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Abstract: The influence of anode voltage ripple on injection locking of a magnetron with frequency
pushing effect has been studied systematically. Theoretical analysis shows that, when power supply
ripple and injection ratio are constant, frequency pushing effect will increase the magnetron’s locking
bandwidth. Meanwhile, the locking bandwidth decreases with the increase of power supply ripple.
Thus, to achieve injection locking, both power supply ripple and frequency pushing effect must be
considered. The experiment results show that at injection ratio µ of 0.003, frequency pushing effect at
0.5, and power supply ripple increases from 0% to 1% and 2.5%, the locking bandwidth of magnetron
decreases by 0.32 MHz, 2.12 MHz. With the amplitude of ripple increasing, the spectrum after
injection locking deteriorates, and output amplitude reduces, which verifies the theoretical analysis.
Considering anode voltage ripple and frequency pushing effect, the research results contribute to the
realization of high-quality output of injection locked magnetrons.

Keywords: power supply ripple; magnetron; injection locking; frequency pushing effect

1. Introduction

The magnetron is an important and widely-used high-power microwave device [1],
with merits of high-efficiency output power, low cost and low weight [2,3], on which
microwave heating [4,5], microwave communication jamming [6], and microwave wireless
power transferring [7,8] rely. However, the output of free oscillating magnetrons has a lot
of deficiencies, including the scattered output power, the erratic output frequency and the
instable spectrum, which restrict the applications of magnetrons.

In order to improve the efficiency of magnetrons, great efforts have been made by
researchers. Adler [9] proposed the theory of injection locking, which locks the output
frequency with a low-power reference signal injected to the magnetron. Mitani [10] demon-
strated turning off the filament current to improve the output when the filament works
well with reshock electrons. Moreover, the relationship between the power supply ripple
and the locking bandwidth was reported innovatively by Chen et al. [11]. Meanwhile
Zhou et al. [12] analyzed the influence of anode voltage on the output power and frequency.
S. C. Chen [13] and Li. et al. [14] extended the traditional Adler Equation [9] by considering
the frequency pushing effect theoretically and experimentally.

However, with the further expansion of applications, the output stability of magnetrons
is further demanded. For microwave plasma chemical vapor deposition (MPCVD) [15],
microwave medical treatment [16,17], and other microwave chemistry industrials [18],
which are very sensitive to the frequency and the performance of power supply, the
improvements precious can no longer meet the requirements.

So, the influence of anode voltage ripple on injection locking of magnetron with fre-
quency pushing effect is proposed innovatively in this paper, which provides the theoretical
guidance for the higher quality of spectra. The relationship between output amplitude and
locking frequency has been proposed theoretically under different power supply ripples,
injection ratios and frequency pushing effects. The numerical simulation analysis shows
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that, with constant injection ratio and frequency pushing effect, when the power ripple
increases, the locking bandwidth and the output amplitude decrease. As for the injection
frequency, when it is equal to the free-oscillating frequency without frequency pushing
effect, the output amplitude reaches the largest. However, when it is slightly different
from the free-oscillating frequency, the output amplitude is the largest, concerning the
frequency pushing effect. Furthermore, the increase of ripples does not affect the injection
frequency with the largest output amplitude. Finally, an experiment is set up to testify the
theoretical derivation.

2. Theory and Analysis
2.1. Theoretical Analysis of Injection Locking with Ripple and Frequency Push Effect

According to Slater’s theory [19], a single-mode operating (usually π-mode) magnetron
can be equivalent to a parallel resonant circuit composed of lumped components, as shown
in Figure 1, the electron admittance is represented by (g + jb); the magnetron resonance
cavity is approximated by a resistor–inductor–capacitor (RLC) resonant circuit; and the
external load is then regarded as the load admittance (G + jB). However, magnetron is
one of the vacuum tubes with complex frequency shift effect, and the equivalent circuit
equations with frequency push effect α are as follows:

g + ib
Cω0

= i
(

ω

ω0
− ω0

ω

)
+

1
Q0

+
G + iB

Qext
(1)

b = b0 − gtanα (2)

g =
1
R
(

Vdc
VRF
− 1) (3)
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Figure 1. Equivalent circuit of magnetron.

b0 and α are constants defined by the magnetron itself. ω is the magnetron’s output
frequency, ω0 is the resonance frequency, and Q0 and Qext are the unloaded and external
loaded quality factors. Vdc and VRF are anode voltage and radio frequency (RF) output of
the magnetron.

