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Abstract: Burgeoning swarm intelligence techniques have been creating a feasible theoretical com-
putational method for the modeling, simulation, and optimization of complex systems. This study
aims to increase the coverage of a wireless sensor network (WSN) and puts forward an enhanced
version of the sparrow search algorithm (SSA) as a processing tool to achieve this optimization. The
enhancement of the algorithm covers three aspects. Firstly, the Latin hypercube sampling technique
is utilized to generate the initial population to obtain a more uniform distribution in the search
space. Secondly, a sine cosine algorithm with adaptive adjustment and the Lévy flight strategy are
introduced as new optimization equations to enhance the convergence efficiency of the algorithm.
Finally, to optimize the individuals with poor fitness in the population, a novel mutation disturbance
mechanism is introduced at the end of each iteration. Through numerical tests of 13 benchmark
functions, the experimental results show that the proposed enhanced algorithm can converge to the
optimum faster and has a more stable average value, reflecting its advantages in convergence speed,
robustness, and anti-local extremum ability. For the WSN coverage problem, this paper established
a current optimization framework based on the swarm intelligence algorithms, and further inves-
tigated the performance of nine algorithms applied to the process. The simulation results indicate
that the proposed method achieves the highest coverage rate of 97.66% (on average) among the nine
algorithms in the calculation cases, which is increased by 13.00% compared with the original sparrow
search algorithm and outperforms other methods by 1.47% to 15.34%.

Keywords: swarm intelligence; wireless sensor network; modeling; simulation; coverage optimiza-
tion; sparrow search algorithm

1. Introduction

A wireless sensor network (WSN) is a practical intelligent information acquisition
system composed of a certain number of sensor nodes with communication, computing,
sensing, and other functions deployed in the area to be monitored. Owing to its advantages
of economic applicability and fault tolerance, WSNs have been increasingly prevalent
in agricultural management [1], intelligent medical services [2,3], advanced communica-
tion [4], and Internet of Things (IoT) [5,6]. By and large, the design of a WSN confronts
many constraints and challenges, and the coverage optimization for monitoring areas
is a fundamental issue that any type of WSNs need to solve [7]. In some scenarios, the
application of a WSN is restricted by the actual physical conditions. Random deployment
is the simplest method, but it often leads to uneven distribution, high overlap, and low
coverage, which remarkably affects the quality of service for a WSN. Consequently, an
intelligent nodes deployment method is necessary. As one direct means of implementation,
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the deployment optimization of sensor nodes is of great significance to improve the sensing
performance and work efficiency of a WSN.

In recent years, metaheuristics have provided flexible solutions to various optimization
problems. As an efficient branch, swarm intelligence has the characteristics of coevolution
and more robust population optimization [8,9], which has attracted the attention of many
scholars and has made some progress in the application study of WSN coverage optimiza-
tion. Liao W et al. (2011) [10] and Yoon Y et al. (2013) [11], respectively, proposed sensor
nodes deployment schemes based on the ant colony optimization algorithm and genetic
algorithm for the problem, which increased the coverage area of a WSN and extended its
service life. Wang L et al. (2018) [12] used the reverse learning strategy to improve the
whale optimization algorithm and applied it to a probability-aware WSN model to enhance
its coverage. Wang X et al. (2018) [13] improved particle swarm optimization by using
the resampling method based on particle swarm optimization to ensure the activity of
the population to a certain extent and applied the optimized algorithm to the coverage
control problem. Miao Z et al. (2020) [14] proposed an improved grey wolf optimizer
that consolidated the leadership of α gray wolf, and the applicability of the algorithm has
been confirmed in the solution of WSN coverage optimization. Zhu F et al. (2021) [15]
proposed a node simulation optimization method based on the improved weed algorithm
before the actual deployment of the network. By introducing the differential evolution
strategy and the disturbance mechanism, the improved algorithm has a more efficient
convergence speed and a deployment scheme that can guide manual or robot placement of
nodes is obtained. Mohammad Shokouhifar (2021) [16] proposed a practical multi-objective
optimization algorithm based on the combination of the whale optimization algorithm and
simulated annealing. With the objective function of maximizing the network coverage and
minimizing the total cost, it has been successfully applied to radio frequency identification
(RFID) network planning in the hospital environment, greatly reducing the total cost of the
RFID network and achieving the goal of tracking medical assets. He Q et al. (2022) [17]
proposed a marine predator algorithm with dynamic inertia weight and a multi-elite learn-
ing mechanism, which has improved the WSN coverage rate compared with the original
algorithm. However, the improved algorithm converges slowly in the early iterations,
which leads to unstable coverage. In this problem, the coverage optimization algorithms
based on swarm intelligence are capable of obtaining the deployment schemes of sensor
nodes more conveniently through the black box operation mechanism. In these cases, the
performance of the algorithm is a key factor affecting the deployment quality. Hence, it
is also crucial to perfect the algorithm, which can considerably make a difference to the
results of WSN coverage optimization.

