
����������
�������

Citation: Gulcin, İ.; Alwasel, S.H.
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Abstract: Heavy metals are essential for a wide range of biological processes, including the growth
and reproduction of cells, synthesis of biomolecules, many enzymatic reactions, and the body’s
immunity, but their excessive intake is harmful. Specifically, they cause oxidative stress (OS) and
generate free radicals and reactive oxygen species (ROS) in metabolism. In addition, the accumulation
of heavy metals in humans can cause serious damage to different organs, especially respiratory,
nervous and reproductive and digestive systems. Biologically, metal chelation therapy is often
used to treat metal toxicity. This process occurs through the interaction between the ligand and a
central metal atom, forming a complex ring-like structure. After metals are chelated with appropriate
chelating agents, their damage in metabolism can be prevented and efficiently removed from the body.
On the other hand, heavy metals, including Zn, Fe and Cu, are necessary for the suitable functioning
of different proteins including enzymes in metabolism. However, when the same metals accumulate
at levels higher than the optimum level, they can easily become toxic and have harmful effects toward
biomolecules. In this case, it induces the formation of ROS and nitrogen species (RNS) resulting in
peroxidation of biological molecules such as lipids in the plasma membrane. Antioxidants have an
increasing interest in many fields due to their protective effects, especially in food and pharmaceutical
products. Screening of antioxidant properties of compounds needs appropriate methods including
metal chelating assay. In this study, a general approach to the bonding and chelating properties of
metals is described. For this purpose, the basic principles and chemical principles of metal chelation
methods, both in vivo and in vitro, are outlined and discussed. Hence, in the main sections of this
review, the descriptions related to metal ions, metal chelating, antioxidants, importance of metal
chelating in biological system and definitions of metal chelating assays as widely used methods to
determine antioxidant ability of compounds are provided. In addition, some chemical properties,
technical and critical details of the used chelation methods are given.

Keywords: metals; antioxidants; metal chelating; antioxidant activity; antioxidant methods

1. Introduction
1.1. Heavy Metals

Metal ions are necessary for the continuation of the vital functions of living organisms.
For thousands of years, people have widely used metals for daily needs without consid-
ering their drawbacks and consequences. As a result, in addition to destroying the entire
ecosystem, metal ions pollute the water resources and have seriously affected plant and
animal life. Today, metal pollution is mostly caused by mining, industrial sewage, urban
wastes, acid rain, fossil fuel residues, fertilizers and pesticides [1].

Heavy metals (HMs) are elements with a density above 5 g/mL [2,3]. They have
been used in many different areas for thousands of years. The most common ones are Cr,
Pb, Cd, Hg, Cu and Zn. In addition, as can be included in this group due to its similar
physical and chemical properties to heavy metals [4–6]. Fe, Co and Mn are less common
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heavy metals. HMs can be examined under two groups as essential and non-essential
HMs according to their toxicity. Essential HMs, including Zn, Cu, Fe and Co, are less
effective or relatively harmless at low quantity. However, non-essential HMs, including
Cd, Hg, As, and Cr are highly toxic even at low quantities [7,8]. On the other hand,
HMs, including Zn, Cu and Fe, are obligatory for the biological activities of different
proteins and enzymes as cofactors in distinct biological and physiological processes. For
instance, Cu, Fe, Zn and Co demonstrate a vital role in the use of oxygen in the electron (e−)
transport chain, cell growth and differentiation, many enzymatic reactions, synthesis of
biomolecules and the continuity of the immune system. The excess of HMs in the cytoplasm
can disrupt the intracellular redox balance and also cause changes in the cytoplasm’s pH,
alter protein conformation and inhibit enzyme’s function. This situation can easily lead to
cell dysfunction, necrosis or apoptosis. In addition, HMs can interact with proteins thiol,
carboxyl and imidazole groups [9,10].

