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Abstract: A degradation study of diazepam (DZP) in aqueous media by gamma radiation, high
frequency ultrasound, and UV radiation (artificial-solar), as well with each process intensified with
oxidizing agents (H2O2 and Fenton reagent) was performed. The parameters that influence the
degradation of diazepam such as potency and frequency, irradiation dose, pH and concentration of
the oxidizing agents used were studied. Gamma radiation was performed in a 60Co source irradiator;
an 11 W lamp was used for artificial UV radiation, and sonification was performed at frequency
values of 580 and 862 kHz with varying power values. In the radiolysis a 100% degradation was
obtained at 2500 Gy. For the sonolysis, 28.3% degradation was achieved after 180 min at 862 kHz
frequency and 30 W power. In artificial photolysis, a 38.2% degradation was obtained after 300 min
of UV exposure. The intensification of each process with H2O2 increased the degradation of the
drug. However, the best results were obtained by combining the processes with the Fenton reagent
for optimum H2O2 and Fe2+ concentrations, respectively, of 2.95 mmol L−1 and of 0.06 mmol L−1,
achieving a 100% degradation in a shorter treatment time, with a dose value of 750 Gy in the case
of gamma radiation thanks to increasing in the amount of free radicals in water. The optimized
processes were evaluated in a real wastewater, with a total degradation at 10 min of reaction.

Keywords: advanced oxidation process; wastewater; diazepam; gamma radiation; high frequency
ultrasound; UV radiation; Fenton reaction

1. Introduction

Contamination of surface water, groundwater, and wastewater has increased in re-
cent years due to the presence of so-called “emerging pollutants”, such as drugs and
pesticides [1–5]. Many investigations report the inefficiency of conventional wastewater
treatment plants for eliminating persistent pollutants, and as a result, the presence of
contaminants in effluent from treatment plants, rivers, lakes, and to a lesser extent in
groundwater [1]. Diazepam (DZP) is the most prescribed benzodiazepine for its hypnotic,
tranquilizing, and anticonvulsive properties, with levels in water bodies varying from
10 ng L−1 to 1 µg L−1 [6–12]. The presence of benzodiazepines affects the ecosystems
in different ways [13,14]. Due to benzodiazepines interaction with the GABAA receptor,
they may affect the function of the nervous system of non-target species, such as aquatic
organisms [13]. On the other hand, Subedi et al. showed that zebrafish (Danio rerio) larvae
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exposed to the mixtures of psychotic drug residues, including the benzodiazepines, had
affected immune system and gene expression [14].

Considering the high impact of pharmaceutical products, it is very important to
remove them from the wastewater before discharge. Several researches carried out in recent
years point to the use of advanced oxidation processes (AOPs) as innovative technologies
for the elimination of persistent pollutants [6,15–21].

For the degradation of DZP in aqueous medium, some studies report the use of
ozone [18], ultraviolet (UV) radiation, and its combination with oxidizing agents [6,22–24].
However, the most studied AOPs for drug degradation in water use gamma radiation and
high frequency ultrasound intensified with H2O2 and Fenton reagent [25,26].

In the present work, we studied the degradation of DZP in a synthetic matrix by
radical attack (HO•, e− (aq), H•, HO2

•) formed in the processes of radiolysis, sonolysis,
and photolysis in aqueous media as well as its intensification with H2O2 and the Fenton
reagent [26–28]. We hypothesize that the use of oxidizing agents will generate an additional
amount of highly reactive HO• radicals, allowing a greater efficiency in the degradation of
the molecule. Different parameters were optimized in the degradation processes to increase
the drug removal efficiency. These final conditions were applied in the analysis of samples
of real residual water.

2. Materials and Methods

For the DZP degradation studies, the three AOPs were carried out separately at an
initial concentration of 20 mg L−1 DZP (Sigma Aldrich, St. Louis, MO, USA) in acidified
distilled water, at pH values between 2 and 3, adjusted with a 10% solution of concentrated
H2SO4 (95–97% purity; Merck, Darmstadt, Germany).