In this context, by correcting the defects of the sparrow search algorithm [18], this
paper introduces a WSN sensor nodes deployment optimization method based on the aug-
mentation of SSA, and names the new algorithm as a novel enhanced SSA (NESSA). Firstly,
NESSA uses Latin hypercube sampling (LHS) to initialize the population, which ensures
that the initial variables can effectively cover the search space and facilitates the rationality
of the initial population distribution compared with the original random initialization
method. Secondly, from the perspective of improving the performance and applicability
to specific optimization problems, the original version is enhanced by using a sine cosine
algorithm iteration and Lévy flight strategy, respectively. The results obtained are validated
by the experimental data feedback and have achieved good performance in the subsequent
WSN coverage optimization. Finally, based on the warning disturbance mechanism of the
original algorithm, NESSA introduces a disruption phase for the population with poor
fitness. Its principle is to utilize the information of the optimal individual to guide the
worse population, so as to improve their optimization quality. This measure enriches the
diversity of the population and is conducive to boosting the convergence and efficiency
of the algorithm. To sum up, the contributions of our paper are mainly reflected in the
following three aspects:
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• A novel enhanced SSA version is implemented from the perspective of applicability
and utilized to maximize the WSN coverage rate.

• A swarm intelligence applicable optimization process for the WSN coverage enhance-
ment problem is established.

• The performance of other well-known swarm intelligence algorithms in WSN coverage
optimization is further investigated and analyzed.

The rest of the paper is organized in the following manner. In Section 2, we first
discuss the iterative mechanism of SSA and clarify the motivation for the improvement
in this study, then expound in detail on the mathematical model of NESSA based on the
augmentation part, and finally use the benchmark functions to conduct a numerical com-
parison experiment on the enhanced version to verify the effectiveness of the improved
strategy. In Section 3, we introduce the mathematical model of WSN coverage optimization
and set up a universal optimization process based on the swarm intelligence algorithm.
Then, we further investigate the coverage optimization performance of nine swarm intelli-
gence algorithms for three cases under this framework. In Section 4, we summarize some
conclusions of this paper and look forward to future research directions.

2. Mathematical Model of Optimization Algorithm

The beginning of this section discusses the standard SSA metaheuristics, describing
its known drawbacks. The improvement strategies to overcome these shortcomings are
provided in detail and a novel enhanced SSA metaheuristics is proposed. Finally, the
performance of the new algorithm is validated by numerical experiments.

2.1. Overview of the Standard SSA Metaheuristics

The standard SSA metaheuristic is a swarm intelligence algorithm proposed by Jiankai
Xue et al. (2020) [18]. Its motivation comes from the foraging behavior of the sparrow
population and the biological characteristics of avoiding natural enemies. To make the
algorithm work in the actual optimization, SSA idealizes the sparrow individuals through
several approximation rules and divides the constructed mathematical model into the
following four iterative stages.

2.1.1. Initialization of Sparrow Population

SSA initializes the population in the form of random distribution, and the sparrows
used for searching can be expressed as xi = (x1,d, x2,d, . . . , xi,d), where d represents the
dimension of the optimization problem variable. Generally, when all sparrow individuals
have the same boundary, the randomly initialized population is:

X = rand(pop, d)× (ub− lb) + lb (1)

where X represents the sparrow population, rand(pop, d) represents a random number matrix
of pop× d, and ub and lb represent the upper and lower boundaries of sparrows, respectively.