Iron (Fe) is the best example of the metals that are taken or exposed to excessively in
our daily life. An average person includes 4–5 g of elemental iron. Two-third of this amount
exists in the hemoglobin as oxygen transporter protein and another one-third is stored in
the iron-keeping proteins including hemosiderin or ferritin [11]. Fe exists in cytochromes,
hemoglobin, myoglobin, and is essential for many enzymes, including peroxidases, catalase,
succinate dehydrogenase, aconitase, aldehyde oxidase and oxygenase [3,12]. However,
although the human body can tolerate relatively high iron levels, excess iron is quite toxic.
Metal poisoning has become quite common in young children as a result of excessive
iron intake due to iron-enriched food supplements. In addition, acute poisoning is less
widespread in adults, but chronic Fe overload is usually encountered in β-thalassemia
patients due to the mandatory and regular intake of whole blood transfusions [11,13]. The
fatally accumulated iron level primarily affects the heart and liver. The regular evacua-
tion of metal ions can be increased by the application of a convenient sequestering agent.
Desferrioxamine B is one of the current drugs of choice for Fe3+ removal. However, Des-
ferrioxamine B is able to reduce the available iron level to about ten times of the normal
level [11,13,14]. In humans, iron overloads can be decreased by the management of agents
that can compete with the transferrin protein, which binds and transfers metal ions. As
described in this study, drugs that have a higher Fe3+ affinity than transferrin for effective
chelation may damage natural iron stores under physiological conditions. Enterobactin as
natural siderophore had high affinity toward Fe3+ ions [15]. Recent studies have proven
that siderophores, which are small molecules produced by some microorganisms, make
iron soluble and thus usable by plants. Siderophores from microbial origin are good iron
chelating agents primarily due to powerful iron chelating components, such as hydrox-
amate, catecholate and α-hydroxocarboxylates. On the other hand, phytosiderophores
such as mugineic acid and its derivatives are polydentate ligands with carboxylate and
amine groups as metal chelators. Gramibactin has been reported to effectively form Fe3+

as an impressive example for a new group of diazeniumdiolate siderophores established
on its ability to isolate iron. In the aforementioned study, it was reported that gramibactin
forms quite stable complexes with Fe3+ ions in a broad pH range (Table 1) [16]. Although
there are many reasons for Fe pollution, it occurs especially with the corrosion of water
pipes. The groundwater and soil are contaminated through industrial and agricultural
human wastes including Fe. In addition, today, intense air pollution from the steel industry
includes particulate iron and iron oxide together. Vomiting, nausea, diarrhea, abdominal
pain, lethargy, and dehydration are the most common symptoms of iron toxicity [17,18].

Aluminum (Al) is the second plentiful metal in the earth’s crust and constitutes about
8% of the total mineral quantity. It has an important place today because it is widely
used in different industries. The acceptable daily intake limit of Al in humans is about
3 to 10 mg. Therefore, excessive and irregular intake of Al causes dangerous effects for
living creatures [19]. Al3+ toxicity is a major factor in living organisms. Due to its chemical
properties, Al3+ leads to an imbalance of free radical metabolism, resulting in the oxidative
injury of polysaccharides, proteins, nucleic acids and membrane lipids, and disrupts the
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normal cell activities. Al toxicity is still not completely unraveled at the molecular level,
but some potential mechanisms have been detailed. For example, it is known that Al
exhibits an important pro-oxidant effect in living systems [20]. Al toxicity induces an
excessive increase in ROS levels. Especially, it promotes different neurodegenerative
diseases including dementia and encephalopathy in humans. This toxicity also causes
serious damage to biomolecules. The presence of Al in living systems creates different
toxic effects. Another effect is the change in the natural structure and roles of proteins and
enzymes in the glycolysis and TCA pathways, cells, tissues, central nervous system (CNS),
and other organs [21]. Al as a strong Lewis acid prefers oxygen donor ligands, including
phosphates, nucleotides, carboxylates and nucleic acids. It promotes hyperphosphorylation
of normal proteins. In a recently proposed paradigm, it has been suggested that Al can
interact directly with the backbone of proteins. In this study, it was suggested that Al
coordinates directly to the carbonyl oxygen and protonated peptide nitrogen, occurring in
stable structures with a 5-membered ring that forms strong covalent bonds, and can interact
directly with the backbone of proteins [22]. It was reported that the patients affected by Al
intoxication were treated successfully with the ethylenediaminetetraacetic acid (EDTA) as
chelating agent over a short period (Table 1) [23].