The reference signal with the frequency ω′, the phase difference θ is injected into a
magnetron. Injection ratio ρ is the ratio of injection intensity to magnetron output intensity.
The amplitude of RF voltage and the first derivative of phase with time can be represented
by the following equation [19]:

VRF =
VRF0

1 + µcosθ
ω0
2 ( 1

QL
+ 1

RCω0
)

(4)

dθ

dt
=

ρω0

Qext|cosα| sin(θ − α) +
ω′ −ω

ω0
(5)

1
QL

=
1

Q0
+

G
Qext

(6)
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where VRF0 is the output amplitude of free-oscillating magnetron, QL represents the loaded
quality factor and ω is equal to the frequency of the injected signal. µ=ρ/Qext represents
the injection amplitude. When the injection locking is achieved, the phase difference θ
is a constant and dθ/dt equals to zero in Equation (5). So, the following equation can
be derived:

θ = arcsin
(

ω′ −ω

ω0

|cosα|
µ

)
(7)

Introducing Equation (7) into Equation (4) [14], Equation (8) is obtained.

VRF =
VRF0

1 + 2µ

ω0(
1

QL
+ 1

RCω0
)

cos(arcsin
(

ω−ω′
ω0

|cosα|
µ

)
+ α)

(8)

The anode voltage of the magnetron is supplied by high power supply. Because there
is no perfect rectification, anode voltage will have a certain ripple. Therefore, the high
voltage power supply V′dc can be regarded as two parts: one is the high voltage Vdc of DC
power supply, and the other is the slowly varying ripple. Root mean square (RMS) voltage
can express the anode voltage with slow-changing fluctuation [11]. So, the anode voltage
can be expressed as follows:

V′dc = Vdc(1 +
S

2
√

2
) (9)

where S = VP−P/Vdc is the ripple parameters, VP−P is peak to peak of ripple. Introducing
Equation (9) into Equation (8), Equation (10) is obtained.

VRF
VRF0

=
(1 + S

2
√

2
)

1 + 2µ

ω0(
1

QL
+ 1

RCω0
)

cos(arcsin
(

ω−ω′
ω0

|cosα|
µ

)
+ α)

(10)

Equation (10) describes the relationship between the output amplitude and the fre-
quency of the injection locked magnetron under the influence of power supply ripple S,
frequency push effect α and injection amplitude µ.

2.2. Numerical Simulation of Injection Locking with Ripple and Frequency Push Effect

Based on Equation (10), a numerical analysis is carried out to prove the relative output
amplitude with respect to the normalized frequency of the injection locked magnetron
under various parameters as shown in in Figure 2.
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Figure 2. The injection locking performance with respect to the (a) power supply ripple S and
(b) injection amplitude µ, without the frequency pushing effect α.
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The relative amplitude is VRF/VRF0, and the locking bandwidth and injection fre-
quency is the normalized frequency difference given by (ω′ −ω)/ω0.

When injection amplitude µ is 0.005 and frequency push effect α is 0, each curve is
plotted with respect to power supply ripple in Figure 2a. The detailed data of injection
locking under different ripple are shown in Table 1. In the case of frequency push effect
α = 0 and injection amplitude µ = 0.005, when the ripple S increases from 0 to 3% and
5%, locking bandwidth decreases from 5.00× 10−3 to 4.53× 10−3 and 3.5× 10−3. The
output amplitude reaches the maximum, when there is no difference between the injection
frequency and free-oscillating frequency. When the amplitude of ripple increases, the
maximum output decreases from 1.050 to 1.014. If the ripple continues to increase, the
locking bandwidth turns 0 and the locking status cannot be realized.

Table 1. Comparison of injection locking in different ripples.

Ripples S 0% 3% 5%

Locking bandwidth 5.00× 10−3 4.53× 10−3 3.5× 10−3

Injection frequency with
largest output amplitude 0 0 0

Largest output amplitude 1.050 1.028 1.014

When the ripples S is 1% and frequency push effect α is 0, Figure 2b displays the
relative output amplitude with respect to injection amplitude. The detailed data of injection
locking under different injection amplitude are shown in Table 2. In the case of the ripple
S = 1% and frequency push effect α = 0, when injection amplitude µ increases from
0.001 to 0.002 and 0.003, the locking bandwidth increases from 0.68× 10−3 to 1.85× 10−3

and 2.9× 10−3. The output amplitude reaches the maximum, when there is no difference
between the injection frequency and free-oscillating frequency. With the increase of injection
amplitude, the maximum output increases from 1.003 to 1.023. Because of ripple S, the
locking bandwidth of the three curves is slightly lower than the injection amplitude.