2.1.2. The Producer Update Phase

SSA stipulates that producers are sparrows with the highest fitness in the population,
are the learning objects of other individuals, and play a role in providing an evolutionary
direction for the whole population. The updated equation for the producer is as follows:

xt+1
i =

{
xt

i · exp(− i
α·Itermax

), R2 < ST

xt
i + Q · L, R2 ≥ ST

(2)

where t is the current iteration, Itermax is the maximum iteration, α is the random number
on (0,1], Q is the random number subject to a Normal Distribution, and L is the ones matrix
of 1× d. R2 ∈ [0, 1] and ST ∈ [0.5, 1] represent the alarm value and the safety threshold,
respectively, which are used as the adjustment parameters of the producer. In this paper, R2
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is set as the random value, while ST is defined as a fixed value of 0.8, which is consistent
with the reference [18].

2.1.3. The Scrounger Update Phase

SSA defines the part whose fitness ranks behind all producers as the scrounger. These
sparrows follow producers to improve their locations in the search space and are a supple-
ment to producers. Their identities are in dynamic balance with producers in each iteration.
The updated equation for the scrounger is as follows:

xt+1
i =


Q · exp

(
xt

worst−xt
i

i2

)
, i > pop/2

xt
p +

∣∣∣xt
i − xt

p

∣∣∣ · A+ · L, else
(3)

where xp is the best location found by the producer, xt
worst is the current worst location, A

is a 1× d matrix, its internal elements are 1 or −1, and A+ = AT(AAT)
−1, Q and L are the

same as Equation (2).

2.1.4. The Scouter Update Phase

After the iteration of producers and scroungers, SSA randomly selects a certain propor-
tion of sparrows in the population as scouters and updates their locations in each iteration.
The updated equation for the scouter is as follows:

xt+1
i =


xt

best + β ·
∣∣xt

i − xt
best

∣∣, fi > fbest

xt
i + K ·

(
|xt

i−xt
worst|

( fi− fworst)+ε

)
, fi = fbest

(4)

where xt
best is the current global optimal location, β and K are the control parameters, fi is

the individual fitness, and ε is a minimal constant to avoid the denominator being 0, which
is set as 1× 10−8, fbest and fworst, respectively, represent the current global optimal fitness
and the worst fitness.

2.2. Motivation for Improvements

Although previous studies have indicated that SSA has made significant progress in
some practical challenges in the engineering field [19,20], these successful applications are
often established based on the improved algorithms [21–24]. Solving the defects faced by
standard SSA and adopting more appropriate improvement strategies to supplement and
replace the algorithm framework are crucial prerequisites for attaining better performance
indicators in engineering problems. For the iterative framework of standard SSA, we have
the following conclusions to expound.

For the initialization phase of SSA, mapping variables in the search space using the
random method tends to cause a lack of population diversity and a reduction in the ability
to resist local extremum, which harms the convergence speed and accuracy of the algorithm.
Thus, improving the quality of the initial population is meaningful work. Moreover, SSA
also faces the disadvantage that the convergence becomes slower in the later iteration.
Through the analysis of Equation (2), it can be seen that the update of producers is only
affected by the individuals of the previous generation and lacks the guidance of the global
optimal solution. When R2 < ST, the value range of the population is gradually reduced
by the influence of exp

(
− i

α·Itermax

)
[25], forming a typical “narrow search mode” tending

to zero. Although this strategy facilitates the development ability of the algorithm and
enables it to deeply mine the current region, in solving some problems, it is more necessary
to ensure the breadth of the search scope and to find a promising area in the search space.
Consequently, the current strategy at this phase is not always applicable. In addition,
enhancing the exploration ability of scroungers to boost the chances of turning them into
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producers can reduce the possibility of the algorithm falling into stagnation, and effectively
disturb the individuals with lower fitness ranking, which is helpful with the algorithm to
search for the global optimal solution of the problem more efficiently.

It is worth noting that, as the “no free lunch” theorem reveals [26], no learning
algorithm can provide the best solution to all problems. Hence, based on extensive empirical
simulation, this study considers the improvement of SSA from the application side of WSN
coverage optimization and enables the designed new algorithm to attain positive feedback
results in the simulation test of the benchmark functions.