Copper (Cu) is compulsory for some metabolic enzymes, including cytochrome c oxi-
dase, superoxide dismutase (SOD), tyrosinase, ceruloplasmin and dopamine-β-
hydroxylase [19]. ROS can occur when liver cells are exposed to copper overload, and
this is generally considered a critical event leading to cell death. Wilson’s disease (WD)
is a defect which blocks the body from getting rid of excessive Cu. In people with WD,
copper accumulates in the brain, liver and the other organs, especially the eyes. Whereas
a small quantity of dietary Cu is sufficient to stay healthy, too much Cu quantity is toxic.
In this case, excessive Cu2+ is effectively bounded either by ligands containing both hard
and soft donors. The leading drug used for this purpose in the treatment of WD is penicil-
lamine. This drug is a molecule including both types donor atoms and selectively binds
Cu2+ ions [15]. The ternary H-point standard addition method is simultaneously used to
determine Cu2+ ions using murexide as chromogenic reagent. Murexide, a reddish-purple
compound, has attracted much attention due to its application in chemical analysis and
spectrophotometric fields (Table 1) [24]. In addition, murexide as a metal ion indicator is
used as a chromogenic reagent for the traditional spectrophotometric determination of
some metals, especially copper. Furthermore, different complexation reactions were per-
formed between murexide and Co2+, Cu2+, Ni2+, Cd2+, Zn2+, and Pb2+ ions and recorded
by a spectrophotometric technique (Table 1) [25]. In the murexide method, a simple and
sensitive spectrophotometric method, spectrophotometric detection of Cu2+ with murexide,
which is the ammonium salt of purpuric acid, had been developed. This method depends
on the formation of a stable yellow greenish colored complex (at pH 5.0), which had a max-
imum absorption at 476 nm. Murexide is used in analytical chemistry for complexometric
titrations, most often as a complexometric indicator for Ca2+ ions, but also for Co2+, Cu2+,
Ni2+, Cd2+, Zn2+ and Pb2+ and rare earth metals [26].

Table 1. Some metals and their chelating agents.

Metals Binding Agent References

Pb2+ Murexide [25]
Cd2+ Murexide [25]
Hg2+ Dimercaprol [27]

Cu2+
Murexide [28]

Penicillamine [29]
EDTA [15]

Ni2+ Murexide [25]
Zn2+ N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine [30]
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Table 1. Cont.

Metals Binding Agent References

Fe3+

Desferrioxamine [31]
Enterobactin [15]

Deferoxamine [32]
Gramibactin [16]

Al3+ EDTA [26]
Co2+ Murexide [26]
Mn2+ Desferrioxamine [26]
Ca2+ Calbindins [23]

Zinc (Zn) is the fourth most widespread metal in use after Fe, Al and Cu. It is
stored and transferred in metallothionein and essential for the function of over three hun-
dred enzymes and thousand transcription factors. Approximately 2–4 g Zn is distributed
throughout the human body. An increase in the amount of Zn in the living environment can
cause serious negative effects on living organisms. Zn homeostasis in the human body is
controlled by the small intestines. Zn is stored in specific synaptic vesicles by glutamatergic
neurons in the brain and modulates neuronal excitement [33].

Since Zn has a flexible coordination geometry, they allow the conformation of the
proteins they are in to change rapidly. Thus, biological reactions take place faster. The best
example of Zn-containing enzymes is the carbonic anhydrase enzyme family, which can
reversibly convert carbon dioxide (CO2) and water to bicarbonate (HCO3

−) [34–36]. In ad-
dition, Zn is a cofactor of many metalloenzymes, including anhydrases, oxidases, dehydro-
genases, and peroxidases. It plays a crucial role in the arrangement of nitrogen metabolism,
cell proliferation, auxin synthesis and photosynthesis in plants [33]. This reagent readily
permeates cell membranes and forms a stable 6-coordinate complex with Zn [30]. Further-
more, Zn is essential for folding of protein, configurational and conformational changes of
proteins as well as DNA replication, growth hormones and fertility [37]. The most common
intracellular Zn chelator is N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine (Table 1).

Cobalt (Co), which is necessary for all animal metabolisms, is also an important
element for the synthesis of cobalamin and vitamin B12. Especially, bacteria in the ruminants’
stomach convert Co salts into vitamin B12, [38]. Heavy metal pollution in water and soil
has increased rapidly in recent years due to different reasons [3]. Similar to some earlier
metals, a fully elucidated mechanism of Co toxicity has not been defined in general. In
some studies, Co’s high affinity for sulfhydryl (-SH) groups in biomolecules has been
linked to oxidation and degradation of Krebs cycle intermediates, as well as damage to the
transporting system resulting in enhanced intracellular Ca2+ ions [39].

