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Abstract: This paper presents a study based on real plant data collected from chiller plants 
at the University of Texas at Austin. It highlights the advantages of operating the cooling 
processes based on an optimal strategy. A multi-component model is developed for the 
entire cooling process network. The model is used to formulate and solve a multi-period 
optimal chiller loading problem, posed as a mixed-integer nonlinear programming 
(MINLP) problem. The results showed that an average energy savings of 8.57% could be 
achieved using optimal chiller loading as compared to the historical energy consumption 
data from the plant. The scope of the optimization problem was expanded by including a 
chilled water thermal storage in the cooling system. The effect of optimal thermal energy 
storage operation on the net electric power consumption by the cooling system was studied. 
The results include a hypothetical scenario where the campus purchases electricity at 
wholesale market prices and an optimal hour-by-hour operating strategy is computed to use 
the thermal energy storage tank. 
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1. Introduction 

As global energy demand rises and climate change concerns grow ever larger, the importance of 
using energy more efficiently continues to increase. One method of improving energy efficiency of a 
complex process is to create an accurate system model, and then use optimization algorithms to 
determine more efficient operating strategies for the system. This is especially true of building 
systems, which consume nearly 40% of the primary energy in the United States [1]. 

Depending on a building’s heating ventilation and air conditioning (HVAC) system, a building may 
require heating and cooling year round. In the summer, air may be cooled to lower than required room 
temperatures in order to remove humidity, and then reheated to bring it back up to the desired 
temperature. In the winter, thermal zones in the middle of large buildings require cooling because  
they are not exposed to ambient conditions, thus, the thermal needs are driven by the internal gains of  
the zone. Chillers are generally used to meet building cooling needs, and boilers are often used to 
provide heating. 

Steady-state chiller models have been used extensively for a variety of chiller types and sizes. 
Chiller models can be based on first-principles [2,3] or on purely empirical relationships, such as 
neural networks [4]. Often, models developed for one chiller work for other chiller types. For example, 
in [5], the authors found that model equations developed for reciprocating and absorption chillers also 
worked very well for centrifugal chillers. Lee et al. [6] identified eleven different centrifugal chiller 
models that have been used in the literature: 

• Simple linear regression model 
• Bi-quadratic regression model 
• Multivariate polynomial regression model 
• Simpler multivariate polynomial regression model 
• DOE-2 model 
• Modified DOE-2 model 
• Gordon-Ng universal model (based on the evaporator inlet water temperature) 
• Gordon-Ng universal model (based on the evaporator outlet water temperature) * 
• Modified Gordon-Ng universal model 
• Gordon-Ng simplified model 
• Lee simplified model 

* This model is used in the current work. 

All necessary equations for each model are included in Lee et al. [6], thus, they will not be 
reproduced here. In comparing the different models against 2401 chiller datasets they find that most 
chiller models perform well under all scenarios, including the four Gordon-Ng models, which are the 
models considered in this paper. 

Chiller models have been used to determine the best operation conditions of a chiller. For example, 
Ng et al. [7] used a thermodynamic chiller model to determine the optimal operating points of a chiller. 
This allows chillers to operate more efficiently and can bring substantial savings in operating costs. It 
also has the potential to increase the chiller lifetime by avoiding operating regions that more quickly 
degrade the chiller. 
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Chillers can be used in conjunction with thermal energy storage (TES) to further improve system 
efficiency and reduce costs. Thermal energy storage is the storage of thermal energy (hot or cold) in 
some medium. Hot storage is used in applications such as district heating systems, where warm water 
is stored in large tanks, or in a concentrating solar power system, where solar energy is stored in the 
form of molten salts or synthetic oils. Cold storage is most commonly used for cooling buildings or 
district cooling networks where the cooling energy is stored as chilled water or ice. Thermal storage 
has been identified as a cost-effective way to reduce required thermal or electric equipment capacities 
(such as chillers or turbines) [8,9] and to reduce annual energy costs [10]. 

Table 1. Nomenclature. 