Acetonitrile (HPLC grade purchased from Sigma-Aldrich) and orthophosphoric acid
(85% supplied by Merck) were used for the analysis by High Resolution Liquid Chro-
matography (HPLC). Hydrogen peroxide (35%) was obtained from Fluka. 99.5% potassium
iodide, 99.5% purity heptahydrate iron sulfate, and 98% sodium sulfite were purchased
from Merck.

For gamma irradiation of the samples, an ISOGamma-LLCo irradiator, equipped with
a 60Co source was used. The irradiation doses used were 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, and
5.0 kGy at a dose rate of 3.73 kGy h−1. All experiments were performed at a temperature of
30 ± 2 ◦C. In the experiments carried out with the gamma irradiation process, the aqueous
solutions of DZP were packed in 50 mL bottles with screw cap, which reached a thermal
equilibrium at room temperature and atmospheric pressure.

A high-frequency ultrasound horn (Meinhardtultraschall Technik, Leipzig, Germany)
with flat transducer was used for the studies of sonolysis. Frequencies values of 580 and
862 kHz, with varying power levels, were evaluated. The degradation was carried out in a
1.5 L glass reactor at a controlled temperature (25 ± 2 ◦C) and constant stirring at 300 m−1.

The laboratory-scale artificial photolysis was performed with a UV lamp of 254 nm and
a power of 11 watts. The degradation was performed in a 500 mL beaker with irradiated
area of 78.5 cm2 and a constant stirring at 300 m−1. The solar UV degradation scaling
process was carried out in a 5 L open channel flat reactor of (irradiated area of 1600 cm2)
connected to a 20 L recirculation tank at the rate of 1 L min−1.

For the processing of the liquid samples treated in the three processes, a Shimadzu
High Resolution Liquid Chromatograph was used, with a LC-20AD double channel pump,
an automated SIL-10AL injector, and a UV detector with SPD-M20A type arrangement.
The column used was a Merck reverse phase with modified C18 (100 mm × 4.6 mm,
5 µm) spherical silica packed in an isocratic regime with 1 mL min−1 flow, and a ratio of
acetonitrile: water acidified to pH 2 with H3PO4: methanol of 40:40:20 v/v. The injection
volume was 10 µL and the wavelength used was 230 nm.

The mineralization analysis of the samples was carried out using a Total Organic
Carbon Analyzer Shimadzu (TOC-V CSN), equipped with an infrared detector of the non-
dispersive type. The sample was injected at 50 µL and the combustion process was carried
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out in a quartz tube at 680 ◦C with a platinum catalyst. An oxygen flow of entrainment of
the vapors was used at a rate of 150 mL min−1. The mean relative error in each result was
less than 6% and 2% for TOC and HPLC, respectively.

The degradation and mineralization values of the experiments were calculated by
Equations (1) and (2).

Degradation (%) =
Ci − C f

Ci
× 100 (1)

where Ci is the initial concentration of diazepam and C f is the final concentration of
diazepam at a point other than the initial value.

Mineralization (%) =
TOCi − TOC f

TOCi
× 100 (2)

where TOCi is the initial value of the total organic carbon and TOCf is the total organic
carbon at the end of the reaction.

In the characterization of the radiolytic transformations of the solvent we used the
concept of radiolytic performance (G-value), referred to the number of molecules, free
radicals, ions, excited particles, among others, that form or decompose when the system
absorbs 100 eV of energy from ionizing radiation [29,30]. This factor is calculated according
to Equation (3).

G− value =
RNa

D(6.24× 1016)
(3)

where R is the change in concentration of diazepam (M), Na is the Avogadro number, D
is the absorbed dose (Gy), and 6.24× 1016 is the conversion factor of Gy to eV/L. For the
conversion of the G-value to mol J−1 multiplies by 1.04× 10−7 [31].