Although As, Hg and Cd are not very active elements, they stimulate OS by inhibiting
SOD, affecting antioxidants and binding to sulfhydryl group (-SH) of proteins. As they exist
in trivalent form and, thus, induce OS by oxidation-reduction reactions. Because of their
multivalent states, they also affect acid-base and methylation reactions. Hg toxicity has
been shown to cause OS, enzyme inactivation, inflammation and autoimmunity. However,
the specific molecular mechanisms of Hg toxicity have not yet been fully elucidated. On the
other hand, Pb indirectly causes the OS by generating free radicals and ROS and decreases
the antioxidant capacity of the cells. Prenatal exposure to As, Hg and Cd can result in brain
dysfunction and neuronal diseases [40].

Although food is the main source of mercury poisoning, fish and dental amalgams are
also considered as the most important sources of Hg exposure. People who consume a lot
of fish meat from polluted waters may be at increased risk of Hg exposure. Fetuses have a
looser blood-brain barrier than adults. Therefore, mercury in the mother’s bloodstream
can reach the brain of the fetus. Therefore, pregnant women should avoid consuming
fish caught from polluted waters [41–43]. Hg toxicity can cause many ailments, including
hypertension, heart and kidney dysfunction [44,45].
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Although Calcium (Ca) is not a heavy metal, it is tightly bound by calbindins, which are
a putative class of Ca2+-binding proteins. Calbindins belong to the Ca2+ messenger system,
which reply to the transitory in intracellular Ca2+ concentration (Table 1). A structural
property of calbindins is their functional domain, which consists of two interacting binding
sites. So, they have cooperative binding [46]. A similar situation to calbindins-Ca2+

co-binding is also observed between laurate and human serum albumin (HSA) that is
commonly used as standard protein in biochemical assays [47–50]. It is known that HSA
binds to a wide range of ligands, especially fatty acids. In addition, in another study,
multiple binding equilibria were searched for HSA and laurate binding using by a dialysis-
exchange method [46].

1.2. The Importance of Metal Chelating in Biological Systems

Metal chelating therapy is the most important and primary clinical treatment in case
of heavy metal poisoning. Chelation is the process of linking existing ions or molecules
of a ligand to a central metal atom or ion through an acyclic or ring-like coordination
bond. A ligand is a molecule or ion with two or more atoms, which can easily donate two
electrons to form a covalent bond. Ligands can be classified in three different ways based
on the properties of the bond between the ligand and the covalent atom. The complexes’
stability varies with the metal ions and ligand interactions. Although Hg and Pb ions
have higher affinity for sulfur and nitrogen than for oxygen ligands, the opposite is the
case for Ca atoms. In addition, these differences that occur in affinity procedures, are the
basic principle in the selection of chelating agents [3,51]. For this purpose, some drugs,
such as dimercaprol, EDTA, deferoxamine, penicillamine, dimercaptosuccinic acid and
their analogues, are used as chelating agents, which are widely used in the treatment of
metal toxicities [3].

1.3. Reactive Oxygen Species (ROS) and Oxidative Stress (OS)

Oxygen is a highly reactive atom and a powerful oxidizing agent that can easily
form oxides with many other elements and compounds. In the atmosphere, it exists in
the ground state and undergoes a gradual reduction process [52–55]. Molecular oxygen
contains a pair of electrons with parallel spins located in two separate anti-bonding orbitals.
Therefore, it can easily accept two electrons from any ordinary electron donor [56–58].
In addition, redox reactions are a very important metabolic process in living organisms,
where electrons can be easily transferred from one species to another. This process is the
basic reaction in most biological systems. In this case, the series of chemical reactions in
living organisms uses molecular oxygen in the air for oxidation and, as a result, provides
an immediate usable form of energy such as ATP [59–61]. Oxygen is commonly used in
reduction-oxidation reactions and the enzymatic biocatalysis process in cells and tissues.
Furthermore, it has interatomic electron transfer ability. It is an important structural element
for aerobic creatures and living metabolism. In addition, it is the final electron acceptor
in the electron transport system [62–65]. So far, everything is very normal, but the main
problem arises when the electron flow becomes disconnected. This situation results in the
formation of free radicals having an odd electron. Free radicals are highly unstable and
active reagents against molecules and intermediates [66–68]. These unstable and short-lived
species derive from the three basic elements of oxygen, sulphur and nitrogen. For example,
ROS include hydroxyl (HO·), superoxide anion (O2·−), alkoxyl (RO·), nitric oxide (NO·),
peroxyl (ROO·) and lipid hydroperoxides (LOO·) radicals. Of these O2·−, NO· and LOO·
had less reactivity [69–71]. In addition, in living systems, hydrogen peroxide (H2O2), singlet
oxygen (1O2) and hypochlorous acid (HOCl) are nonradical ROS forms [70,71]. In addition,
elemental ions such as Fe2+ can initiate ROS production in living systems [72,73]. OS occurs
as a result of an imbalance between ROS production and antioxidant system. OS disrupts a
number of cellular functions and leads to different pathological events in organisms [74–76].
This situation leads to oxidative modification of proteins, DNA, RNA, and lipids [77,78].
OS has long been known to pose an increased risk for many diseases, including cancer,