Symbol Description Units 
𝐷𝑖 Total cooling demand for ith hour kW 
𝐸𝑖 Amount of stored thermal energy at ith hour kWh 
𝐸𝑚𝑎𝑥 Maximum capacity of the TES tank kWh 
𝐿𝑗 Lower bound on the cooling load on jth chiller kW 
𝑃𝐴𝑈𝑋,𝑖𝑘 Power consumed by the auxiliary equipment at kth station at ith hour kW 
𝑃𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝑖𝑘 Total power consumed by kth chilling station at ith hour kW 
𝑃𝑖𝑗 Electric power consumption of the jth chiller at ith hour kW 
𝑅𝑚𝑎𝑥 Maximum charging/discharging rate of TES tank kW 
𝑇𝑐,𝑖
𝑖𝑛 Condenser water inlet temperature at ith hour K 

𝑇𝑒𝑜𝑢𝑡 Chilled water outlet temperature K 
𝑈𝑗 Upper bound on the cooling load on jth chiller kW 
𝑋𝑖𝑗 Cooling load on jth chiller at ith hour kW 
𝑀𝑐,𝑗 Condenser heat exchanger coefficient of the jth chiller W K−1 

𝑀𝑒,𝑗 Evaporator heat exchanger coefficient of the jth chiller W K−1 

𝑞𝑐,𝑗 Internal condenser heat loss rate in the jth centrifugal chiller kW 
𝑞𝑒,𝑗 Internal evaporator heat loss rate in the jth centrifugal chiller kW 
𝛾𝑖 Real-time market rate of electric energy at ith hour $/kWh 

𝛿𝑖𝑗 
Binary variable representing on or off status of jth chiller at ith hour by 
having the value of 0 or 1 respectively 

Dimensionless 

𝐶𝑂𝑃𝑖𝑗 Coefficient of performance of the jth chiller at ith hour Dimensionless 
𝐷𝐵𝑇𝑖 Dry bulb temperature at ith hour K 
𝑟 Number of cooling stations Dimensionless 
𝑚𝑘 Total number of chillers upto the kth station; 𝑚0 = 0,𝑚𝑟 = 𝑀 Dimensionless 
M Total number of chillers Dimensionless 
𝑛 Number of hours in the optimization horizon Dimensionless 
𝑅𝐻𝑖 Relative humidity at ith hour Dimensionless 
𝑊𝐵𝑇𝑖 Wet bulb temperature at ith hour K 
𝑆𝐿𝑖𝑘 Total cooling load at kth station at ith hour kW 
𝛼 Penalty coefficient $/kW 
Pdata Actual power consumed by the cooling system operation in a day MWh 

Popt Estimated power consumption by the cooling system operation in a day 
for the cooling load profile resulted from solving optimization MWh 
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Modeling and optimizing a system that has both a large number of chillers or boilers and TES  
leads to complex optimization problems with binary or integer variables. For example, Tveit et al. [11] 
optimized a system that included long-term thermal storage in a district heating system. The problem 
was solved as a multi-period mixed integer nonlinear program (MINLP). Söderman [12] considered 
the design and operation of a district cooling system with thermal energy storage in the form of cold 
water. He used linear models and was able to formulate and solve the problem as a mixed integer 
linear program (MILP). 

In this paper the cooling system of a large campus is modeled and optimal chilling loads are 
determined. As the modeling is based on real data, the optimal results are able to be benchmarked 
against an actual operating strategy in order to accurately assess the potential of the optimization 
scheme. The optimization formulation includes a penalty term to account for the cost of switching 
chillers on and off. Additionally, this paper is unique in that it also considers the benefits of using a 
thermal energy storage system to perform optimal load shifting in a wholesale electricity market using 
actual wholesale market prices. All the symbols used in this paper are defined in Table 1. 

2. System Overview 

The University of Texas at Austin (UT Austin) has its own independent cogeneration based power 
plant (see Figure 1 for process schematic), which generates power typically at about 6 ¢/kWh. 

Figure 1. Simplified schematic of the Hal C. Weaver power plant complex at the 
University of Texas at Austin. 

 

About a third of the power generated by the power plant is used by the cooling system; primarily by 
chillers, cooling towers, and pumps. UT Austin has a large district cooling network to meet the cooling 
demands of the entire campus. The cooling system includes three chiller plants (also called cooling 
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stations) and a four million gallon (15,100 m3) chilled water thermal energy storage tank. This tank has 
a storage capacity of 39,000 ton-hr (494 GJ). The tank can be filled with chilled water during the night 
and then discharged during the day when demand for cooling is highest. This cooling system serves 
over 160 buildings with approximately 17 million square feet (1.6 million m2) of space. The three 
active cooling stations are numbered as Station 3, Station 5, and Station 6 (Stations 1, 2, and 4 have 
either been decommissioned or are not currently in use). Each station includes three centrifugal 
chillers, a set of cooling towers, condenser water pumps, and chilled water pumps. Station 6 has 
variable frequency drives installed on all equipment. The chillers in any Station X are named as X.1, 
X.2, and X.3. 