3. Results and Discussion
3.1. Effect of Operational Conditions on the Degradation of DZP by Radiolysis,
Sonolysis and Photolysis

Figure 1 shows the best conditions achieved in the process of degradation of DZP in
aqueous solutions at an initial concentration of 20 mg L−1 by sonolysis and radiolysis. In
the sonolysis process, three power values were tested for each frequency value used. For
the 580 kHz frequency, the electric power outputs were of 1.4, 8.7, and 21.8 Watt and for
862 kHz of 2.1, 10.4, and 30.6 Watt. In the photolytic degradation, a unidirectional 11 W
lamp was used. Figure 1 shows the results of DZP degradation by gamma radiation. It is
observed that at doses lower than 500 Gy, the degradation of DZP is very low. However,
for doses higher than 2500 Gy, a 100% elimination of the drug is obtained.

For doses below 500 Gy the G-value is low. In this case, the amount of DZP that
is degraded is less than 2% which may be associated with weak collisions between the
molecule and the radicals involved in the degradation process.

The drug degradation increases with adsorbed dose. At 1000 Gy an 83.4% elimination
of the DZP corresponding to a maximum G-value of 0.015 mol J−1 is reached. At dose
values above this point the G-value decays again since the degradation of the DZP reaches
100%, decreasing the probability that molecules are formed or destroyed in the system.

In the degradation of DZP by sonolysis a maximum at 180 min of 28.27% is obtained
at values of 862 kHz frequency and 30.6 watts of power. This is explained due to the fact
that at higher powers, cavitation bubbles are formed with high rupture energies which
generate a greater amount of HO• radicals, thus increasing the probability of interaction
with the molecule and its degradation.

In the degradation of DZP by photolysis a maximum of 37.97% was reached at 300 min
of irradiation. Although this degradation value is higher than that obtained by sonolysis,
the exposure time of the molecule to the radiation increases by 66%.
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3.73 kGy h−1); Lower: Influence of ultrasonic power and frequency on DZP degradation (initial con-
centration: 20 mg L−1, pH: 2.5). Min, med, and max refer to the minimal, medium and maximal value 
of the ultrasonic power for each studied value of ultrasonic frequency. 
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Figure 1. Degradation of DZP by gamma and utrasonic radiation. Upper: Influence of absorbed
dose on DZP degradation and radiolytic yield (initial concentration: 20 mg L−1, pH: 2.5, dose rate:
3.73 kGy h−1); Lower: Influence of ultrasonic power and frequency on DZP degradation (initial
concentration: 20 mg L−1, pH: 2.5). Min, med, and max refer to the minimal, medium and maximal
value of the ultrasonic power for each studied value of ultrasonic frequency.

3.2. Initial Effect of pH on Degradation of DZP

The initial pH is an important factor to study since it influences the chemical and
physical conditions of the solution. The effect of pH on the radiolytic, photolytic, and
sonolytic degradation of DZP (20 mg L−1) at doses of 750 Gy, with a mercury lamp of 11 W,
with a frequency of 862 kHz, and a power of 30.6 W.

The Figure 2 shows the influence of pH on DZP degradation. For radiolysis, drug
degradation decreases with increasing pH, whereas for sonolysis at pH values 3, 5, and 7,
degradation has a similar value (decreasing for pH 2.5 and 9).

Study of pH influence on sonolytic degradation shows that at pH 3, 5, and 7, the best
degradation values are achieved. This result is closely related to the pKa = 3.4 value of the
DZP corresponding to the carbonyl group present in its structure. This is explained by the
fact that in acidic medium the molecule is dissociated in its protonated form, where the
species with net positive charge, has an electrostatic interaction with the negative charges
that are present in the periphery of the cavitation bubble [32], facilitating the process of
drug degradation. In contrast, at pH less than 3, the degradation process is deprived, and
hydrogen peroxide molecules formed (Equations (4)–(7)) can protonate and form more
stable species such as H3O2