Processes 2022, 10, 132 6 of 16

arthrosclerosis, diabetes, aging, arthritis and some neurodegenerative diseases [79,80].
Nevertheless, antioxidants have a very important role in health by inhibiting oxidative
processes and reducing the harmful effects of ROS [81].

When HMs accumulate at toxic levels in the human body, they cause serious hazardous
effects in different organs, including the nervous, respiratory, reproductive and digestive
systems [38]. As a result of this situation, in the plasma membrane, lipid peroxidation
occurs and stimulates the formation of RNS and ROS. Transition metals such as Fe and
Cu also trigger Fenton and Haber–Weiss reactions and the formation of ROS such as
OH· [82–84]. In the presence of metal ions and O2, H2O2 can form OH· by the renowned
Fenton reaction [85]. On the other hand, the Haber–Weiss reaction produces OH· from
O2
•− and H2O2, which is catalyzed by ferrous ions. The reaction was first suggested by

Fritz Haber and his student [86]. In later studies, it was determined that both reactions are
the main sources of radicals and responsible for the cellular damage.

Fe2+ + H2O2 → Fe3+ + OH− + OH• (Fenton reaction)

O•−2 + H2O2 → O2 + H2O + OH• (Haber–Weiss reaction)

The metal ions chelation can be important in order to avoid ROS formation and radical
production which can induce damage to biomolecules. In addition, natural metal chelating
compounds including phenolics and flavonoids are desired over synthetic chelating agents,
which are associated with the problem of toxicity [87].

1.4. Antioxidants

Antioxidants block the harmful effects of ROS and are divided into two main groups,
natural and synthetic, prevent free radicals from harming the body by catching and neu-
tralizing them [88–90]. Antioxidants are described as substances that effectively scavenge
ROS, positively regulate antioxidant defense systems or inhibit ROS production [91,92]. In
addition, antioxidants can prolong the shelf life of products by delaying the lipid peroxida-
tion process during processing and storage, preventing deterioration of pharmaceutical
and food products [93–95]. Synthetic antioxidants have long been preferred over natu-
ral antioxidants due to their higher performance and high availability, stability and low
cost [96]. As seen in Figure 1, the most preferred and used synthetic antioxidants are
butylated hydroxyanisole (BHA) and hydroxytoluene (BHT), propyl gallate (PG) and
tert-butylhydroquinone (TBHQ) [97–99].
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Figure 1. The chemical structures of the most commonly used synthetic antioxidants.

Although these synthetic antioxidants are widely used, it has been reported that they
cause some health problems, such as fatty liver, carcinogenesis, skin allergies and gas-
trointestinal system problems in long-term use [79,100,101]. For this reason, consumers
prefer natural antioxidants more in their daily diets and are worried about being exposed
to the undesirable effects of synthetic antioxidants. Unlike synthetic antioxidants, natural
antioxidants, which are known to be safer, are obtained from different plants, including
fruits, herbs, spices and vegetables [102–104]. Therefore, the increasing popularity of natu-
ral antioxidants may cause more food consumers and manufacturers to replace synthetic
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ones [105,106]. For example, aqueous tea, anise and fennel extracts were used as natural
antioxidant sources due to their rich content of various components, including tannins,
catechins, theines and flavonoids [107–109]. However, the quality and antioxidant capacity
of natural antioxidant and extracts depend not only on the quality of the natural source,
but also on the applied processes and technologies for the extraction. In addition, the
safety of proven natural antioxidants has been determined taking into account informa-
tion on chemical compounds and potential cumulative effects assessed by the results of
toxicity studies [79,110,111].

