15

2

[yi,ref (t)− yi(t,ρ)]
2 dt

subject to y1,max(ρ)− 1.2 ≤ 0

ρk,1 − 0.5 ≤ ρ1 ≤ ρk,1 + 0.5

ρk,2 − 0.5 ≤ ρ2 ≤ ρk,2 + 0.5

ρk,3 − 0.5 ≤ ρ3 ≤ ρk,3 + 0.5

ρk,4 − 0.5 ≤ ρ4 ≤ ρk,4 + 0.5

ρk,5 − 0.5 ≤ ρ5 ≤ ρk,5 + 0.5

max(ρk,6 − 0.5, 0.01) ≤ ρ6 ≤ ρk,6 + 0.5

max(ρk,7 − 0.5, 0.01) ≤ ρ7 ≤ ρk,7 + 0.5

max(ρk,8 − 0.5, 0.01) ≤ ρ8 ≤ ρk,8 + 0.5

max(ρk,9 − 0.5, 0.01) ≤ ρ9 ≤ ρk,9 + 0.5

max(ρk,10 − 0.5, 0.01) ≤ ρ10 ≤ ρk,10 + 0.5

}
ϕp(v)}
Gp(v) ≼ 0

vL ≼ v ≼ vU

(22)

We note that this problem is a bit more challenging than the ones considered in the previous three
studies due to the increased number of tuning parameters, and point out that, were the problem
perfectly decoupled, we would be able to solve it as five two-parameter RTO problems in parallel.
However, seeing as all of the parameters are intertwined, we have no choice but to optimize over all ten
simultaneously—the expected price to pay being a slower rate of performance improvement obtained by
the solver. Alternate strategies that are based on additional engineering knowledge, such as optimizing
only the parameters of specific controllers or optimizing only the controller gains, could of course be
proposed and are highly recommended.

As a somewhat arbitrary design, the initial set is chosen as ρ0 := [2 2 2 2 2 1 1 1 1 1]T . Like with the
previous example, an additive measurement noise ofN (0, (0.05J0)

2) is added to corrupt the performance
metric value that is observed for a given choice of tuning parameters. An additive measurement noise
of N (0, 10−4) is added to corrupt the observed values of y1,max. Both sets of statistics are assumed
to be known for the purposes of SCFO solver configuration. As before, the noiseless scenarios are
also considered.

We present the results in Figure 16, which show that the solver is able to obtain significant
performance improvements within 50 iterations for both the noiseless and noisy cases without once
violating the output constraint on y1. In this case, we see that the noise has the effect of slowing down
convergence, which may be explained by the fact that the solver must take even more cautious steps so as
not to violate the output constraint. Additionally, the performance that is observed after 200 iterations is
a bit worse for the noisy case, which may be seen as being due to the back-off from the output constraint
being larger (to account for the noise).

Processes 2013, 1 230

Figure 16. Performance obtained by iterative tuning for the system of PI controllers in
Problem (22)—the noiseless case is given on the left and the noisy case on the right. For
the output profiles, we note that the initial profiles are given as dashed lines, with the final
profiles given by solid lines of the same color.

0 5 10 15
−0.5

0

0.5

1

1.5

Time

�
Z

(t
)

0 50 100 150 200
−0.5

0

0.5

1

1.5

Run

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

0 50 100 150 200

1

1.2

1.4

Run

M
a

xi
m

u
m

 V
a

lu
e

 o
f

y 1
(t

)

0(,)y t ρ
1

200(,)y t ρ
1

0 5 10 15
−0.5

0

0.5

1

1.5

Time

0 50 100 150 200
−0.5

0

0.5

1

1.5

Run

0 50 100 150 200

1

1.2

1.4

Run

200(,)y t ρ
1

0(,)y t ρ
1

SCFO SCFO

To test the effect of this constraint and to see if it is even necessary, we also run a simulation where the
constraint is lifted from the problem statement. The results for this study are given in Figure 17 and show
that not having the constraint in place certainly leads to runs where it is violated. This is not surprising,
given that a lot of the performance improvement is obtained by tracking the setpoint of y1 faster, which
is easier to do once there is no constraint on its overshoot. It is also seen that the performance obtained
after 200 iterations is generally better than what would be obtained with the constraint—this is, again,
not surprising, as removing a limiting constraint should allow for greater performance gains. We do
note that the noisy case is more bumpy without the constraint, which is expected, as there is less to limit
the adaptation steps and more “daring” adaptations become possible. While some of the bumps may be
quite undesired (particularly, the one noted just after the 150th run), the algorithm remains, on the whole,
reliable, as it keeps the performance metric at low values for the majority of the runs despite significant
noise corruption.