+, and or radicals HO• can be attacked by the H+ limiting the
degradation process [32]. On the other hand, in basic medium (pH 9), there is practically
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no presence of charged species in the dissociation equilibrium, so the interaction with
the cavitation bubbles is much smaller [32]. Similar results have been obtained by other
authors who report that the ultrasonic degradation of different compounds is higher in
acid medium, which is also influenced by the fact that in this medium the HO• radicals
present a higher oxidation potential [33,34].
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Figure 2. Influence of the pH of the solution on the sonolytic, radiolytic and photolytic degradation of
the DZP (c (DZP) = 20 mg L−1, T = 25 ◦C, US: v (agitation) = 300 m−1; f = 862 kHz, t =180 min Gamma:
D = 750 Gy,

.
D = 3.73 kGy h−1, UV: P = 11 W, λ = 254 nm, v (agitation) = 300 m−1, t = 300 min).

H2O + US→ H• + HO• (4)

HO• + OH− → H2O + O− k = 1.2× 1010 M−1s−1 (5)

HO• + H2O→ H2O2 + H• (6)

HO•ac + HO•ac → H2O2 (ac) k = 5.5× 109 M−1s−1 (7)

For radiolysis, increasing pH leads to a decrease in the degradation of DZP. On the
other hand, in acidic medium the hydrated electron is more likely to react with the H+ and
form the radical H+ by Equation (9) favoring the recombination reaction (Equation (8)).
In the alkaline medium, the dissociation of the HO• radical occurs, so degradation of the
drug is not favored (Equations (8)–(10)). Different authors report the same behavior in the
radiolytic degradation of other drugs with increasing pH [35–37].

H• + HO• → H2O k = 7.0× 1010 M−1s−1 (8)

e−
(ac) + H3O+

(ac) → H• + H2O k = 2.3× 1010 M−1s−1 (9)

HO• ↔ H+
(ac) + O•(ac) pKa = 11.9 (10)

In the case of UV radiation, the effect of the initial pH was studied only for the
value 2.5. In a previous publication, this studied was carried out for a similar lamp to the
one used here, showing that best degradation results are obtained for pH value of 2.5 [38].

3.3. Effect of Hydrogen Peroxide on the Degradation of DZP by Sonolysis, Radiolysis
and Photolysis

In the combined process of photolysis and sonolysis with H2O2, an increase in the
formation of the hydroxyl radical occurs (Equation (11)), which is the main responsible for
the degradation of the molecule. By radiolysis the formation of HO• radicals is intensified,
due to the interaction of H2O2 with the solvated electron and the hydronium radical present
in the water radiolysis (Equations (9) and (11)) [31,39].

H• + H2O2 → HO• + H2O k = 9.0× 107 M−1s−1 (11)
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Likewise, excess OH• radicals in the medium can cause a decrease in the removal
efficiency of the compound in the system. This is due to the fact that radicals tend to
recombine at a very high reaction rate, as shown by Equations (7), (8) and (12)–(14) [31].

HO• + H2O2 → HO•2 + H2O k = 2.7× 108 M−1s−1 (12)

HO•2 + HO• → H2O + O2 k = 6.0× 109 M−1s−1 (13)

HO• + e−aq → OH− k = 3.0× 1010 M−1s−1 (14)

For DZP degradation study shown in Figure 3, a 20 mg L−1 solution of DZP at pH 2.5
for sonolysis, and pH 3 for photolysis and radiolysis was used. The power and working
frequency was 30.6 W and 862 kHz, respectively, for the sonolysis. A 254 nm lamp with
a power of 11 W was used for UV radiation, and the irradiation dose was 750 Gy for
gamma radiation.
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Figure 3. Influence of the addition of hydrogen peroxide on degradation of DZP
(c (DZP) = 20 mg L−1, T = 25 ◦C, t = 10 min US: v (agitation) = 300 m−1; f= 862 kHz, pH = 3. Gamma:
D = 750 Gy,

.
D = 3.73 kGy h−1, pH = 2.5, UV: v (agitation) = 300 m−1, λ = 254 nm, P = 11 W, pH = 2.5).