2.3. Proposed Novel Enhanced SSA Metaheuristics

A novel enhanced SSA version proposed in this study addresses issues of the standard
SSA by assimilating the following strategies:

• Uniform population initialization based on Latin hypercube sampling;
• The sine and cosine iteration equations for the producer update phase;
• The scrounger update phase with Lévy flight;
• The disruption phase acts on the worse population with poor fitness.

2.3.1. Latin Hypercube Sampling Initialization

Latin hypercube sampling (LHS) is a multidimensional stratified sampling technique
proposed by McKay et al. (1979) [27], which has the advantage of obtaining tail sample
values under fewer sampling conditions.

Assuming that the sample size is 30, the distribution of LHS and random method in
[0, 1] under two-dimensional conditions is illustrated in Figure 1. It can be seen that the
sample distribution generated by LHS is wider than the area covered by the random one,
and it meets the randomness of sampling [28]. Thus, LHS can form more uniform points in
the search space, improve the diversity of the population, and lay a solid foundation for
the optimization of the algorithm.
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Figure 1. Comparison of two initialization methods.

The steps of initializing the sparrow population using the LHS strategy with uniform
stratification and equal probability sampling are as follows:

(1) The population pop, dimension d, and the boundary of individual sparrows [lb, ub] are set.
(2) The [lb, ub] of each individual is divided into three sub-intervals that do not overlap

each other and have the same probability.
(3) One point is randomly selected from each sub-interval.
(4) The points extracted from each dimension are combined to form an initial population.
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2.3.2. Sine and Cosine Iteration Equations

The hybrid strategy can integrate the advantages of different metaheuristics and often
bring more reliable and efficient optimization solutions to the problem [29]. Similar to
SSA, the sine cosine algorithm (SCA) is also a metaheuristic method based on population
optimization. It was proposed by Mirjalili (2016) [30] with the characteristics of simplicity
and effectiveness, which is composed of only one set of iterative equations, as shown below:

xt+1
i =

{
xt

i + r1 · sin(r2) ·
∣∣r3 · xbest − xt

i

∣∣, r4 < 0.5

xt
i + r1 · cos(r2) ·

∣∣r3 · xbest − xt
i

∣∣, r4 ≥ 0.5
(5)

where r2, r3 and r4 are random numbers, and r2 ∈ (0, 2π), r3 ∈ (0, 2), and r4 ∈ (0, 1), r1 is
the control factor as follows:

r1 = a− t · a
Itermax

(6)

where a is a constant. The function of r1 is to adjust the exploration and development
process of the algorithm, and its essence is an inertia weight that decreases linearly with it-
eration. In this paper, we modify Equation (5), apply r1 to the current iteration location xt

i to
further play its role in the adaptive adjustment of the algorithm, and introduce the modified
equation into the SSA optimization framework as a new updated producer strategy:

xt+1
i =

{
r1 · xt

i + r1 · sin(r2) ·
∣∣r3 · xbest − xt

i

∣∣, R2 < ST

r1 · xt
i + r1 · cos(r2) ·

∣∣r3 · xbest − xt
i

∣∣, R2 ≥ ST
(7)

Furthermore, the simulation results show that the value of constant a can affect the
convergence of the hybrid algorithm. By solving the sphere function, Figure 2 shows the
iterative trajectory of six hybrid algorithms with different a values when d = 100, pop = 30,
and Itermax = 500.
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Six algorithms with different a values can successfully find the optimal value 0 of the
sphere function. It can be seen from Figure 2 that the convergence speed of the algorithm
gradually increases with the decrease in the parameter value. When a = 0.0005, the hybrid
algorithm can converge in less than 50 iterations. When a < 0.0005, the reduction in
iteration is no longer significant. Hence, this paper sets a = 0.0005 to ensure that the
enhanced version has a faster convergence speed.



Processes 2022, 10, 1691 7 of 28

2.3.3. Lévy Flight Strategy

As a supplement to the producer in the population, scroungers usually concentrate
on a narrow region under the influence of the local optimal, which makes the algorithm
premature. It will also slow down the evolution of scroungers into producers and reduce
the diversity of the search process.