Processes 2013, 1 231

Figure 17. Performance obtained by iterative tuning for the system of PI controllers in
Problem (22) (without an output constraint).

0 5 10 15
−0.5

0

0.5

1

1.5

Time

�
Z

(t
)

0 50 100 150 200
−0.5

0

0.5

1

1.5

Run

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

0 50 100 150 200

1

1.2

1.4

Run

M
a

xi
m

u
m

 V
a

lu
e

 o
f

y 1
(t

)

0 5 10 15
−0.5

0

0.5

1

1.5

Time

0 50 100 150 200
−0.5

0

0.5

1

1.5

Run

0 50 100 150 200

1

1.2

1.4

Run

0(,)y t ρ
1

200(,)y t ρ
1 200(,)y t ρ

1

0(,)y t ρ
1

SCFO SCFO

5. Concluding Remarks

The goal of this paper has been to propose the idea of posing the iterative controller tuning (ICT)
problem in the real-time optimization (RTO) framework, and it has been shown how one can easily
formulate most ICT problems as RTO ones with the use of a repeatability assumption that, though only
an approximation of reality in the presence of noise, disturbances, or degradation, appears to suffice for
application purposes (at least, in the two experimental case studies considered here). A major advantage
of this reformulation is that a number of previously unaddressed challenges in ICT, the majority of
which take the form of constraints in the performance metric minimization problem, may be addressed
in a fairly straightforward manner. To make the message more concrete, we have also shown how the
ICT problem may be solved by the SCFO real-time optimization solver and have provided the reader
with the necessary solver settings to do so. Four case studies have shown the method to work very well
for a diverse range of problems.

Though we hope to have convinced the reader that the method proposed makes for a strong candidate
for solving general ICT problems in practice, its potential drawbacks should be clear:

Processes 2013, 1 232

• No solution has been proposed for how to treat the case where the repeatability assumption is not
a good approximation of reality. Instead of hoping that the approximation suffices in practice, it
would be beneficial to propose alternatives that would still allow one to use the RTO framework to
deal with the problem. In particular, one could attempt to make the repeatability assumption on the
input and output trajectories rather than making it directly on the performance metric. This could
allow one to establish a closer link between the lack of repeatability and the input/output noise in
the control system.
• Although the proposed configuration has been shown to be largely successful here, many of the

elements involved still remain heuristic in nature. Either improving on these heuristics or finding
ways to avoid them are desired.
• The method is currently limited to solving ICT problems where the control task remains the

same, which may significantly limit its domain of applicability. It would be interesting to
attempt to extend it to cases where the control tasks were similar, rather than identical, and then
somehow penalize the method based on the degree of similarity (e.g., one could attempt to lump
non-similarity into the noise element δ of the repeatability assumption).

We finish by noting that an abstract advantage of the RTO-ICT formulation is that we are now
able to attack the ICT problem from two directions—that of control and that of RTO. For the former,
we note that the proposed method applies very few control principles (unlike other direct tuning
methods [9,10], which make heavy use of control theory). While this is, in some sense, an advantage—as
it allows us to use the proposed method to tune almost any controller for almost any system—there
is undoubtedly something lost due to the “black-box veil” that the RTO formulation places on the
problem, and incorporating additional knowledge for specific controllers would very likely allow for
further improvements to the techniques discussed here. At the same time, the RTO methods themselves
are in a fairly nascent stage theoretically. Many improvements to both RTO theory and solution methods
are expected to appear in the coming years, which could only improve on the results presented here and
make the solution of the ICT problem both faster and more reliable.

Acknowledgments

The authors would like to acknowledge Fernando Fraire Tirado for having contributed to the birth and
development of the idea of using RTO approaches to solve the iterative controller tuning problem via a
number of student projects, the results of which ultimately led to this publication. We would also like
to thank Christos Georgakis, Kyongbum Lee and Emily Edwards, as well as others at the Chemical and
Biological Engineering Department of Tufts University for allowing the first author to spend two weeks
there and to use the laboratory equipment to obtain the results for the first case study. Finally, we want
to thank Timm Faulwasser for several useful discussions.

Conflicts of Interest

The authors declare no conflict of interest.

Processes 2013, 1 233

References

1. Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942,
64, 759–765.

2. Ogunnaike, B.A.; Ray, W.H. Process Dynamics, Modeling, and Control; Oxford University Press:
Oxford, UK, 1994; pp. 648–665.