3. Model Development of the Cooling System 

A multi-component model of the cooling system has been developed with the purpose of 
determining an expression for the power consumed by the cooling system in terms of several 
independent variables. These variables include the individual chiller loads, the ambient weather 
conditions and the chilled water temperature set point. The individual chiller loads are the decision 
variables in the optimal chiller loading (OCL) problem, as defined in the next section. The chilled 
water temperature set point (𝑇𝑒𝑜𝑢𝑡) is assumed at a constant value of 39 °F based on plant data. The 
ambient dry bulb temperature and relative humidity are variable. Hence, their forecasted estimates are 
used as model inputs for optimization. The following sub-sections describe the models used for 
different energy-consuming components of the cooling system. Each chiller is modeled individually 
based on the Gordon-Ng equation [5]. All auxiliary equipment in each station, i.e., the cooling towers 
and pumps, are lumped together for modeling purposes. Hence, there are nine chillers and three 
auxiliary equipment models.  

3.1. Chillers 

Chillers are responsible for providing chilled water to the 160 campus buildings. Hence they 
account for about 60% to 70% of the total cooling station power consumption. The UT Austin chiller 
plant, like most large-scale cooling systems, consists of several centrifugal electric chillers. Power 
consumption (Pij) by each chiller in the cooling network is modeled independently as a function of  
its cooling load (Xij) condenser water return temperature ( 𝑇𝑐,𝑖

𝑖𝑛)  and chilled water temperature  
setpoint (𝑇𝑒𝑜𝑢𝑡). Minimization of least squares is used to fit the plant data to the Gordon-Ng model 
(Equation (1)) [5] and estimate model parameters for each chiller. The parameters represented by 
symbols, 𝑞𝑒,𝑗, 𝑞𝑐,𝑗 , 𝑀𝑒,𝑗 and 𝑀𝑐,𝑗 , in Equation 1 are the four model parameters that are assumed to 
have different values for each chiller.  

Coefficient of performance (COPij) of a chiller is defined as the ratio of its cooling load to its  
power consumption. 



Processes 2013, 1 317 
 

 

1
𝐶𝑂𝑃𝑖𝑗

=  −1 +
𝑇𝑐,𝑖
𝑖𝑛

𝑇𝑒𝑜𝑢𝑡
+ �

1
𝑋𝑖𝑗

��
𝑞𝑒,𝑗𝑇𝑐,𝑖

𝑖𝑛

𝑇𝑒𝑜𝑢𝑡
− 𝑞𝑐,𝑗� + �

1
𝑋𝑖𝑗

� �
𝑞𝑒,𝑗

𝑀𝑐,𝑗𝑇𝑒𝑜𝑢𝑡
��

𝑞𝑒,𝑗 𝑇𝑐,𝑖
𝑖𝑛

𝑇𝑒𝑜𝑢𝑡
− 𝑞𝑐,𝑗�

+ �
𝑋𝑖𝑗
𝑇𝑒𝑜𝑢𝑡

�
𝑇𝑐,𝑖
𝑖𝑛

𝑇𝑒𝑜𝑢𝑡
�

1
𝑀𝑐,𝑗

+
1
𝑀𝑒,𝑗

�

+

𝑞𝑐,𝑗
𝑀𝑒,𝑗

+
𝑞𝑒,𝑗𝑇𝑐,𝑖

𝑖𝑛

𝑇𝑒𝑜𝑢𝑡𝑀𝑐,𝑗
+ �

𝑇𝑐,𝑖
𝑖𝑛𝑞𝑒,𝑗
𝑇𝑒𝑜𝑢𝑡

− 𝑞𝑐,𝑗� �
1
𝑀𝑐,𝑗

+ 1
𝑀𝑒,𝑗

�

𝑇𝑒𝑜𝑢𝑡
 

(1a) 

 𝑃𝑖𝑗 = 𝑋𝑖𝑗 ∗ �1
𝐶𝑂𝑃𝑖𝑗� �  (1b) 

Data from nine chillers were individually fitted to the above models. Table 2 shows the mean and 
range of absolute percentage errors for all nine chillers. Figure 2 shows the variation of the power 
consumed by chiller 6.1 both as predicted by the model and as measured by the plant. 

Table 2. Error analysis for centrifugal chiller modeling. 