Lévy flight is one special random walk, which can provide a certain probability of
large-scale disturbance for the algorithm [31]. When scroungers fall into the local optimal,
they can step into a wider area for optimization according to the generated random step
size, which improves the exploration ability of the algorithm. Thus, we designed the Lévy
flight strategy for the scrounger update phase. The new scrounger update strategy is
as follows:

xt+1
i = xt

p + xt
p · Lévy(d) (8)

where d is the dimension, and the Lévy function is calculated as follows:

Lévy(x) = 0.01× λ1 · σ

|λ2|
1
β

(9)

where λ1 and λ2 are random numbers on [0,1], β is a constant, which is taken as 1.5 in this
paper, and σ is calculated as follows:

σ =

[
Γ(1 + β) · sin(π · β/2)

Γ((1 + β)/2) · β · 2(β−1)/2

] 1
β

(10)

where Γ(x) = (x− 1)!, x belongs to the set of natural numbers.

2.3.4. Disruption Phase

The simulation of the disruption phenomenon is a disturbance operation inspired
by astrophysics and proposed by Sarafrazi et al. (2011) [32]. It is realized by adding a
disruption factor to the gravitational search algorithm (GSA) [33]. The purpose is to prevent
premature convergence and activate the exploration ability of the algorithm. In this study,
we introduce the disruption factor to effectively disturb the part with poor fitness in the SSA
population, define Xw(w = k + 1, k + 2, . . . , pop) as the worse population in the algorithm,
and calculate the equation of boundary k is as follows:

k =

[
3 · pop

4
+ pop · (0.5− t

Itermax
)

3]
(11)

The disruption phase is designed to disturb Xw to improve the flexibility of the
algorithm to solve complex application problems. The principle of this phase is to define
the Euclidean distances between the target individual i and its adjacent individual j and
the current optimal individual as Ri,j and Ri,best respectively, and conduct the disturbance
to e when the following conditions are met:

Ri,j

Ri,best
< C (12)

where C is the threshold value to prevent the complexity of the algorithm from increasing
too much. When the algorithm does not converge, a larger C enables individuals to explore
more space, and with the iteration, its value should become smaller to speed up the
convergence of the algorithm. Therefore, C is designed as a variable, and the calculation
equation is as follows:

C = θ ·
(

1− t
Itermax

)
(13)
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where θ is the initial threshold. Reference [28] indicates that θ = 100 is the most appro-
priate value. When the conditions of Equation (12) are satisfied, disturbance to the target
individual is conducted through the following equation:

xt+1
i,w =

t
Itermax

· xt
i,w +

(
1− t

Itermax

)
· xt

i,w · D (14)

where D is the disruption factor, and its calculation equation is as follows:

D =


U
(
− Ri,j

2 ,
Ri,j
2

)
, Ri,best ≥ 1

Ri,j + U
(
− Ri,j

2 ,
Ri,j
2

)
, else

(15)

where U is a random number subject to the Uniform Distribution from − Ri,j
2 to

Ri,j
2 . When

Ri,best > 1, means i is far from the optimal individual, and D is utilized to guide it for
exploration. On the contrary, when Ri,best ≤ 1, which means i is near the optimal individual,
D will conduct it to develop. Hence, Equation (14) contains two parts: the first part

t
Itermax

· xt
i,w is the original population information, and the other part

(
1− t

Itermax

)
· xt

i,w ·D

includes the disturbance process to the algorithm. Because
(

1− t
Itermax

)
is decreasing,

i satisfying the condition will be disturbed more in the early iteration, so it can explore
a wider area and reduce the probability of falling into the local extremum. In the later
iteration, the convergence mainly depends on the current population information, which
ensures the algorithm can achieve rapid convergence.

2.3.5. Operation Process of NESSA

In this study, we named the algorithm introduced in Sections 2.3.1–2.3.4 as the novel
enhanced sparrow search algorithm (NESSA), and its flowchart is shown in Figure 3.