3. Campi, M.C.; Lecchini, A.; Savaresi, S.M. Virtual reference feedback tuning: A direct method for
the design of feedback controllers. Automatica 2002, 38, 1337–1346.

4. Garriga, J.; Soroush, M. Model predictive control tuning methods: A review. Ind. Eng. Chem.
Res. 2010, 49, 3505–3515.

5. Burke, J.V.; Henrion, D.; Lewis, A.S.; Overton, M.L. HIFOO—A MATLAB Package for
Fixed-order Controller Design and H∞ Optimization. In Proceedings of the Fifth IFAC
Symposium on Robust Control Design, Toulouse, France, 5–7 July 2006.

6. Khatibi, H.; Karimi, A.; Longchamp, R. Fixed-order controller design for systems with polytopic
uncertainty using LMIs. IEEE Trans. Autom. Control 2008, 53, 428–434.

7. Landau, I.D.; Lozano, R.; M’Saad, M.; Karimi, A. Adaptive Control; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 11–18.

8. Hjalmarsson, H.; Gunnarsson, S.; Gevers, M. Optimality and Sub-optimality of Iterative
Identification and Control Design Schemes. In Proceedings of the American Control Conference,
Seattle, DC, USA, 21–23 June 1995; pp. 2559–2563.

9. Hjalmarsson, H.; Gevers, M.; Gunnarsson, S.; Lequin, O. Iterative feedback tuning: Theory and
applications. IEEE Control Syst. 1998, 18, 26–41.

10. Kammer, L.C.; Bitmead, R.R.; Bartlett, P.L. Direct iterative tuning via spectral analysis.
Automatica 2000, 36, 1301–1307.

11. Hjalmarsson, H. Iterative feedback tuning—An overview. Int. J. Adapt. Control Signal Process.
2002, 16, 373–395.

12. Karimi, A.; Mišković, L.; Bonvin, D. Iterative correlation-based controller tuning. Int. J. Adapt.
Control Signal Process. 2004, 18, 645–664.

13. Killingsworth, N.J.; Krstić, M. PID tuning using extremum seeking: Online, model-free
performance optimization. IEEE Control Syst. 2006, 26, 70–79.

14. Wang, Y.; Gao, F.; Doyle III, F.J. Survey on iterative learning control, repetitive control, and
run-to-run control. J. Process Control 2009, 19, 1589–1600.

15. Bunin, G.A.; François, G.; Bonvin, D. Sufficient conditions for feasibility and optimality of
real-time optimization schemes—I. Theoretical foundations. Available online: http://arxiv.org/
abs/1308.2620v1 (accessed on 12 August 2013).

16. Bunin, G.A.; François, G.; Bonvin, D. Sufficient conditions for feasibility and optimality of
real-time optimization schemes—II. Implementation issues. Available online: http://arxiv.org/
abs/1308.2625v1 (accessed on 12 August 2013).

17. Bunin, G.A.; François, G.; Bonvin, D. The SCFO Real-Time Optimization Solver: Users’ Guide
(version 0.9); Ecole Polytechnique Fédérale de Lausanne: Lausanne, Switzerland, 2013. Available
online: http://infoscience.epfl.ch/record/186672 (accessed on 1 June 2013).

Processes 2013, 1 234

18. Lequin, O.; Bosmans, E.; Triest, T. Iterative feedback tuning of PID parameters: Comparison with
classical tuning rules. Contr. Eng. Pract. 2003, 11, 1023–1033.

19. Bunin, G.A.; Fraire, F.; François, G.; Bonvin, D. Run-to-run MPC tuning via gradient descent.
Comput. Aided Chem. Eng. 2012, 30, 927–931.

20. Bunin, G.A.; François, G.; Bonvin, D. Iterative Controller Tuning by Real-time Optimization. In
Proceedings of the Dynamics and Control of Process Systems (DYCOPS), Mumbai, India, 2013.

21. Maciejowski, J.M. Predictive Control : With Constraints; Pearson: Essex, UK, 2002; pp. 1–32.
22. Gopal, M. Digital Control Engineering; New Age International: New Delhi, India, 1988;

pp. 79–81.
23. Åkerblad, M.; Hansson, A.; Wahlberg, B. Automatic Tuning for Classical Step-response

Specifications Using Iterative Feedback Tuning. In Proceedings of the 39th IEEE Conference
on Decision and Control, Sydney, Australia, 12–15 December 2000; Volume 4, pp. 3347–3348.

24. Jang, S.; Joseph, B.; Mukai, H. On-line optimization of constrained multivariable chemical
processes. AIChE J. 1987, 33, 26–35.