Chiller Number Range of absolute error (%) Mean % absolute error 
3.1 0–6.18 1.41 
3.2 0–9.70 1.36 
3.3 0–30.08 2.25 
5.1 0–7.11 1.61 
5.2 0–6.5 0.99 
5.3 0–13.71 1.19 
6.1 0–23.02 1.34 
6.2 0–31.22 0.93 
6.3 0–3.17 0.64 

Figure 2. Electric power consumed by chiller 6.1 in the month of September–Model vs. data. 
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3.2. Auxiliaries 

Auxiliaries include the components of a chilling station other than chillers, i.e., cooling towers, 
chilled water pumps, and condenser water pumps. Each station has a number of auxiliary components 
to distribute the chilled and condenser water flow in the best way. The total cooling load at a station 
has great impact on the auxiliary power consumption and hence on the total station power consumption 
value. Therefore, to determine the optimal chiller loading on a campus level, it is important to model 
the auxiliary power consumption at each station as a function of ambient weather conditions and 
station load. As flow rates, pressures, and power consumption for each pump and cooling tower are not 
available, all auxiliary components in one station are lumped together and modeled as a single second 
order polynomial function (Equation (2a)). A second order polynomial is chosen in order to ensure a 
good model fit while keeping the model simple enough for optimization. For each station, a different 
set of model parameters (β1 to β10) is obtained by fitting the year round power consumption data 
collected at hourly time steps from the power plant historian. 

𝑃𝐴𝑈𝑋,𝑖𝑘 = 𝛽1,𝑘 + 𝛽2,𝑘 ∗ 𝐷𝐵𝑇𝑖 + 𝛽3,𝑘 ∗ 𝐷𝐵𝑇𝑖2 + 𝛽4,𝑘 ∗ 𝑅𝐻𝑖 + 𝛽5,𝑘 ∗ 𝑅𝐻𝑖2 + 𝛽6,𝑘 ∗ 𝑆𝐿𝑖𝑘 +
𝛽7,𝑘 ∗ 𝑆𝐿𝑖𝑘2 + 𝛽8,𝑘 ∗ 𝑆𝐿𝑖𝑘 ∗ 𝐷𝐵𝑇𝑖 + 𝛽9,𝑘 ∗ 𝐷𝐵𝑇𝑖 ∗ 𝑅𝐻𝑖 + 𝛽10,𝑘 ∗ 𝑅𝐻𝑖 ∗ 𝑆𝐿𝑖𝑘  (2a) 

 𝑆𝐿𝑖𝑘 = � 𝛿𝑖𝑗𝑋𝑖𝑗

𝑚𝑘

𝑗=𝑚(𝑘−1)+1

  (2b) 

By minimizing the sum of the squared error, the models show good agreement between the model’s 
predicted values and the data obtained from the plant (Figure 3), with Station 3 being the least accurate 
model with an average absolute error of less than ten percent. The mean and range of absolute 
percentage errors between the data and model predictions are shown in Table 3. 

Figure 3. Total power consumed by the auxiliary equipment in the cooling  
station 6–Model vs. data. 
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The total power consumption by a cooling station as a function of the cooling load distribution and 
ambient weather conditions is obtained by adding Equations (1) and (2): 

 𝑃𝑆𝑡𝑎𝑡𝑖𝑜𝑛,𝑖𝑘 = 𝑃𝐴𝑈𝑋,𝑖𝑘 + � 𝑃𝑖𝑗

𝑚𝑘

𝑗=𝑚(𝑘−1)+1

  (3) 

Table 3. Error analysis for auxiliary component modeling. 

Station Number Range of absolute error (%) Mean absolute error (%) 
3 0–40.81 9.96 
5 0–20.31 2.17 
6 0–23.67 6.98 

Total 0–26.48 5.85 

4. Multi-Period Cooling System Optimization 

The existing strategy for operating two out of the three chiller plants at UT Austin (plant 3 and  
plant 5), which do not have motors with variable speed drives, is based on heuristics and operators’ 
discretion drives, and hence may be suboptimal. Chiller plant 6 has variable speed drives (VSD) 
installed on all its equipment and the decisions regarding its chiller loads are based on equal marginal 
performance principal (EMPP) [13]. EMPP is an unconstrained gradient-based optimal control 
strategy. Therefore, the optimal chiller load values at an instant are expected to be dependent on the 
previous operating values of chiller loads. Moreover, the decision to turn chillers on and off is taken 
based on the rise and fall in cooling demand and not on the varying efficiencies of individual chillers. 

