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Abstract: Steel is an important raw material of fluid components. The technological level limitation
leads to the surface faults of the steel, thus the key to improving fluid components quality is to
diagnose the faults in steel production. The complex shape and small size of steel surface faults
result in the low accuracy of the diagnosis, and the large size of the network leads to poor real-time
performance. Therefore, aiming at the problems, an improved YOLOV5 is proposed. Firstly, to reduce
the feature information loss, coordinate attention is used to improve YOLOV5, thus the diagnosis
ability can be improved. Secondly, to further reduce the loss, a new connection is constructed in
YOLOV5, and the detection ability can also be further improved. Thirdly, to improve the real-time
performance of the fault diagnosis, YOLOV5 is improved by the lightweight method ShuffleNetV2,
and its size can be reduced. Lastly, to further improve the accuracy, the cosine annealing with warm
restarts algorithm is used to optimize YOLOV5. The dataset of NEU-DET is verified and testified.
The results show that improved YOLOV5 can diagnose steel surface faults with high efficiency
and accuracy.
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1. Introduction

Steel is an important raw material of fluid components, and it is widely used in
hydraulic piston pumps [1–3], ball valves [4], Cylinders [5], Steam turbines [6], and other
equipment. Due to the limitation of the equipment and technological level, it is inevitable
that there are different types of surface faults in the processing. Therefore, in order to
improve the steel quality, it is necessary to strengthen the supervision of surface faults in
production. Traditional steel fault diagnosis is done by manual visual inspection, but the
diagnosis accuracy and efficiency are low. With the rapid development of deep learning,
it is introduced into the fault diagnosis of the steel surface. In the past few years, many
scholars have studied various deep-learning methods to diagnose steel surface faults [7–10].

The large size of the deep learning networks leads to poor real-time performance. There-
fore, lightweight networks such ShuffleNet [11,12], MobileNet [13,14], SqueezeNet [15],
and EfficientNet [16] are proposed and widely studied. The ShuffleNet, MobileNet,
SqueezeNet, and EfficientNet are also widely used in fault diagnosis. Nagy et al. proposed
a new EfficientNet-B7 unit based on EfficientNet, and it is designed for small networks [17].
Liu et al. proposed a new binary network called BiShuffleNet by taking ShuffleNetV2 as the
binary backbone network [18]. Liu et al. incorporated multi-scale design into MobileNetV2,
and the computation cost is reduced [19]. Fu et al. used a global average pooling to replace
the fully-connected layer in SqueegeNet to reduce the parameter amount [20]. Li et al.
proposed a network called MobileNet-SSD by introducing a single-shot multibox detector,
thus the parameter amount can be reduced [21].

Small fault diagnosis is a difficult and hotspot research in computer vision. Driven
by deep learning, small target detection has made significant breakthroughs and has been
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successfully applied in defense security [22], intelligent transportation [23], and industrial
automation [24–26]. Many scholars at home and abroad have conducted in-depth research
on small target detection by using YOLOV5 networks. Qiu et al. proposed an image
analysis model for small-target fault diagnosis of wind turbine blades based on YOLOV5.
In the study, the multi-scale feature pyramid is used to achieve multi-layer feature fusion,
which is much conducive to the detection of small targets [27]. Wu et al. used the multi-
scale anchor mechanism to improve the small target detection ability of YOLOV5 [28].
Zhang et al. proposed a model SOD-YOLO for wind turbine blade surface fault diagnosis-
based YOLOV5, and a much small feature fusion layer is added to the YOLOV5, and a
convolutional block attention module is added to the YOLOV5, thus the feature loss of
small target defects can be reduced [29]. Gou et al. by using the encoding and decoding
modules from the transformer added to the YOLOV5m and the detector was enhanced to
dynamically adjust to objects of different scales by a multi-scale feature fusion structure
for defects of different sizes [30]. Kim et al. proposed a method to improve the detection
performance of small targets in aerial images by modifying YOLOV5 in order to obtain
robust detection ability [31].