25. Brdys, M.; Tatjewski, P. Iterative Algorithms for Multilayer Optimizing Control; Imperial College
Press: London, UK, 2005.

26. Gao, W.; Engell, S. Iterative set-point optimization of batch chromatography. Comput. Chem.
Eng. 2005, 29, 1401–1409.

27. Marchetti, A.; Chachuat, B.; Bonvin, D. Modifier-adaptation methodology for real-time
optimization. Ind. Eng. Chem. Res. 2009, 48, 6022–6033.

28. Box, G.; Draper, N. Evolutionary Operation: A Statistical Method for Process Improvement; John
Wiley & Sons: Hoboken, NJ, USA, 1969.

29. Conn, A.; Scheinberg, K.; Vicente, L. Introduction to Derivative-Free Optimization; Cambridge
University Press: Cambridge, UK, 2009.

30. Alexandrov, N.; Dennis, J.; Lewis, R.; Torczon, V. A Trust Region Framework for Managing
the Use of Approximation Models in Optimization; Technical Report; Langley Research Center:
Hampton, VA, USA, 1997.

31. Myers, R.; Montgomery, D.; Anderson-Cook, C. Response Surface Methodology; John Wiley &
Sons: Hoboken, NJ, USA, 2009.

32. Marchetti, A.; Chachuat, B.; Bonvin, D. A dual modifier-adaptation approach for real-time
optimization. J. Process Control 2010, 20, 1027–1037.

33. Bunin, G.A.; Lima, F.V.; Georgakis, C.; Hunt, C.M. Model predictive control and dynamic
operability studies in a stirred tank: Rapid temperature cycling for crystallization. Chem. Eng.
Commun. 2010, 197, 733–752.

34. Educational Control Products. Manual for Model 205/205a: Torsional Control System; Educational
Control Products, 2008.

Processes 2013, 1 235

A. Appendix

A.1. Description of the Initialization Scheme

The algorithm used to initialize the SCFO solver is as follows:

1. Initialize P ∈ Rnv×nv as a diagonal matrix with P11 := 1 and all other elements set to 0. Set
k := 1. Define by ∆vpert ∈ Rnv

++ the perturbation vector, and set ∆vpert := ∆vmax.
2. Define vk := v0 +P∆vpert, and compute the following matrix:

∆V :=


(v0 − v1)

T

(v1 − v2)
T

...
(vk−1 − vk)

T


If the condition number of ∆V is greater than 50, re-define vk as vk := vk−1 +Rk∆vpert, where
Rk is a diagonal matrix of zeros with the sole kth diagonal element equal to 1.

3. Obtain the corresponding ϕ̂p(vk) := Jk by running a closed-loop experiment with the controller
parameters ρk := vk. Define:

∆Φ :=


ϕ̂p(v0)− ϕ̂p(v1)

ϕ̂p(v1)− ϕ̂p(v2)
...

ϕ̂p(vk−1)− ϕ̂p(vk)


and compute:

∇ϕ̂p := (∆V)† ∆Φ (23)

with † denoting the Moore-Penrose pseudoinverse.
4. Re-define P as a diagonal matrix with the diagonal elements set as:

Pii :=


1, ∇ϕ̂p,i ≤ 0 and i ≤ k

−1, ∇ϕ̂p,i > 0 and i ≤ k

1, i = k + 1

0, i > k + 1

where∇ϕ̂p,i denotes the ith element of ∇ϕ̂p.
5. Set k := k + 1. If k > nv, terminate. Otherwise, return to Step 2.

We make the following remarks:

• This scheme starts like the simple perturbation scheme, where only one parameter is perturbed
at a time (only ρ1 is perturbed for the first experiment), but adapts based on the results of the
perturbation. For example, if we see that setting ρ1,1 := ρ0,1+∆vpert,1 improves performance, then
we will maintain this perturbation while additionally perturbing ρ2 in the following experiment. On
the other hand, if we see that this perturbation leads to worse control performance, then we simply
negate it for the following experiment, with this experiment being defined by the perturbations
ρ2,1 := ρ0,1−∆vpert,1 and ρ2,2 := ρ0,2 +∆vpert,2. The (partial) linear estimate (23) of the gradient
acts as a guide in which directions to perturb.