It is proposed in this paper that independent optimization problems solved at regular intervals  
with wisely chosen initial conditions and satisfying constraints should give better results for all  
chiller plants, as compared to the current operating strategy. The optimal chiller loading problem is 
formulated in two ways, as described in detail in the following subsections. First, it is solved as hourly 
independent steady state optimization problems where the cooling system is considered without any 
thermal storage. Next, the thermal storage is included as part of the cooling system, and the time span 
of one optimization problem is expanded to 24 h in order to take advantage of the flexibility to shift 
cooling loads.  

4.1. Cooling System Optimization without Storage 

Optimal chiller loading is solved as a multi-period static optimization problem. The objective of this 
problem is to minimize the total power consumed by the cooling system. This objective is achieved by 
optimizing the cooling load distribution among various chillers operating in parallel. There are two 
decision variables for each chiller—the individual chiller load and a binary variable defining the chiller 
state, i.e., on or off. Therefore, for a total of M chillers, the static optimization problem has 2M 
decision variables, half of which are binary. The optimization problem also includes an inequality 
constraint requiring the chillers to satisfy the total cooling load. Mathematically, the static optimization 
formulation for any ith hour can be represented with the following set of equations: 
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 𝑠. 𝑡.�𝛿𝑖𝑗𝑋𝑖𝑗

𝑀

𝑗=1

−  𝐷𝑖 ≥ 0  (4b) 

𝐿𝑗 ≤ 𝑋𝑖𝑗 ≤ 𝑈𝑗  ∀ 𝑖 ∈ {1, 2, … ,𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1, 2, … ,𝑀}  (4c) 

 𝛿𝑖𝑗 ∈ {0,1}  (4d) 

In Equation (4a), Pij and PAUX,ik are defined by Equations (1b) and (2a) respectively.  
For a system of M chillers, the total number of possible δij sets at a given time (constant i) is  

(2M − 1). For any fixed set of δij, the objective function can be written as quadratic programming (QP) 
formulation, i.e., in the form of the following equation, due to the nature of models. 

 𝑚𝑖𝑛
𝑋𝑖

𝑋𝑖𝑇𝐻 𝑋𝑖 + 𝐹𝑇𝑋𝑖  (5) 

The hessian of matrix H was verified to be positive definite for all possible cases. Hence, the 
optimization problem (Equation (4) with a fixed set of δij) was a non-linear convex formulation. It was 
solved for each of the (29 − 1 = 511) possible sets of δij in MATLAB using the sequential quadratic 
programming (SQP) algorithm to obtain a unique global solution always. The case resulting in the 
least value of the objective function was accepted as the optimal solution. The total time taken by the 
MATLAB algorithm in solving this QP for 511 cases in order to obtain the optimal solution varied 
between 1 and 2 s. 

4.2. Cooling System Optimization with Storage 

Another goal of this research is to determine the advantage of using thermal energy storage (TES) 
with a large scale cooling system. Thermal storage is used to shift cooling load between different hours 
of the day. The extra chilled water generated during a given low-demand hour is sent to the storage 
tank and is retrieved during a high-demand hour to satisfy the extra cooling demand. The use of TES 
gives flexibility to shift cooling load across time periods and, hence, to use the most efficient chillers 
more often and the least efficient chillers less often. The addition of storage also makes the 
optimization problem dynamic because the current state of the storage depends on previous states. 
Optimal operation of the cooling system with storage should lead to additional energy savings. 

Apart from savings on energy cost, the use of TES may benefit the chiller plant operation by 
flattening the cooling load profile over a day. Typically the total cooling load is at a lower level during 
the night and increases after sunrise and when occupants arrive on campus. After reaching a peak load, 
it again decreases in the evening. Depending on the fluctuations in the ambient temperature and 
building occupancy, this cooling load profile sometimes undergoes many fluctuations during the day 
(Figure 4). These fluctuations in the cooling load profile translate to frequent switching on and off of 
chillers, cooling towers, and pumps. There are energy losses or inefficiencies associated with the 
transient operation of chiller plant equipment. These losses are not accounted for while solving the 
static multi-period hourly chiller optimization problems, which are assumed to be independent from 
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each other. Fluctuations in the cooling load profile also cause greater wear on chillers in addition to 
heat losses. However, while solving an optimization problem with thermal energy storage, we can 
address the issue of frequent cold starts in plant operation by adding a penalty cost to the objective 
function. This penalty cost is proportional to the sum of absolute difference between the total plant 
cooling load values at any two consecutive hours. The proportionality constant α (referred to as the 
penalty coefficient) can have an arbitrary positive value. The penalty cost is added to the objective 
function to limit the amount of fluctuations in the cooling load profile in the optimal solution. Hence, it 
is expected to reduce the number of times any chiller is turned on or off. 