In image detection, the local important information is essential for detection accuracy.
The self-attention was proposed in 2017 to get key feature information about an image [32].
Self-attention has been used widely all around the world [33–37]. Dong et al. proposed an
improved YOLOV5 for vehicle detection. A convolutional block attention module is intro-
duced to the YOLOV5, thus the detection accuracy is improved [33]. Zhang et al. proposed
a squeeze-and-excitation attention mechanism module embedded into the YOLOV5, thus
the detection accuracy is improved [34]. Zhang et al. introduced coordinate attention to
YOLOV5, and the feature extraction ability can be strengthened, and the detection perfor-
mance of leaf disease is improved [35]. Zhao et al. introduced the squeeze-and-excitation
module of the attention mechanism to YOLOV5, and the depth of the feature map of
the previous layer is a weighted average, and its accuracy is improved [36]. Ying et al.
proposed an improved YOLOV5 based on an efficient channel attention mechanism, and
the high-pressure steel wire braided hose is detected [37].

The small target detection accuracy and network lightweight are studied deeply in
this study, and the improved YOLOV5 is proposed. Firstly, in order to reduce the loss of
feature information, a CA-C3 structure and a new connection are proposed, and the feature
information can be introduced from the backbone network to the neck one. Secondly,
in order to reduce the network size, YOLOV5 is improved by the lightweight network
ShuffleNetV2. Finally, to further improve the accuracy, the cosine annealing with warm
restarts algorithm is used to optimize the above network. The dataset of NEU-DET is
testified, and the results show that the improved YOLOV5 can detect steel surface faults
with high efficiency and accuracy.

The rest of the study is organized as follows. In Section 2, the preliminaries of YOLOV5,
coordinate attention, ShuffleNetV2, and the cosine annealing with warm restarts algorithm
are presented. The architecture of improved YOLOV5 is constructed in Section 3. Section 4
displays the flowchart of improved YOLOV5. Section 5 shows the dataset of NEU-DET
and the hardware and software of the computer. Section 6 details the experimental results
of small target detection. In Section 7, the conclusions of this study are summarized.

2. Methodology
2.1. YOLOV5

Traditional image segmentation techniques have been relatively mature. However,
these techniques require feature extraction for each fault. This results in high labor costs
and low efficiency.

There are many target detection algorithms [38,39], and deep learning has been devel-
oped and studied by many researchers from 2012 to the present. Therefore, deep learning
is a current research hotspot. YOLO is a kind of deep learning network [40], and it was
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proposed in 2016 [41], and it is highly efficient and has a good generalization ability for
detecting small targets.

The YOLO series is a single-stage target detection method, which consists of the input,
the backbone network, the neck, and the output. Mosaic data enhancement and adaptive
anchor frame are approved at the input end in YOLOV5, thus it is good at highlighting
small target features. In the backbone network, C3 is used to avoid gradient disappearance.
A hybrid FPN + PAN is used to enhance the fusion of the shallow feature information. The
binary cross-entropy loss is used for the classification loss in the training, and it is defined
as follows:

Loss(obj) = GIOUloss +
S×S
∑

i=0

B
∑

j=0
1obj

ij [Ci log(Ci) + (1− Ci) log(1− Ci)]

−
S×S
∑

i=0

B
∑

j=0
1noobj

ij [Ci log(Ci) + (1− Ci) log(1− Ci)]

+
S×S
∑

i=0

B
∑

j=0
1obj

ij ∑
c∈classes

[pi(c) log(pi(c)) + (1− pi(c)) log(1− pi(c))]

(1)

where S×S represents the cell number, B denotes the number of predicted bounding boxes,
1obj

ij and 1noobj
ij represent the objects in i cell and j bounding box. Ci represents confidence

values for the predicted i grid, and pi(c) represents probability values for predicted and
actual targets in i grid. GIOUloss is the loss function of the bounding box. The architecture
of YOLOV5 is shown in Figure 1.
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Figure 1. The architecture of YOLOV5.

2.2. Coordinate Attention Mechanism

Coordinate attention (CA) is a network architecture proposed by Hou et al. [42].
Because the location information is embedded into channels, the cross-channel feature
information can be easily extracted, thus the target regions can be accurately located and
identified. The architecture of the coordinate attention is shown in Figure 2.
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Figure 2. The architecture of coordinate attention.