Processes 2013, 1 236

• Due to the pseudo-inversion of ∆V, it follows that we also require an additional safeguard to
ensure that the matrix remains well-conditioned, as not doing this could lead to a poor estimate of
the gradient (assuming the inputs v to be well-scaled, which we do). Since the perturbation scheme
alone does not ensure this, an override is introduced, where only a single input is perturbed once
the condition number goes over a certain threshold (chosen here as 50). This essentially ensures
that the conditioning does not get any worse as it forces ∆V to be block diagonal.
• The choice of ∆vpert := ∆vmax is only a recommendation, as the recommended definition

for ∆vmax as given in Table 1 (i.e., 0.1(ρU − ρL)) tends to provide sufficient excitation
without perturbing “too far”. However, if there is a fear that applying perturbations of this size
will violate some of the problem constraints or destabilize the system, then ∆vpert should be
reduced accordingly.

A.2. Data-Driven Estimations of the Performance Gradient and Hessian

Estimates of the gradient and Hessian are obtained via response-surface modeling as follows:

• If k < 2nv + 1, fit a linear model to all of the available data:

ϕp(v) ≈ a0 +
nv∑
i=1

aivi

and define:

∂ϕ̂p

∂vi

∣∣∣
vk

:= ai, Hk,ij :=

{
0.5κϕ,i, i = j

0, i ̸= j

i.e., the gradient is estimated as the coefficients of the linear model, and the Hessian, in the absence
of more measurements, is defined as a diagonal matrix, whose diagonals are equal to half of the
Lipschitz constants of the cost (we note that κϕ,i = κϕ,i = −κϕ,i here—see Section 3.5 for how
these are chosen). The latter choice is justified as it (a) does not affect the relative scaling of the
different RTO input directions (the Lipschitz constants being equal for all inputs in this case—see
Section 3.5) and (b) yields a fairly small step size due to the expected conservatism of κϕ,i (which
may be desired, since ∇ϕ̂p(vk) is unlikely to be small for earlier runs). In the case where the
data are not well-poised for linear regression and the coefficients of the linear model are poorly
estimated, the following control step is applied to trim potentially bad estimates:

∂ϕ̂p

∂vi

∣∣∣
vk

> κϕ,i →
∂ϕ̂p

∂vi

∣∣∣
vk

:= κϕ,i

∂ϕ̂p

∂vi

∣∣∣
vk

< −κϕ,i →
∂ϕ̂p

∂vi

∣∣∣
vk

:= −κϕ,i

(24)

• If 2nv +1 ≤ k < 2nv +1+
∑nv−1

i=1 i, fit a diagonal quadratic model to the data (quadratic without
interaction terms):

ϕp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

aiiv
2
i

and define:

Processes 2013, 1 237

∂ϕ̂p

∂vi

∣∣∣
vk

:= ai + 2aiivk,i, Hk,ij :=

{
2aii, i = j

0, i ̸= j

where the trimming (24) is applied, as well as:

Hk,ij > 0.5κϕ,i → Hk,ij := 0.5κϕ,i

Hk,ij < −0.5κϕ,i → Hk,ij := −0.5κϕ,i

(25)

where the latter supposes a certain degree of “flatness” in ϕp by supposing that no second derivative
should ever be greater in magnitude than half of the maximal first derivative.
• If k ≥ 2nv + 1 +

∑nv−1
i=1 i, fit a full quadratic model to the data:

ϕp(v) ≈ a0 +
nv∑
i=1

aivi +
nv∑
i=1

nv∑
j=1

aijvivj

where aij = aji. Define:

∂ϕ̂p

∂vi

∣∣∣
vk

:= ai +
nv∑
j=1

aijvk,j, Hk,ij := 2aij

and apply the trimmings (24) and (25) if necessary.

We note that while this scheme is not guaranteed to generate a positive-definite Hessian, the
consequences of failing to do so are not expected to be very detrimental in our context, since the
optimization target is, again, only a guide and does not affect the general reliability of the solver.

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	The RTO Formulation of the Iterative Controller Tuning Problem
	The Cost Function p The Control Performance Metric
	The Uncertain Inequality Constraints Gp Safety and Economic Constraints
	The Certain Inequality Constraints G Controller Specifications and Stability Considerations
	The Box Constraints vL v vU Controller Parameter Limits
	The ICT Problem in RTO Form: Summary

	The SCFO Solver and Its Configuration
	Solver Initialization
	The Optimization Target
	The Noise Statistics
	Lower and Upper Input Limits
	Lipschitz and Quadratic Bound Constants

	Case Studies
	Batch-to-Batch Temperature Tracking in a Stirred Tank
	Periodic Setpoint Tracking in a Torsional System
	PID Tuning for a Step Setpoint Change
	Tuning a System of PI Controllers for Setpoint Tracking and Disturbance Rejection

	Concluding Remarks
	Conflicts of Interest
	Appendix
	Description of the Initialization Scheme
	Data-Driven Estimations of the Performance Gradient and Hessian