1.5. Metal Chelating Ability

All living things need transition metals to maintain their vital functions. Metal ions
have different functional roles in biological systems. In most cases, metals are tightly
bound by forming coordination bonds with metalloproteins, and proteins acquire a three-
dimensional structure in this way [112,113]. For instance, the chemical affinity of metal ions
can be used by proteins to produce enzymes with strong catalytic activity. Metal chelating is
usually considered as a the most putative and common antioxidant method. Antioxidants
have been reported to have an effective Fe-binding ability due to their functional groups
that perform metal binding. The interaction of Fe ions with antioxidant compounds may
also alter their biological effects including antioxidant properties [114,115]. As can be seen
in Figure 2A, the proposed chelating sites for Fe to taxifolin, as a known antioxidant, is the
4-oxo, 5-OH groups between the heterocyclic and the A rings, the catechol moiety of B ring
and the 3-OH groups, 4-oxo group in the heterocyclic ring (Figure 2A). These groups in the
taxifolin molecule prevent the formation of the iron ions-ferrozine complex. So, taxifolin
can chelate Fe2+ before ferrozine or by 2,2′-bipyridine regents, which had a high affinity
for Fe2+. In this way, taxifolin converts ferrous ions into metal complexes or sterically
inhibits interactions between lipid intermediates and metals. Taxifolin can possibly chelate
more than one Fe2+ ion over functional hydroxyl (-OH) and carbonyl (-C=O) groups [116].
Metallic centers stabilize the semiquinone-metal complex [117]. Binding selectivity can be
generated by a reagent on two or more substrates or by two or more positions on the same
substrate. This is succussed by electronic and steric factors between receptors and substrates.
The binding of chemical species depends on completely different affinities. Functional
biomolecules can generally act as multiple linker site systems. [15]. In addition, selective
binding is very important in chelation therapy. There are different approaches about metal
binding affinities. Another approach was taken by Harris and coworkers [13]. In this
approach, the metal ion concentration in solution was used for comparison the relative
efficacy of different tris catecholate ligands against Fe3+ ions [11]. In another study, it was
reported that the addition of a diamino unit to the pyrolic tripodal architecture significantly
increased their binding ability when compared to parent aminopyrolic receptors [118].
The most common step, when investigating interactions between binding types, is the
evaluation of binding affinities. A quantitative assessment of binding affinities is based on
the evaluation of binding constants. However, a binding constant fully describes a reagent’s
affinity for a ligand only when a complex is formed. Sometimes, a cooperative effect can
be observed in the binding of any atom or group to a binding or chelating agent. The best
example of this is demonstrated by the binding affinity of oxygen to hemoglobin, which is
responsible for transporting oxygen in the bloodstream to peripheral tissues by forming
a reversible complex. For this aim, the formation of four different complexation stages
including the uptake of four O2 has been identified [46]. The first O2 can bind to the Fe2+

ions contained in a heme prosthetic group in each monomer of a tetrameric hemoglobin.
The stability constant for the coordination of first O2 to deoxyhemoglobin is relatively low;
however, when a second O2 binds to the heme, the oxygen affinity enhances, letting the
other oxygens such as the third and fourth O2 to bind more easily. This is because the
coordination of oxygen changes the shape of the binding site of hemoglobin. This steric
and conformational modification is transmitted to the remaining monomer subunit in the
tetrameric hemoglobin, where it stimulates conformational modification in the other heme
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regions, thus making it easier for oxygen to bind to these regions. In addition, this effect is
called the cooperative effect as well as the positive homotropic allosteric effect [15].
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In addition, curcumin, which is used as a food ingredient and is abundant in ginger
and turmeric, chelates Fe2+ ions and prevents the formation of the Fe2+-ferrozine complex.
In this way, curcumin can capture iron ions with a high binding affinity such as ferrozine.
It has been suggested that a curcumin molecule binds three Fe2+ ions, as seen in Figure 2D.
It has been reported that curcumin chelates iron ions with biological active -OH and -
OCH3 groups [119]. In addition, the compounds containing functional groups such as
C=O and C–OH can easily bind metal ions. In another study, Kazazica et al. showed
that kaempferol binds to Fe2+ and Cu2+ ions. They also stated that this binding was
mediated by functional -OH and -OCH3 groups [120]. Compounds containing two or
more -OH, -COOH, -SH, -OCH3, -C=O, -PO3H2, -NR2, -O- and -S- functional groups in a
suitable function-structure configuration can easily chelate Fe2+ ions [121–124]. In another
study, Fiorucci and coworkers showed that quercetin, as an abundant phenolic compound
in plants, had similar metal chelating ability [125]. Recently, the possible Fe2+ binding
mechanism of usnic acid was proven by our research group [126]. It was reported that
usnic acid prevented the formation of the complex of Fe2+-ferrozine (Figure 2B). As shown,
usnic acid can chelate Fe2+ ions with -OH and -COOH groups attached to the phenolic ring.
In another effective study, it was observed that resveratrol binds Fe2+ ions on their -OH
groups at meta positions [127]. In this way, it has been reported that the main antioxidant
ability of resveratrol, a strong and natural antioxidant, may be related to its iron binding
capacity. In this study, it was clearly demonstrated that resveratrol binds Fe2+ and interferes
to form the Fe2+-ferrozine complex.