2.3. ShuffleNetV2 Architecture

The network ShuffleNetV2 is a kind of lightweight method, and it was proposed by
Ma et al. [43] in 2018. ShuffleNetV2 is constructed based on basic and down-sampling
modules, followed by a convolutional layer and an average pooling layer. When extracting
the feature information, group convolution and channel shuffle are used to compress the
model and greatly reduce the computation cost. Its architecture is shown in Figure 3.
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2.4. Cosine Annealing with Warm Restarts Algorithm

Deep learning models are often optimized by gradient descent algorithms. Setting
too small a learning rate will lead to slow convergence of objective function, and setting
one too large may lead to a local optimal solution. Cosine annealing with a warm restarts
algorithm can realize periodic restarts in the decreasing process of the learning rate, so as
to make the objective function jump out of the local optimal solution. The periodic restart
method increases the learning rate suddenly and jumps out of the local optimal solution.
Excellent, approaching the global optimal solution. The learning rate for each batch is
written as follows:

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos

(
Tcur

Ti
π

)
(2)

where ηt denotes the current learning rate, ηmax and ηmin signify the maximum and
minimum learning rates, respectively. Tcur is the epoch number executed since the last
restart, and Ti signifies the epoch number that needs to be trained after ith restart. The
change curve of the learning rate under the action of the algorithm is shown in Figure 4.
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3. Improved YOLOV5
3.1. CA-C3 Module

The shallow architecture of YOLOV5 leads to low accuracy and efficiency, thus the
coordinate attention is introduced into the C3 module, and a new module CA-C3 can be
obtained. The new module CA-C3 is shown in Figure 5. One part consists of a convolution
layer and a number of Bottleneck modules, which reduces the parameter amount of
Bottleneck modules. The other part consists of a convolutional layer and coordinates
attention to enhance the feature extraction ability. Finally, concat operation is performed on
the two parts to obtain the CA-C3 module. The main advantage of this module is to reduce
the loss of feature information.
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3.2. Improved YOLOV5
3.2.1. Improvement Based on the CA-C3 Module, New Connection and ShuffleNetV2

The size of a deep neural network has an impact on accuracy and efficiency, and its
parameter amount and calculation cost of the network increase greatly with the size of the
incensement. The recall rate may be low when YOLOV5 detects small targets, resulting in
low accuracy. The rich feature information is contained in the backbone network, but the
information is not fully used, which leads to low accuracy.

To address the problem of the small targets, YOLOV5 is improved by coordinate
attention, and detection ability can be improved. To address the problem of low precision,
a new connection is constructed in YOLOV5, and the detection ability can be improved. To
address the problem of the lightweight, YOLOV5 is improved by the lightweight method
ShuffleNetV2, and the network size is reduced.

Aiming at the above problems, YOLOV5 is improved by the CA-C3 module, new
connection, and ShuffleNetV2. C3 module is replaced by the CA-C3 module to extract rich
feature information, and Conv of the backbone module is replaced by ShuffleNetV2 to
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construct a lightweight network, and Line I and line II are used to connect the backbone and
neck networks to extract the rich feature information, thus improved YOLOV5 is proposed.
Its architecture is displayed in Figure 6.
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Figure 6. The architecture of improved YOLOV5.

The detail architecture information of improved YOLOV5 is listed in Table 1.

Table 1. The detail architecture information of improved YOLOV5.

Layer Size Stride Channel Output Feature Size Note

Input layer \ \ \ 224 × 224 × 3
0 Convolution layer 1 × 1 1 32 224 × 224 × 32
1 ShuffleNetV2 \ \ 64 112 × 112 × 64
2 CA-C3 × 3 \ \ 64 112 × 112 × 64
3 ShuffleNetV2 \ \ 128 56 × 56 × 128
4 CA-C3 × 6 \ \ 128 56 × 56 × 128
5 ShuffleNetV2 \ \ 256 28 × 28 × 256
6 CA-C3 × 9 \ \ 256 28 × 28 × 256
7 ShuffleNetV2 \ \ 512 14 × 14 × 512
8 CA-C3 × 3 \ \ 512 14 × 14 × 512
9 SPPF \ \ \ 14 × 14 × 512

10 Convolution layer 1 × 1 1 256 14 × 14 × 256
11 Upsample \ \ \ 28 × 28 × 256
12 Concat \ \ \ \ Layer 6
13 CA-C3 \ \ 256 28 × 28 × 256
14 Convolution layer 1 × 1 1 128 28 × 28 × 128
15 Upsample \ \ \ 56 × 56 × 128
16 Concat \ \ \ \ Layer 4
17 CA-C3 \ \ 128 56 × 56 × 128 Output1
18 Convolution layer 3 × 3 2 128 28 × 28 × 128
19 Concat \ \ \ \ Layer 14, 6
20 CA-C3 \ \ 256 28 × 28 × 256 Output2
21 Convolution layer 3 × 3 2 256 14 × 14 × 256
22 Concat \ \ \ \ Layer10, 8
23 CA-C3 \ \ 512 14 × 14 × 512 Output3
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In this study, its initialization parameters are listed is Table 2.