In the three AOPs combined with H2O2 the DZP removal is intensified. For sonolysis
and radiolysis, a maximum of 45.41% and 91.16% for a concentration of 5.9 mmol L−1

of H2O2 is reached. For the photolysis the maximum removal of 22.2% is achieved at
2.95 mmol L−1 of H2O2 decreasing for the higher concentration of oxidant used. This can
be associated to processes of radical recombination, (Equations (3)–(5)) [21]. In general, the
efficiency of the degradation process followed the order: AOPs with H2O2 > AOPs > H2O2.

The addition of H2O2 increases the efficiency of AOPs for the removal of contaminants
in aqueous medium (You et al., 2021), obtaining the best results with the combination
gamma/H2O2 as has been reported in other studies [31].

3.4. Effect of the Fenton Reagent on the Degradation of DZP by Sonolysis,
Radiolysis and Photolysis

In Fenton processes, the HO• radicals are generated by the catalytic decomposition
of H2O2 using Fe3+ ions in acid medium at pH in the 2–4 range [40]. This method facili-
tates a high formation of HO• (Equation (15)), however an excess of Fe2+ can trap them
(Equation (15)), such as halogens, H2O2, or HO2

• (Equation (16)) [31].

Fe2+ + H2O2 → Fe3+ + OH− + HO• k = 63 M−1s−1 (15)

HO• + HO•2 → H2O + O2 k = 1.0 ·1010 M−1s−1 (16)
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Table 1 shows the results of the degradation and mineralization of DZP by photolysis,
sonolysis, and radiolysis combined with the Fenton reagent. Experiment 9 of each opti-
mization series was repeated three times to verify the reproducibility of the experiments. In
all three AOPs with the Fenton reagent, a 100% degradation is achieved for the H2O2/Fe2+

ratio and concentration values of 5.9 mmol L−1. The best experimental condition in which
the maximum mineralization for the three AOPs is reached corresponds to the H2O2/Fe2+

ratio of 29 with values of 4.42 mmol L−1 and 0.15 mmol L−1, of hydrogen peroxide and
ferrous salt, respectively.

Table 1. Evaluation of degradation of diazepam intensified with Fenton reagent
(c (DZP) = 20 mg L−1 , T = 25 ◦C, % D at 10 min, % M at 30 min US: v (agitation) = 300 m−1

P = 30.6 W; f = 862 kHz; pH = 3. Gamma: D = 750 Gy;
.

D = 3.73 kGy h−1 ; pH = 2.5. UV:
v (agitation) = 300 m−1 ; λ = 254 nm; P = 11 W; pH = 2.5).

Run H2O2
(mmol L−1)

Fe2+

(mmol L−1)

Fenton Sono-Fenton Gamma-Fenton Photo-Fenton

% D % M % D % M % D % M % D % M

1 - - 13.2 27.4 1.1 - - - 13.2 27.4
2 5.90 0.59 98.0 7.3 100 14.3 100 37.5 100 10.6
3 5.90 0.20 78.2 4.3 80.8 17.9 94.9 51.2 86.7 14.8
4 5.90 0.12 71.1 2.8 74.8 17.4 92.8 50.1 46.5 14.5
5 2.95 0.29 89.6 1.9 100 14.4 96.1 48.7 79.9 14.0
6 2.95 0.10 73.2 2.1 74.3 19.4 96.3 58.4 64.3 16.9
7 2.95 0.06 51.3 3.0 58.7 18.3 96.4 56.7 35.8 16.4
8 4.42 0.44 97.2 9.6 100 15.0 96.5 53.0 98.1 15.2
9 4.42 0.15 71.6 ± 2.5 7.6 ± 0.8 65.9 ± 2.3 23.6 ± 1.1 95.3 ± 1.8 68.3 ± 2.7 47.7 ± 1.9 19.7 ± 0.7
10 4.42 0.09 69.1 4.9 59.0 22.5 95.3 66.0 37.0 19.3

The Fenton reagent alone can remove the DZP by 98% for the H2O2/Fe2+ ratio value
of 10 with concentrations of 5.9 mmol L−1. In spite of their high percentage of elimina-
tion of the drug, only 9.6% of mineralization is obtained for the ratio 10 H2O2/Fe2+ at
concentrations of 4.44 mmol L−1 and 0.44 mmol L−1, respectively.