Figure 4. Hourly campus cooling load values (left axis) and ambient wetbulb temperature 
values (right axis) over 24 h period. This data is from 11 July 2012. It serves as an example 
for days with more than one maxima in the cooling load profile. 

 

Therefore, optimization with thermal energy storage aims at two improvements in the energy 
efficiency by reducing the energy cost associated with (a) operating the chillers; and (b) frequent  
cold starts. 

The optimization problem formulation for a time span over n hours can be represented 
mathematically as follows:  
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 𝐸1 = 𝐸0 = 0  (6c) 

 𝐸𝑖 ≥ 0,𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛  (6d) 

 𝐸𝑖 ≤ 𝐸𝑚𝑎𝑥,𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛  (6e) 

 𝐿𝑗 ≤ 𝑋𝑖𝑗 ≤ 𝑈𝑗  ∀ 𝑖 ∈ {1, 2, … ,𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1, 2, … ,𝑀}  (6f) 

 𝛿𝑖𝑗 ∈ {0,1}  (6g) 
An important thing to note is that the objective of this problem (Equation (6a)) is to minimize the 

total cost ($) of power. On the other hand, the objective of the optimization problem without storage 
(Equation (4a)) was to minimize the total power consumed (kWh) by the cooling system. 

This optimization problem is solved in two stages [14]. In the first stage, the total cooling load is 
optimally distributed among n discrete time periods (hours), while satisfying the cooling demand at 
each hour with the help of thermal energy storage. In the second stage, the cooling load on ith hour is 
optimally distributed among M independent chillers having different model characteristics, which is 
equivalent to the optimization problem without storage. Hence, the optimization problem with storage 
consists of n number of static optimization problems without storage. 

5. Results and Discussion 

This section discusses the optimization results from several different cases. The cooling process 
system optimization problem was solved for the duration of a year. The problem of optimization 
without storage was solved hourly while optimization with storage was solved daily. 

Hourly static optimization problems were solved for a year for the cooling system without storage. 
The model’s predicted optimal power consumption values were compared against real data collected 
from the UT chiller plants. The results predict energy savings as high as 40% for a single time step 
which is of one hour. The average energy savings over 8784 h of a year is predicted to be 8.57%. In an 
absolute sense, the static optimal chiller loading could save about 8.1 GWh (~$486,000) over the year 
in 2012. In the current operation, the cooling loads for six out of nine chillers (Stations 3 and 5) are 
determined based on operators’ discretion and some heuristics that are easy to follow but not based on 
optimal operation. The cooling loads for chillers in Station 6 are determined based on a gradient based 
control strategy [13], which is expected to converge at the nearest local minima. On the other hand,  
the proposed optimal chiller loading method is based on solving independent hourly optimization 
problems with deterministic models for individual components. Therefore, with a little computational 
effort and minimal capital investment, we are able to see significant savings in the energy consumption 
by the cooling system. 

With the objective of adding more degrees of freedom to the optimization, thermal energy storage 
was included in the system for the next study. Assuming n = 24, daily optimization problems were 
solved for a year for the cooling system with storage (i.e., a total of 366). At first, the problem was 
solved assuming an arbitrary constant price of electricity. This assumption eliminated the variable γi 
from the objective function expression. It also made the objective function equivalent to minimizing 
the total power consumption (kWh) in a day for the case when α = 0. Midnight was chosen to be the 
initial time for each problem after iterating over other possible initial times. The 24-h cooling load 
profiles are compared for two chosen days in the month of September, named as Day 1 and Day 2 
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(Figures 5 and 6 respectively). Figure 5 presents the comparison among various distributions of the 
optimal cooling load from the stage 1 of dynamic optimization, i.e., the redistribution of cooling load 
among several hours. Figure 6 presents similar results for Day 2, which has less frequent cooling load 
variations as compared to Day 1. For each day, the optimization problem was solved for different 
values for the penalty coefficient, α = 0, 0.1 and 0.5 $/kW. It is clearly visible from the Figures 5 and 6 
that the usage of thermal energy storage provides flexibility to shift cooling load across time and hence 
to opt for alternate cooling load profiles for a chosen time horizon (24 h in this case). This flexibility 
comes with the opportunities to save energy and/or to reduce fluctuations in the cooling load profile. 
These figures show various cooling load profiles for different optimization parameters, each profile 
independently satisfying the hourly cooling demand constraints. 