Table 2. The initialization parameters of improved YOLOV5.

Parameters Value Note

Size of input images 224 × 224 NEU-DET
Batch size 8

Weight yolov5s.pt
Learning rate 10−3

The iterations number 300

3.2.2. Optimization Based on Cosine Annealing with Warm Restarts Algorithm

To address the problem of low precision, YOLOV5 is improved by the cosine annealing
with warm restarts algorithm for improving the precision.

In order to obtain good performance, the cosine annealing with warm restarts algo-
rithm is applied to optimize the above-improved YOLOV5, thus YOLOV5 can be further
improved. The optimization flowchart is shown in Figure 7.
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Firstly, the improved YOLOV5 is trained. Secondly, during the training process, the
improved YOLOV5 is trained through cosine annealing with warm restarts algorithm.
Thirdly, it determines whether the learning rate has met the restart condition. If the
condition is not met, the learning rate is updated. If the restart condition of the learning rate
is met, the learning rate is restarted. Lastly, it determines whether it has met the training
cycle. If the condition is met, this training is terminated, and thus is an output of the
improved YOLOV5 after optimization.

4. The Flowchart of Improved YOLOV5

A new network called improved YOLOV5 is proposed in this study. Firstly, in order to
reduce the feature information loss of the network, a new CA-C3 structure is constructed.
Secondly, to further reduce the feature information loss, a new connection is proposed.
Thirdly, in order to reduce the network size and improve the accuracy, the network is
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improved by the lightweight method ShuffleNetV2. Lastly, to further improve the accuracy
of the network, the cosine annealing with warm restarts algorithm is used to optimize the
above network. The flow chart is shown in Figure 8.
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5. The Dataset of NEU-DET

The dataset of NEU-DET [44] is used to verify the effectiveness and superiority of
improved YOLOV5. In the dataset, each defect type has 300 images, a total of 1800 images.
There are six defect types: crazing, inclusion, patches, pitted_surface, roll-in_scale, and
scratches. The crazing defect is mainly featured by irregular lines. The inclusion defect is
of different shapes. The patches defect is of irregular shapes. The pitted-surface defect is
generally characterized by local pits. The rolled-in scale defect is manifested as convexes in
many places. The scratches defect is mainly shown as long strips. These defects have the
characteristics of complex shapes and small sizes. Therefore, their detection difficulty is
increased. Figure 9 shows the images of defect samples.
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This study is implemented on the Windows 10 operating system using the PyTorch
framework in Pycharm. The device hardware is Intel(R) Core(TM) i5-8300H CPU @
2.30 GHz and the GPU model is GTX 1050Ti. The software environments are CUDA11.4
and Python3.8.

6. Case Study

The ablation study is carried out to demonstrate the validity and superiority of im-
proved YOLOV5, and the comparative results based on the three factors of precision, recall,
and mAP are listed in Table 3.

Table 3. Comparative results of ablation study.

Methods Cosine Annealing with
Warm Restarts Algorithm

CA-C3
Module

Connections of
Line I and Line II ShuffleNetV2 Precision Recall mAP

YOLOV5 × × × × 0.626 0.818 0.758
Case 1

√ × × × 0.723 0.796 0.791
Case 2

√ √ × × 0.730 0.799 0.806
Case 3

√ √ √ × 0.787 0.819 0.840
Improved
YOLOV5

√ √ √ √
0.822 0.817 0.859

It can be known from Table 3 that Precision, Recall, and mAP show an overall upward
trend with further improvements, and the analysis is detailed as follows:

Based on the comparison between Case 1 and YOLOV5, we can know that the three fac-
tors increase with the application of the cosine annealing with the warm restarts algorithm,
thus the algorithm can help the objective function jump out of the local optimal solution.

With the construction of the new CA-C3 module in Case 2, the three factors show an
increasing trend compared with case 1, thus the rich feature extraction can be extracted by
the new CA-C3 module.
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The new connections of Line I and Line II of Case 3 can show much more detailed
feature information fused and preserved, thus the three factors are all bigger than those of
Case 2.

Based on the comparison between improved YOLOV5 and Case 3, it shows that the
parameter amount can be reduced and the accuracy can be improved with the application
of the lightweight method ShuffleNetV2, thus the three factors become big.