One of the strategies for estimating the chelation capacity is to measure free iron
ions (Fe2+) using a chelating agent such as ferrozine or 2,2′-bipyridine (Figure 3), forming
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an easily detectable complex by spectroscopic analysis. Metal chelators form complexes
and reduce the reactivity of metals such as iron, making them inactive [128]. The main
contribution to metal binding is because of the catechol moiety, as sampled by the more
pronounced bathochromic shift produced by Cu binding to quercetin when compared to
the chelating ability of kaempferol [129]. Flavonoids show bioavailability by chelating
excess metal ions in the human body. Such a metal chelating effect of flavonoids plays an
important role in the detoxification of other HMs, such as Cr, Sn, Cd and Pb as well as
binding excess Al. The chelating agents effectively chelate the toxic metal ions forming
the complexes [114,130].
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FeCl2 and FeSO4 are generally used as sources of ferrous ion (Fe2+). The decrease
in absorbance at 485 nm for 2,2′-bipyridine or 562 nm for ferrozine after transferring the
metal ion to an antioxidant indicates the formation of the metal-antioxidant complex [131].
The metal chelating capacities of the metal chelated-antioxidant are measured in this
way [132]. Both reagents form complex structures with unbonded Fe2+, thus, a decrease
in the amount of Fe2+-ferrozine or Fe2+-2,2′-bipyridine complexes formed after adding
antioxidant chelating reagent. Complexes of Fe2+ with ferrozine or 2,2′-bipyridine form
a red colored chromophore with maximum absorbance at 562 and 485 nm, respectively.
Although EDTA is not an antioxidant molecule, it is used as a standard metal chelator in
antioxidant practices because it has a high chelating capacity. In fact, in many studies, the
metal chelation abilities of antioxidants or extracts are expressed as EDTA equivalents [133].
These measurements are affected by both the formation constants of the antioxidant-Fe2+

and Fe2+-ferrozine or Fe2+-2,2′-bipyridine complexes [134]. From this point of view, it
seems that a weak metal chelator could not prevent the Fenton reaction in vivo. Despite
everything, this reaction may be a suitable evaluation for the iron chelating ability of
an antioxidant.

3Ferrozine + Fe(H2O)2+
6 → Fe− (Ferrozine)4−

3 + 6H2O

Metal chelating ability is very important as it reduces the metal concentration, which
has a catalytic effect in lipid peroxidation. In addition, metal chelating agents are considered
as secondary antioxidants because they decrease the redox potential and thus stabilize the
oxidized metal ions [135].

2. Antioxidant Methods

Several antioxidant assays have been developed for measurement and investigation
of antioxidant capacity of food, pharmaceutical, medicinal and biological materials. Until
now, the most common and effective methods are inhibition of autoxidation of linoleic
acid emulsion (Thiocyanate method) [136], ORAC and TRAP assays [59], ferric ions (Fe3+)
reducing assay (FRAP) [108,137], Fe3+-Fe2+ transformation assay [138], cupric ions (Cu2+)
reducing assay (Cuprak method) [139], Folin–Ciocalteu reducing assay [140], DPPH• [141],
ABTS•+ [142], DMPD•+ [139] and superoxide anion radical scavenging assays [143] and
putative Fe2+ binding assay, which are described in detail in the present study. As is known,
most of the methods use the same principle: a redox active compound or synthetic-colored
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radical is produced; then, the ability of a biological sample to scavenge or reduce the
redox-active compounds is measured by a spectrophotometer, applying a suitable standard
to measure the antioxidant ability [144].