2.4. Benchmark Function Numerical Tests

The performance evaluation of the enhanced version depends on the resulting feed-
back of the benchmark functions. Taking SSA, SCA, particle swarm optimization (PSO) [34],
the whale optimization algorithm (WOA) [35], and the gray wolf optimizer (GWO) [36] as
the comparisons, we tested the performance of NESSA on 13 sets of benchmark functions
of different types. The operating system used is windows 10 (64 bit), the environment
is Intel (R) core (TM) i7-6700h CPU @ 2.60 GHz 2.60 GHz, and all programs are run by
MATLAB R2018b, which is developed by MathWorks company in the United States. The
benchmark functions are shown in Table 1.

2.4.1. Parameter Settings

Based on the fairness of the experimental results, the six algorithms are tested when
pop = 30 and Itermax = 500. The parameters to be set are as follows: PSO: learning factor
c1 = c2 = 1.49445, weight ω = 0.729. WOA: the logarithmic spiral shape parameter b = 1.
GWO: convergence factor α = 2×

(
1− t

Itermax

)
. SCA: control parameter a = 2. SSA: safety

threshold ST = 0.8, the proportion of producers PD = 0.2, the proportion of scouters
SD = 0.1. NESSA: safety threshold ST = 0.8, the proportion of producers PD = 0.2, the
proportion of scouters, control parameter a = 0.0005, the initial threshold of disruption
phase θ = 100. It should be noted that due to the randomness of metaheuristics, the above
parameters are set based on artificial experimental experience [37], and a suitable parameter
selection scheme is conducive to a more effective algorithm.
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Table 1. Benchmark functions.

Benchmark Equation d Range Fmin

Bent Cigar Function F1(x) = x2
1 + 106

d
∑

i=2
x2

i
100 [−100, 100] 0

Sum of Different
Powers Function F2(x) =

d
∑

i=1
|xi |i+1 100 [−100, 100] 0

Rotated Hyper–Ellipsoid
Function F3(x) =

d
∑

i=1

i
∑

j=1
x2

j
100 [−65, 65] 0

Zakharov Function F4(x) =
d
∑

i=1
x2

i +

(
d
∑

i=1
0.5ix2

i

)2

+

(
d
∑

i=1
0.5ix2

i

)4
100 [−5, 10] 0

Sum Squares Function F5(x) =
d
∑

i=1
ixi

2 100 [−10, 10] 0

Quartic Function F6(x) =
d
∑

i=1
ix4

i + random(0, 1) 100 [−1.28, 1.28] 0

Sphere Model F7(x) =
d
∑

i=1
xi

2 100 [−100, 100] 0

Schwefel’s problem 2.22 F8(x) =
d
∑

i=1
|xi |+

d
∏
i=1
|xi | 100 [−10, 10] 0

Schwefel’s problem 1.2 F9(x) =
d
∑

i=1

(
i

∑
j=1

xj

)2

100 [−100, 100] 0

Schwefel’s problem 2.21 F10(x) = maxi{|xi |, 1 ≤ i ≤ d} 100 [−100, 100] 0

Rastrigin’s Function F11(x) =
d
∑

i=1
[x2

i − 10 cos(2πxi) + 10] 100 [−5.12, 5.12] 0

Ackley’s Function F12(x) = −20 exp

(
−0.2

√
1
D

d
∑

i=1
xi

2

)
− exp

(
1
D

d
∑

i=1
cos(2πxi)

)
+ 20+ e 100 [−32, 32] 0

Kowalik’s Function F13(x) =
11
∑

i=1

[
ai −

xi(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.000307
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2.4.2. Analysis of Test Results

Based on the objectivity of the data, each test runs independently 50 times, takes the
average value, standard deviation, and calculation time (s) as the final evaluation criteria,
and ranks the six algorithms based on the mean results, which are recorded in Table 2.
Moreover, the boxplot is drawn to illustrate the characteristic information of each algorithm
solving the benchmark functions, and the Wilcoxon test is utilized to indicate the statistical
differences between the six algorithms, as shown in Table 3.

The types of the above benchmarks include unimodal and multimodal. When the
dimension is 100, it can be seen from the test data in Table 2 that the adaptability of PSO
and SCA is weak; only F13 achieves results close to the optimal value, while there is a large
gap in other tests. The average accuracy of WOA ranks 1st one time and 2nd six times. On
the whole, WOA performs better than GWO and SSA. However, when solving F4, F9, and
F10, it performs poorly, and GWO also has the same shortcomings. Although SSA is not
as accurate as WOA in several benchmarks, it shows strong stability, and there is no large
deviation from the optimal value in all tests.