In order to show effectiveness and superiority, they are compared in terms of the
parameter amount and computation cost, and the results are listed in Figure 10.
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We can see from Figure 10 that the parameter amount and model size is not influenced
by the cosine annealing with warm restarts algorithm by comparing YOLOV5 and Case 1.
Based on Case 1 and Case 2, the parameter amount can be reduced by the CA-C3 module. In
Case 3, since Line I and Line II are connected to other modules, the parameter amount and
model size are all increased compared with Case 2. In order to eliminate the adverse effects
of Case 3 on the parameter amount and model size, the introduction of the lightweight
method ShuffleNetV2 has greatly reduced the parameter amount and model size, and the
parameter amount and model size of improved YOLOV5 is the least, and they are even
23.48% and 22.3% lower than those of YOLOV5 respectively.

In order to prove the effectiveness of the improved YOLOV5, the PR curve is presented
to verify. In the PR curve, the horizontal axis represents recall, and the vertical axis
represents precision. The closer the curve gets to the top right, the better the fault results are.

As shown in Figure 11, the AP of crazing, inclusion, patches, pitted_surface, rolled-
in_scale, and scratches are improved by 95.3%, 7.9%, 0.2%, 8.4%, 2.6%, and 9.3% respectively.
Among them, due to the crazing defect feature, there are a lot of faults in the small targets.
Therefore, CA-C3 models are added in this paper, thus feature loss is reduced. In addition,
the improved YOLOV5 is closer to the top right compared with YOLOV5, which indicates
that the detection effects are better compared with YOLOV5.

To further verify the effectiveness and superiority of improved YOLOV5, it is com-
pared with other models single shot multi-box detector (SSD), faster RCNN, YOLOV3
and the methods proposed in [45,46]. Their mAP are displayed in Figure 12, and their
parameter amount and model size are shown in Figure 13.

It can be known from Figures 12 and 13 that mAP, parameter amount, and model size
are 85.9%, 20.51 × 106, and 10.56 × 104, respectively. They are 11.13%, 52.30%, 116.91%,
13.32%, 13.32%, and 3.87% higher than the SSD, Faster RCNN, YOLOV3, and YOLOV5,
methods proposed by [45,46].

The conclusion is that the cosine annealing with warm restarts algorithm, attention
mechanism, and connections can improve the accuracy. Furthermore, ShuffleNetV2 can
reduce the size of the network and improve precision.
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Figure 13. The parameter amount and model size of improved YOLOV5 and other methods.

In order to further demonstrate the advantages of improved YOLOV5 in detecting
small targets, the detection comparison results are shown in Figure 14.

Small targets detected by improved YOLOV5 in Figure 14b are marked with arrows,
but the targets are not detected by YOLOV5 in Figure 14a. As can be seen from Figure 14a,
although most of the defect targets can be detected by YOLOV5, there are still some small
defect targets that are difficult to detect, because the feature loss of convolution operation
results in low accuracy. However, all of the above small defect targets can be detected by
the improved YOLOV5 with high accuracy.
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Figure 14. Diagnosis results: (a) YOLOV5; (b) Improved YOLOV5.

Therefore, improved YOLOV5 performs better than YOLOV5 in detecting small targets
with high accuracy and efficiency.

7. Conclusions

Steel is an important raw material of fluid components, and it is meaningful to di-
agnose steel faults. The complex shape and small size of steel surface faults lead to low
accuracy, and the large size of the network leads to poor real-time performance. Aiming at
the problems, an improved YOLOV5 is proposed. The dataset of NEU-DET is verified and
testified, and the conclusions of this study are shown as follows.

(1) The new CA-C3 module is constructed based on the coordinate attention, and im-
proved YOLOV5 can extract much feature information, thus the accuracy can be improved.

(2) A new connection is constructed, and the feature information can be directly input
into the neck from the backbone, and much information can be preserved by improved
YOLOV5, thus the accuracy can be improved.

(3) The lightweight method ShuffleNetV2 is used to improve YOLOV5, and the size of
the improved YOLOV5 is reduced, thus the computation cost can be reduced.

(4) YOLOV5 is improved by the cosine annealing with the warm restarts algorithm,
thus the accuracy of improved YOLOV5 can be improved.

Steel surface detection is mainly researched in this paper. However, it is required to
construct lightweight architecture for rapid detection. In the future, we will continue to op-
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timize YOLOV5, and adopt quantization recognition to optimize the method. Furthermore,
many categories of steel surface fault will be added, thus the requirements of the industrial
fields much met.
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