Figure 5. Cooling load distribution among 24 h (Day 1) from different optimization conditions. 

 

Figure 6. Cooling load distribution among 24 h (Day 2) from different optimization conditions. 
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Figure 7 compares the electricity consumption by the overall cooling system, as predicted by the 
proposed optimization strategies and as gathered from the historical data of the power plant. The 
comparison is done between the daily cost values of electricity. As a constant electricity price is 
assumed for this section, the electricity consumption is compared between the plant data and the 
optimization results with and without storage for a total of 366 data points over a year. Figure 7 
summarizes the results for the year by showing the system’s electricity consumption for 50 
representative days over the year. 

Figure 7. Comparison of power consumption values from plant data, static optimization 
and dynamic optimization.  

 

It can be observed from Figure 7, that solving OCL with storage does not seem to predict 
significant energy savings as compared to solving OCL without storage. The results from 366 days of 
the year 2012 predict a maximum of 6.3% of daily energy savings from using TES as compared to 
OCL without TES. On an average day, the usage of TES could save about 1.5% of energy consumed 
by the cooling system. This study does not take into account the heat losses associated with 
transporting chilled water to and from the storage tank. Hence, in reality the savings are expected to be 
less than the predictions from the above mentioned optimization study. This is in agreement with other 
work that has demonstrated minimal energy savings for TES in the Austin, Texas, climate [14]. As the 
wet bulb temperature is nearly constant during the summer time (the standard deviation of the wet bulb 
temperature from June through August is less than 2 °C), there is little opportunity to gain efficiency 
improvement through the shifting of loads. 

However, an interesting observation is made from the above results (Figures 5 and 6) about the 
effect of optimization on the reduced amount of fluctuations of cooling load profile over 24 h. It can be 
seen qualitatively that as α increases, the optimal use of thermal storage generates a closer to flat 
cooling load profile for the 24 h at no or negligible extra energy consumption. Therefore as the value 
of the penalty coefficient α is increased, the resultant optimal cooling load profile would require fewer 
events of turning chillers on or off. This effect is quantitatively studied for Day 1 (Figure 5). A 



Processes 2013, 1 325 
 

 

variable Ni is defined as the number of chillers operating during the ith hour. The difference between 
the values of Ni for any consecutive hours represents the number of turning on/off events occurring 
between those two hours. It is assumed that between any two hours, either some chillers are turned on 
(rise in cooling load) or some chillers are turned off (drop in cooling load) and not both. 

Table 4 and Figure 8 show the results from the abovementioned study for Day 1. The number of 
times a chiller is turned on or off over a period of 24 h is compared for different cooling load profiles 
resulting from different optimization parameters, i.e., the usage of TES and the penalty coefficient α. 
As α is increased, the penalty cost in the objective function due to the cooling load variation increases. 
Hence, the optimal cooling load profile seems to be more flat qualitatively and demonstrates less of  
a need to turn on/off chillers. As the introduction of the penalty coefficient moves the focus of 
optimization from minimizing the energy consumption, there is a small cost of energy to be paid for a 
lesser fluctuating cooling load profile. For example, for Day 1, by increasing the value of α from 0 to 
0.1, the number of chiller turning on/off events can be reduced from 5 to 1 for a rise in energy 
consumption as little as 0.24% (Table 4). It comes out as an interesting trade-off situation where 
determining an optimal value of α can be another optimization problem. 

Table 4. Effect of optimal chiller loading (OCL) with thermal energy storage on the 
frequency of cold starts. 

Cooling load profile 
Number of chiller turning on/off events 

in 24 h 
Total power consumption in 

24 h (MWh) 
Plant data 4 356.45 

OCL Without storage 4 342.34 
OCL With storage, α = 0 5 341.99 

OCL With storage, α = 0.1 1 342.81 
OCL With storage, α = 0.5 0 344.51 

Figure 8. Comparison of the variations in the total number of operating chillers under 
different cooling load profiles. 
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5.1. Time-Varying Prices 

This section evaluates the advantages of using thermal storage in a scenario where electricity prices 
vary hourly. Real-time market prices from the Austin Load Zone in the Electricity Reliability Council 
of Texas (ERCOT) market, from 2012, were used for the analysis of optimization results. Such a 
variable cost scenario highlights the advantage of using thermal energy storage. The market price data 
(Figure 9) shows that prices do vary hourly and sometimes quite dramatically, i.e., by orders of 
magnitude. A very large cost saving opportunity lies in shifting the cooling load from high cost hours 
to low cost hours with the help of energy storage. 