A multiple regression analysis yielded a mathematical model to evaluate the influence
of H2O2 and Fe2+ concentrations on DZP mineralization for each AOPs.

For the case of the US the percentage of mineralization responds to Equation (17) for
a level of significance lower than 0.05 with a correlation coefficient of 0.89. The variable
(Fe2+)2 is not statistically significant and H2O2 concentration is proved to be the variable
with the highest incidence in the mineralization process. Equation (18) represents the
variation of mineralization for the photo-Fenton process.

% M = −9.24− 44.37
[
Fe2+

]
+ 15.92[H2O2]− 1.88[H2O2]

2 + 5.99
[
Fe2+

]
[H2O2] (17)

% M = −33.32− 60.50
[
Fe2+

]
+ 49.12[H2O2]− 155.21

[
Fe2+

]2
− 6.17[H2O2]

2 + 24.30
[
Fe2+

]
[H2O2] (18)

where % M represents the percentage of mineralization, [Fe2+] the concentration of Fe2+,
and [H2O2] the concentration of H2O2.

From the model the response surface and the isoline curves (Figure 4) of the miner-
alization were constructed as a function of H2O2 and Fe2+ concentrations. The mineral-
ization reaches a maximum higher than 22.5% for values ranging from 3.6 mmol L−1 to
5.0 mmol L−1 for H2O2, progressively decreasing with the increase of the catalyst. This
may be due to the fact that the amount of Fe2+ in the system begins to interact with the
HO• radicals, which decreases the process mineralization yield.

For the case of gamma radiation, the model adequately describes the experiment
according to Equation (19) with a correlation coefficient of 0.99. All coefficients of the model
are significant for a significance level of less than 0.05.
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% M = −10.08− 18.44
[
Fe2+

]
+ 14.49[H2O2]− 42.82

[
Fe2+

]2
− 1.81[H2O2]

2 + 6.87
[
Fe2+

]
[H2O2] (19)

Taking into account previous experiences using response surface methodology for
optimizing AOPs [41], this procedure was used in this work. The response surface and the
isoline curves were also constructed (Figure 4) where the mineralization reaches a maximum
of 17.5% for H2O2 concentration values ranging from 3.3 mmol L−1 to 5.0 mmol L−1 and
concentrations of Fe2+ lower than 0.3 mmol L−1 displaced towards an increase in the
concentration of the former.

3.5. Evaluation of Energy Efficiency in the Degradation of DZP with AOPs

The estimation of energy consumption is an essential criterion for evaluating the most
efficient AOPs in water treatment. A total of four criteria were used to estimate energy
consumption in the degradation by radiolysis, photolysis, and DZP sonolysis. The first is
the one proposed by Bolton and Carter in 1994, where the electric power is determined by
order of magnitude (EE/O) (Equation (20)), which is expressed in kWh L−1 and represents
the energy required to degrade a liter of polluted with the drug water [30,42]. The second
is the DW (Equation (21)) which expresses the amount of energy needed to degrade a
milligram of pollutant and its unit of measure is kWh mg−1 [31].

EE/O =
Pt

Vlog
(

Co
C f

) (20)

where P is the consumption power at the facility (kW), t the irradiation time (h), V the
volume of the treated water (L), Co and Cf the initial and final concentrations in the working
solution (mg L−1).

DW =
Pt(

Co − C f

)
V

(21)

where (Co − Cf)V is the mass of the degraded contaminant (mg).
Energy efficiency in mineralization was evaluated using the criteria (EE/O) and c

(DW) through Equations (22) and (23). The (EE/O) c represents the amount of energy per
carbon needed to treat a Liter of contaminant and the (DW) c amount of carbon energy
needed to degrade one milligram of pollutant.