Table 2. Comparison of injection locking in different injection amplitude.

Injection Amplitude µ 0.001 0.002 0.003

Locking bandwidth 0.68×10−3 1.85×10−3 2.90×10−3

Injection frequency with
largest output amplitude 0 0 0

Largest output amplitude 1.003 1.013 1.023

The amplitude is VRF/VRF0, and the locking bandwidth and Injection frequency is the
normalized frequency difference given by (ω′ −ω)/ω0.

In Figure 3, the stability conditions and locking bandwidth are affected by the fre-
quency push effect α. When α increases, the locking bandwidth of magnetron also increases,
and the stable region becomes larger.

From Figure 3a, in the case of frequency push effect α = 0.5 and injection amplitude
µ = 0.002, when the ripple S increases from 0 to 1% and 2%, the locking bandwidth and
the output energy decreases. The detailed data of injection locking under different ripples
are shown in Table 3. When the amplitude of ripples increases, the locking bandwidth
diminishes from 2.28× 10−3 to 1.35× 10−3 and largest output amplitude decreases from
1.020 to 1.006. Due to frequency push effect α, the output amplitude cannot reach the
maximum value, at the time of free-oscillating frequency equaling to the injection one.
However, the increase of ripple does not affect the injection frequency with the largest
output amplitude, which is always 1.09× 10−3.
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Figure 3. The injection locking performance with respect to the (a) power supply ripple S and
(b) injection amplitude µ, with the frequency pushing effect α.

Table 3. Comparison of injection locking in different ripples.

Ripples S 0% 1% 2%

Locking bandwidth 2.28× 10−3 2.06× 10−3 1.35× 10−3

Injection frequency with
largest output amplitude 1.09× 10−3 1.09× 10−3 1.09× 10−3

Largest output amplitude 1.020 1.013 1.006

In Figure 3b, in the case of frequency push effect α = 0.5 and the ripple S = 1%, when
injection amplitude µ increases from 0.001 to 0.002 and 0.003, the locking bandwidth and
the output energy increases. The detailed data of injection locking under different injection
amplitude are shown in Table 4. With the increase of injection amplitude, the maximum
output increases from 1.003 to 1.023. Due to frequency push effect α, the output amplitude
cannot reach the maximum value, at the time of free-oscillating frequency equaling to the
injection one. However, with the increase of injection amplitude µ, the injection frequency
with the maximum output amplitude increases from 0.55× 10−3 to 1.64× 10−3.

Table 4. Comparison of injection locking in different injection amplitude.

Injection Amplitude µ 0.001 0.002 0.003

Locking bandwidth 1.14× 10−3 2.08× 10−3 3.42× 10−3

Injection frequency with
largest output amplitude 0.55× 10−3 1.09× 10−3 1.64× 10−3

Largest output amplitude 1.003 1.013 1.023

3. Experimental Setup

Based on the schematic diagram (Figure 4a), the experimental system was set to verify
the theoretical analysis (Figure 4b). The microwave power which is generated by the
magnetron (2M244-M1, Panasonic, Osaka, Japan) is transferred from Port #1 to Port #2 of
the three-port circulator, and partial energy is coupled by the double directional coupler to
visualize using power meter and real-time signal analyzer. Moreover, the spare microwave
power from Port #2 and form Port #2 to Port #3 is absorbed by the water load. A solid-state
source is used for energy source of injection locking. Through the circulator, the energy of
the solid-state source is injected into the magnetron. A small part of the locked signal is
coupled by a coupler. Then its spectrum and energy are measured by a power meter and
signal analyzer. The power supply ripple of magnetron is reduced by paralleling filtering
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capacitor and measured by oscilloscope. The energy of the whole system is absorbed by
the water loads.
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4. Results and Discussions

The measured relative output amplitude with respect to normalized frequency of
injection locked magnetron is shown in Figure 5. Under the condition of the frequency
pushing effect α = 0.5 and injection amplitude µ = 0.003, if the ripple S grows from 0 to 1%
and 2.5%, the measured locking bandwidth and the measured output energy decreases,
which are basically corresponding to the theoretical values with the same varying tendency.
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Figure 5. Experimental and theoretical injection locking performance with respect to the power
supply ripple S.