Figure 9. Variation in the hourly real-time prices in the ERCOT wholesale market over the 
year 2012, in Austin, TX, USA. 

 

For the purpose of studying the effect of using TES in the case of time varying prices, the value of α 
was assumed to be zero while solving the optimization problem with storage. Possible savings from 
using TES in this case were simulated for 366 days of the year 2012 by solving 366 optimization 
problems. The daily optimal cost (with TES) is compared with the daily estimated cost (without TES) 
based on real hourly cooling load values and the variable price of electricity from ERCOT. The days 
with large variation in the electricity price demonstrate large savings in the cost of cooling. The 
percentage savings in the cooling cost for an hour are predicted to be up to 42.2% with a mean of 
13.45%. In an absolute sense, it translates to a sum total of $400,000 saved over a year for a large 
system such as UT Austin. 

Figure 10 shows the comparison between daily cost to cool the campus, with and without using 
thermal energy storage. For the purpose of clarity, this figure shows the results for only 75 consecutive 
days from the year 2012. The energy cost savings through the optimal usage of thermal storage is  
more pronounced in days with high electricity price fluctuation. On a day with high electricity price 
fluctuations, all or most of its cooling load is spread over hours with low cost and the least amount of 
chiller operation occurs during the peak cost hours. The excess chilled water generated during the low 
cost hours is sent to the thermal storage tank. This chilled water is used to satisfy the campus cooling 
demand during the peak cost hours. Therefore, a significant amount of money can be saved just by 
using the already existing thermal storage tank in an optimal fashion. 
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Figure 10. Comparison of the cooling cost in case of time varying electricity prices—With 
TES (α = 0) vs. without TES. 

 

6. Conclusions 

In the current paper, the optimization of a large scale cooling system was performed using various 
MINLP formulations. The optimization results were compared against the hourly real plant data  
from UT Austin chiller plants spanning over one year. Multi-period static optimal chiller loading 
yielded energy savings up to 40% for a time period (one hour). Assuming a constant electricity cost of 
6 cents/kWh, annual savings of $486,000 were estimated for the year 2012. Hence, optimal chiller 
loading emerges as an effective way to reduce electrical energy consumption. As the cooling system at 
UT Austin consumes over 30% of the annual total power generation, efficient operation of cooling 
system will reduce the load on power generation equipment. 

Addition of thermal energy storage to the cooling system provides additional flexibility in its 
operation. A multi-period optimization problem over a larger time horizon (24 h) was solved to study 
the effect of using TES on power consumption and operational stability. The results in this case did not 
translate to significant energy savings. Moreover, the objective function did not include the heat losses 
associated with the use of TES. Therefore in a real situation, the energy savings from using TES are 
expected to be somewhat lower. However, for a hypothetical scenario of time varying electricity 
prices, shifting of cooling load with the help of TES predicted economic savings up to 42.2% for a day. 

The optimal operation of cooling system with TES was also shown to have a significant positive 
impact on the chiller plant operations in terms of the frequency of cold starts. Due to the added 
flexibility to adjust the cooling load profile, the cooling system with TES was able to generate a less 
fluctuating operating strategy with the help of the proposed optimization routine. It was shown that the 
number of occurrences of turning a chiller on or off over a period of 24 h can be reduced from 4 to 0 
by using thermal storage. It is expected to even further reduce the energy losses that occur during the 
transient phase of a chiller operation. Additionally, with a smoother cooling operation, the equipment 
wear is also expected to be reduced. 



Processes 2013, 1 328 
 

 

The findings from the current study suggest that optimal chiller loading is an effective energy 
saving operating strategy for large scale cooling systems with multiple chillers sharing a common 
cooling load. The installation and operation of thermal energy storage (TES) is marginally beneficial to 
save energy costs where the cost of electricity is constant with time. On the other hand, the use of TES 
can minimize the fluctuations in cooling load profile. In situations where time varying electricity prices 
are used, TES is shown to be quite useful in reducing electricity bills. The current study can be further 
extended in many ways. The choice of time horizon of the optimization problem with TES can have a 
significant impact on improving the cooling operation. The starting point of one optimization cycle 
was assumed to be midnight in the current study, assuming an empty TES tank at that time. Different 
starting points also need to be considered in order to expand the proposed study. For systems like UT 
Austin, shifting of cooling loads with the help of TES can also shift loads on the power generation 
equipment. Variable efficiency curves of turbines suggest another possible optimization problem to 
minimize the total natural gas consumption by the power plant. 
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