EE/O =
Pt

Vlog
(

TOCo
COTf

) (22)

DW =
Pt(

TOCo − TOC f

)
V

(23)
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where P is the power of the equipment (kW), t the process energy consumption time (h), V
is the effective volume (L), TOCo the initial total organic carbon, and TOCf the final total
organic carbon.

In the study of energy efficiency, nine processes are compared in which three AOPs
are used: radiolysis, photolysis, sonolysis, and their combination with oxidizing agents
such as H2O2 and Fenton reactive. Experimental conditions were analyzed in which the
best % degradation of DZP for each process and its combination with the oxidizing agents
were reached.

The best results in the comparison of energy efficiency are found in the combination
of AOPs with the Fenton reactive allowing to decrease irradiation times of 40 to 12 min for
gamma-Fenton, 180 to 10 min in Fenton sleep and 300 to 10 min in photo-Fenton.

In Table 2, we report the best values obtained for energy efficiency for each studied
process. The best results are obtained for the photo-Fenton reaction.

Table 2. Energy consumption in the degradation and mineralization (*) of DZP in sonolysis, photolysis
and radiolysis. NA, not available.

Process Time
(min)

EE/O
(kWh L−1)

DW
(kWh mg−1)

* (EE/O)
(kWh L−1)

* (DW)
(kWh mg−1)

Gamma 40 1.2 2.9 × 10−1 NA NA
Gamma-H2O2 12 1.7 9.7 × 10−2 NA NA

Gamma-Fenton 12 3.3 × 10−1 8.8 × 10−2 17.8 1.0
Sonolysis 180 2.5 6.5 × 10−2 NA NA

Sono-H2O2 60 4.7 × 10−1 1.3 × 10−2 NA NA
Sono-Fenton 10 3.9 × 10−3 1.0 × 10−3 0.5 2.0 × 10−2

Photolysis 300 1.1 2.9 × 10−2 NA NA
Foto-H2O2 300 1.3 × 10−1 1.1 × 10−2 NA NA

Foto-Fenton 10 1.4 × 10−3 3.7 × 10−4 0.2 8.0 × 10−3

3.6. Study of the Photo-Fenton Process with Solar Radiation in a Real Wastewater

Based on the positive results obtained in the experiments on the degradation of DZP at
laboratory scale using the photo-Fenton process, it was decided to scale-up this process to a
flat open-channel reactor with a reaction volume of 20 L. The experiments used sunlight as
the energy source, combined with Fenton’s reagent. The wastewater sample was taken at
the entrance of the “María del Carmen” wastewater treatment plant in Havana city, Cuba.

Three degradation experiments of DZP were carried out at a concentration of 20 mg L−1

for each molecule. The first experiment was carried out with technical water doped with
the studied molecule, using the concentration of H2O2 and Fe2+ ions that were the most
efficient in the photo-Fenton process with artificial UV light. For DZP, an H2O2 concen-
tration of 5.9 mmol L−1 and an Fe2+ ion concentration of 0.59 mmol L−1 were used. The
second experiment was carried out with wastewater doped with 20 mg L−1 of diazepam
and the same concentrations of H2O2 and Fe2+ ions. In the third experiment, the COD of
the wastewater sample was considered and the concentrations of H2O2 and Fe2+ ions to
be used were recalculated, they were 11.6 mmol L−1 and 1.16 mmol L−1 respectively. The
actual wastewater was previously characterized as established in NC 27:2012, Table 3.

As can be seen in Figure 5, 10 min after the reaction started a total degradation was
achieved for the molecule in the technical water. This behavior was similar to that obtained
in the photo-Fenton process with artificial UV at the same concentrations of H2O2 and Fe2+

ions. In the study, a total degradation of the DZP was obtained 30 min after the start of
the reaction.