On this basis, NESSA proposed in this paper inherits the relatively stable advantages
of SSA, further promotes the convergence accuracy, obtains the best average accuracy in
all tests, and has significant advantages in robustness compared with other algorithms,
which proves the effectiveness and feasibility of the improved strategy in performance.
Furthermore, the calculation time of the proposed algorithm is slightly shorter than that
of the standard SSA. This is because NESSA utilizes the shorter sine and cosine iteration
equation and the Lévy flight strategy to replace the original iteration, which improves the
operation efficiency of the algorithm. Hence, NESSA, with the disruption phase, does not
increase the time complexity of the algorithm in general. In addition, PSO has the fastest
running speed, and other rankings are WOA > SCA > GWO > NESSA > SSA. However, the
time difference between NESSA and the fastest one in any test is not more than 1 s, but the
accuracy and robustness are greatly improved.

The Wilcoxon test is utilized to indicate the statistical performance difference between
NESSA and other algorithms by comparing the p-value [38]. In this study, the significance
level is taken as 0.05. If the p-value is less than 0.05, it indicates that there is a significant
difference between NESSA and the algorithm. Otherwise, it means that there is no sig-
nificant difference between the two algorithms. N/A also means that the performance of
the two algorithms is the same, so they cannot be compared. From the data recorded in
Table 3, we can see that in most comparisons (62/65), the p-value is less than 0.05, indicating
that the optimization results of Nessa are statistically significantly different from other
algorithms, further revealing the superiority of the proposed algorithm. Figures 4–16 show
the optimization details of the six algorithms on the benchmark function. Through the
iterative trajectory and boxplot, we can learn more about the differences between NESSA
and other algorithms.

The visual model of the benchmark function reflects the distribution of each feasible
solution in the search space, which is illustrated by contour lines and color bars. The
iteration trajectory reflects the convergence speed of the search process and can measure
the optimization efficiency of the algorithm. The boxplot shows the solution information of
50 independent runs of each algorithm, which reflects the stability of the results.

From the iteration trajectory of fitness, we can see that NESSA can converge to the
optimal value in less than 50 iterations from F1 to F5, F7, F9, F11 to F12, with the fastest
convergence speed among the six algorithms, which reflects a better optimization effi-
ciency. Compared with other algorithms, NESSA can effectively avoid falling into the
local extremum. The boxplot of NESSA illustrates that there is no abnormal value that
is significantly different from the optimal value in the optimization of each benchmark
function, which further indicates that the proposed algorithm has good robustness.
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Table 2. Test results of six algorithms.