Locked bandwidth is ω′ −ω in MHz. Injection frequency is the normalized frequency
difference given by (ω′ −ω)/ω0 and the amplitude is VRF/VRF0.

The detailed data of theoretical and measured locking bandwidths under different
ripple are shown in Table 5. When the ripples S are 0, 1%, 2.5% respectively, ignoring fre-
quency push effect, theoretical locking bandwidths are 7.35 MHz, 7.15 MHz and 5.93 MHz
respectively. However, while the frequency pushing effect α is set to 0.5, theoretical lock-
ing bandwidths are 8.38 MHz, 8.06 MHz and 6.26 MHz, respectively. Furthermore, the
measured locking bandwidths are 7.99 MHz and 6.19 MHz, which are only 0.07 MHz and
0.09 MHz different from the theoretical value, respectively. When the normalized injection
frequency is 1.64× 10−3, which is slightly different from the free oscillation frequency,
the output amplitude reaches the maximum. Measured largest output amplitude is 1.022
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and 1.011 with the increasing of ripples, which is only 0.001 different from the theoretical
value. Above experimental data are consistent with the theory. It is worth noting that the
measured curve is asymmetrical, instead of the symmetrical one about the free oscillating
frequency, which was derived in reported issues, such as [11]. And it is the evidence of
the influence of the frequency pushing effect on the locking performance considering the
power supply ripple.

Table 5. Theoretical and experimental bandwidth locking under different ripple and pushing effect.

Ripples S 0% 1% 2.5%

Theoretical locked bandwidth in α = 0 7.35 7.15 5.93
Theoretical locked bandwidth in α = 0.5 8.38 8.06 6.26
Measuredlocked bandwidth in α = 0.5 7.99 6.17

Theoretical injection frequency with largest output
amplitude in α = 0.5 1.64× 10−3 1.64× 10−3 1.64× 10−3

Theoretical Largest output amplitude in α = 0.5 1.030 1.023 1.012
Measuredinjection frequency with largest output

amplitude in α = 0.5 1.64× 10−3 1.64× 10−3

MeasuredLargest output amplitude in α = 0.5 1.022 1.011

Then, the injection amplitude µ is changed to 0.001, 0.002 and 0.003, while the power
supply ripple S is maintained at 2.5%. Moreover, the output spectra of the magnetron are
shown in Figure 6a–c, respectively. When the ripple S = 1% and the injection amplitude is
0.001, 0.002 and 0.003 respectively, the DPX output spectra of the magnetron are shown in
Figure 7a–c, respectively. The DPX spectrum can keep up with the fast change speed to
display more vivid output parameters. And the brighter the color, the more frequently the
frequency points appear.
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In Figure 6, when the ripple S = 2.5%, the magnetron is locked gradually with the
increase of injection amplitude µ. When the injection amplitude is 0.001 and 0.002, the
magnetron is still unlocked, and the output spectrum is full of noise jitter. When the
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injection amplitude is 0.003, the magnetron is locked, and the spectrum has been greatly
improved. In Figure 7, with the decreased ripple, when the injection amplitude µ is only
0.001, the magnetron can be locked, and a high-quality spectrum can be output. Through
the DPX spectrum, we verify that when the ripple is smaller, it is easier to achieve injection
locking and pure spectrum.

5. Conclusions

The performance of injection-locked magnetron is jointly impacted by the power
supply ripple and the frequency pushing effect. In this paper, firstly, the equivalent circuit
was adopted to obtain the expression of the locking bandwidth with respect to the power
supply ripple S and the frequency pushing effect α, and the locking performance was
obtained by the numerical simulation, which was an asymmetrical curve, different from the
curve derived by the traditional Adler equation. With the increasing of the power supply
ripple S, the locking bandwidth was reducing. Conversely, it was getting wider when the
injection amplitude µ increased. Then, the experiments were set up to verify the theoretical
derivation. The reduction of the power supply ripple was achieved through a paralleling
filtering capacitor. The measured relative amplitude curve with respect to a different ripple
S was in good agreement with the simulation. The actual results of the locking bandwidth
were consistent with the simulation one with the frequency pushing effect basically, which
meant that the parameter α indeed affected the locking performance. In addition, we
found that the injection frequency corresponding to the max output amplitude was slightly
different from the free oscillating frequency, due to the frequency pushing effect.

Compared with the reported issues, we extend the theory of the influence of the power
supply ripple on the injection-locking performance by the frequency pushing effect. This
research promises to be applied to microwave plasma and chemistry industrials for highly
stable magnetrons.
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