By increasing the concentration of the Fenton reagent, taking into account the COD of
the wastewater, the total degradation of DZP was reached 10 min after the reaction started,
a value that indicate the need of knowing the complexion of the matrix to improve the
degradation process, and reaffirms the competitiveness of the organic molecules present in
the wastewater for the HO• radicals formed in the process.
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Table 3. Analysis of wastewater before and after photo-Fenton treatment with sunlight.

Parameters Waste Water Treated Water Efficiency (%) NC 27: 2012

Temperature (◦C) 27 26 - <40
pH 7.65 7.32 - 6–9

Conductivity (µS cm−1) 1085 ± 1 87 ± 1 91.9 <2000
CO (mg of O2 L−1) 188 ± 30 61.4 ± 6 67.3 <90

BOD5
(mg of O2 L−1) 91 ± 1 36.5 ± 1 59.8 <40

Settleable solids (mL L−1) 2.5 ± 0.1 0 100 <2
Floating material present absent - -

Iron (mg L−1) 0.91 0 100 -

TOC (mg de C L−1) 86.4 32.9 *
23.7 **

61.9
72.6 -

* TOC value at 30 min; ** TOC value at 120 min.
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Figure 5. DZP degradation by photo-Fenton of technical water, wastewater without taking into
account COD, and wastewater taking into account COD. [DZP] = 20 mg L−1; pH 3.

The diazepam highest mineralization values, 61.9% and 72.6%, were reached at 30
and 120 min from the start of the reaction respectively, witnessing an increase of 14.6%
between the intervals measured 90 min apart. This result is of great importance since
although total degradation is obtained for DZP, there is a substantial increase in the per
cent of mineralization at 120 min with respect to that achieved in technical water with the
application of Fenton’s reagent alone (12%), with a difference in the mineralization reached
of 60.6% in both processes.

Taking in account the possible industrial application of this process in combination
with other conventional treatments for wastewater, photo-Fenton is applicable before
biological treatment. This is highly favorable since the microorganisms responsible for
the remission of contaminants are not capable of eliminating these molecules. It is also
important to note that the photo-Fenton process guarantees a satisfactory value of efficiency
in the reduction of BOD5 (59.8%) and COD (67.3%), that reduces the times of residence of
the water in the system and increase the volume to be treated each day.

4. Conclusions

1. The three processes of advanced oxidation, sonolysis, radiolysis, and photolysis
combined with the Fenton reagent guarantee the total degradation of diazepam in
synthetic matrices and more than 80% in a real matrix with partial mineralization.

2. Diazepam sonolysis guarantees 28% degradation of the drug at 30.6 W and 862 kHz
at 3 h of experimentation, while with photolysis 38% is achieved after 5 h. With the
increase of the dose of irradiation increases the degradation of the drug for doses
greater than 500 Gy, reaching the total degradation for a dose of 2500 Gy. In all cases,
the process is favored in acidic conditions, with the best results for the ultrasonic and
photolytic study at pH 2.5 and for the radiolytic at pH 3.
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3. The combination of the processes with hydrogen peroxide guarantees the intensifica-
tion of the same to the 10 min with an increase in more than 30%, 63%, and 21% for
the sonolytic, radiolytic, and photochemical degradation, respectively.

4. Integration of the processes with Fenton reagent guarantees the total elimination of
the drugs at 10 min in a synthetic matrix, and an increase in mineralization by more
than 16%, 60%, and 12% for sonolytic, radiolytic degradation, and photochemistry,
respectively.

5. All of the criteria for the evaluation of the energy consumption agree that the photo-
Fenton process constitutes the one with the lowest energy consumption for the degra-
dation of diazepam in the water matrix.

6. The degradation of the DZP in real residual water gave the best results in the ex-
periments where the COD was taken into account to adjust the H2O2, and Fe2+

concentrations. The photo-Fenton process guarantees total degradation using solar
radiation as a source of energy after 10 min. A decrease in COD, and BOD5 of waste
water was achieved below the limits required by NC-27-2012 for classification B. The
gamma-Fenton process guarantees maximum efficiency in decreasing COD, BOD5,
and TOC with 89.2%, 82.1%, and 88.1%, respectively.
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