3. Metal Chelating Assays
3.1. Metal Chelating Assay by Ferrozine Reagent

The described spectroscopic methods were developed taking into account the binding
affinity between a reagent and a metal ion such as Fe2+. The Fe2+ chelation by Ferrozine
was evaluated by the Dinis method [145]. Briefly, a different quantity of sample and
standard compounds was transferred to a 0.05 mL of FeCl2 solution (2 mM). In this way,
the interaction between the sample and Fe2+ is supplied, that is, Fe2+ ions are chelated by
the sample. The reaction was started by adding 0.2 mL of ferrozine reagent (5 mm) and
the mixture was stirred and left standing at 25 ◦C for 10 min. Then, absorbance values of
solution were recorded at 562 nm [146].

3.2. Metal Chelating Assay by 2,2′-Bipyridine Reagent

The Fe2+ chelating by 2,2′-bipyridine are generally performed according to the method
of Re et al. [147]. Briefly, different quantities of the sample and standard compounds were
transferred to a solution of 0.25 mL FeSO4 (2 mM). Thus, the interaction of the sample
and Fe2+ ions is ensured. So, Fe2+ ions are chelated by the sample. Then, 1.5 mL of 0.2%
bipyridyl solution dissolved in 1 mL of Tris-HCl solution (pH 7.4) and HCl (0.2 M) were
transferred to the mixture, sequentially. After the solution was incubated for 30 min, 2.5 mL
of ethyl alcohol and 0.63 mL of deionized water were transferred. Their absorbances were
recorded at 522 nm against the blank consisting of the Tris-HCl buffer [148].

3.3. The Percentage Metal Chelating

The percentage chelating ability of samples and standards is determined using the
following equation:

Percentage chelating effect (%) = [(A0 − A1)/A0)] × 100

where A0 and A1 are the absorbances of the control and sample, respectively. The control
did not include FeCl2, ferrozine, and 2,2′-bipyridine [149].

3.4. The Importance of IC50 Value in Binding Affinity

The IC50 value is commonly used in biochemistry to compare metal chelating [11].
IC50 values describe binding affinity quantitatively. This parameter is widely used in
biochemical applications and is an alternative approach based on a suitable principle. The
idea of evaluating half of the binding property does not require extra knowledge of binding
constants. The lower IC50 value indicates the higher binding affinity and the easier it is
to use. For all these reasons, the IC50 value is the most practical way to evaluate binding
affinities. In most cases, it reports on biological effects [14,46]. In functional antagonists’
studies, the IC50 value of a drug is the concentration required to inhibit half of the maximum
biological activity of the agonist by formation a dose-response curve. It can be determined
by examining the effect of different concentrations of antagonists. The IC50 value is not a
direct indicator of binding affinity, but at least for competitive agonists and antagonists, IC50
and affinity are correlated with the Cheng–Prusoff equation [150], which is given below.

Ki =
IC50

1 + [S]
Ki

(Cheng–Prusoff equation)

In this formula, the Ki value can be easily calculated from the IC50 value for a com-
petitive inhibitor in single-substrate enzymatic reactions. In this formula, IC50 is the half
maximal concentration of the competitive inhibitor and shows a 50% inhibition. S is the sub-
strate concentration. Km is the Michaelis–Menten constant of the substrate for enzymatic
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reaction. The IC50 value of a compound may vary depending on experimental conditions
and parameters such as temperature and pressure, but Ki is a relatively stable value [151].

4. Conclusions

Heavy metals have different functional roles in biological systems and are necessary
for many different biological events, such as cell growth, development and proliferation,
synthesis of biomolecules, catalysis of many enzymatic reactions and immunity of the
body; however, excessive uptake of metals by different pathways is extremely harmful
and can create applications that cannot be repaired. In addition, heavy metals such as
Fe2+ can simplify the production of ROS in living systems. The metal chelating ability
of the agents used for this purpose can be extremely valuable for antioxidant properties.
Antioxidants play a crucial to reduce oxidative damage and hazardous effects of ROS. Metal
chelating activity is one of the most applied methods in food, biological and pharmaceutical
applications. In this review article, metals, heavy metals, the effects of excessive metal
exposure, the importance of metal chelating in biological systems, reactive oxygen species,
OS, Antioxidants, metal chelating ability, antioxidant methods, and two distinct in vitro
metal chelating assays were explained in details.
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