Benchmark Result PSO WOA GWO SCA SSA NESSA

F1

Mean 1.8905 × 1010 4.6133 × 10−64 1.3138 × 10−6 1.0975 × 1010 5.8424 × 10−45 0

Std. 5.0627 × 109 2.5180 × 10−63 1.2085 × 10−6 8.4216 × 109 4.1233 × 10−44 0

Time 0.1162 0.1712 0.3835 0.3062 0.9161 0.7782

F2

Mean 8.9275 × 105 1.3847 × 10−67 4.9847 × 10−11 4.9191 × 105 6.0385 × 10−41 0

Std. 2.6495 × 105 9.3225 × 10−67 4.5438 × 10−11 3.6447 × 105 4.2699 × 10−40 0

Time 0.0927 0.1735 0.3772 0.2986 0.9762 0.7717

F3

Mean 3.7963 × 105 6.6164 × 10−71 2.5773 × 10−11 1.4308 × 105 5.9923 × 10−46 0

Std. 9.1736 × 104 2.4545 × 10−71 1.7921 × 10−11 9.7908 × 104 4.2372 × 10−45 0

Time 0.2379 0.2991 0.5325 0.4151 1.1570 1.0807

F4

Mean 6.5223 × 109 1.7066 × 103 1.1456 × 102 6.7071 × 102 9.3710 × 10−44 0

Std. 4.2494 × 1010 2.9734 × 102 5.3017 × 101 1.3924 × 102 6.6262 × 10−43 0

Time 0.1069 0.1659 0.3756 0.3171 0.8996 0.7399

F5

Mean 9.0534 × 103 4.3646 × 10−71 6.5252 × 10−13 3.5847 × 103 5.1037 × 10−34 0

Std. 2.4400 × 103 3.0630 × 10−70 5.7752 × 10−13 23976 × 103 3.6089 × 10−33 0

Time 0.0992 0.1761 0.3991 0.2775 0.9566 0.8670

F6

Mean 1.3882 × 101 2.9906 × 10−3 7.2474 × 10−3 1.4196 × 102 2.9581 × 10−4 7.2163 × 10−5

Std. 6.2807 4.1427 × 10−3 2.3951 × 10−3 5.7890 × 101 2.2796 × 10−4 7.7187 × 10−5

Time 0.3111 0.3877 0.5716 0.5165 1.1721 0.8637

F7

Mean 1.9774 × 104 1.9564 × 10−71 1.6134 × 10−12 1.2025 × 104 3.0173 × 10−49 0

Std. 4.6507 × 103 1.1392 × 10−70 1.3372 × 10−12 7.9423 × 103 1.5383 × 10−48 0

Time 0.0850 0.1792 0.3643 0.2922 0.9325 0.6870

F8

Mean 1.3447 × 102 5.9195 × 10−49 4.2666 × 10−8 9.0974 9.1117 × 10−29 0

Std. 2.7261 × 101 3.1623 × 10−48 1.6837 × 10−8 7.4861 5.7121 × 10−28 0

Time 0.0921 0.1825 0.4209 0.2790 0.9327 0.7957

F9

Mean 1.2283 × 105 1.0690 × 106 6.5699 × 102 2.3771 × 105 8.2407 × 10−43 0

Std. 6.4941 × 104 2.3307 × 105 8.9532 × 102 6.0667 × 104 5.6712 × 10−42 0

Time 0.6435 0.7011 0.8707 0.8089 1.3878 1.1600

F10

Mean 3.2619 × 101 7.8270 × 101 8.8309 × 10−1 8.9710 × 102 1.7378 × 10−29 0

Std. 3.7684 2.3100 × 101 8.1956 × 10−1 2.7997 1.0589 × 10−28 0

Time 0.1178 0.1680 0.3698 0.2757 0.8630 0.7585

F11

Mean 7.5226 × 102 0 1.0379 × 101 2.6752 × 102 0 0

Std. 4.5534 × 101 0 8.4162 1.3756 × 102 0 0

Time 0.1505 0.1919 0.3981 0.3133 0.9070 0.6757

F12

Mean 1.3862 × 101 4.2988 × 10−15 1.2197 × 10−7 1.8467 × 102 8.8818 × 10−16 8.8818 × 10−16

Std. 8.0286 × 10−1 2.3762 × 10−15 4.1440 × 10−8 4.6796 0 0

Time 0.1359 0.1838 0.3957 0.3415 0.9276 0.7167

F13

Mean 8.5555 × 10−3 5.9264 × 10−4 5.4827 × 10−3 1.0546 × 10−3 2.3203 × 10−3 3.2338 × 10−4

Std. 1.3163 × 10−2 3.1154 × 10−4 1.2621 × 10−2 3.8164 × 10−4 6.0756 × 10−3 1.1952 × 10−5

Time 0.0652 0.0783 0.0711 0.0727 0.1702 0.2031
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Table 3. Wilcoxon p-value test results.

Benchmark NESSA vs. PSO NESSA vs. WOA NESSA vs. GWO NESSA vs. SCA NESSA vs. SSA

F1 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 4.6715 × 10−19

F2 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 1.6907 × 10−18

F3 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 4.6715 × 10−19

F4 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 1.6907 × 10−18

F5 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20

F6 7.0661 × 10−18 1.1738 × 10−15 7.0661 × 10−18 7.0661 × 10−18 3.5360 × 10−9

F7 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 1.6907 × 10−18

F8 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 1.2593 × 10−19

F9 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 4.6715 × 10−19

F10 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 3.3111 × 10−20 1.2593 × 10−19

F11 3.3111 × 10−20 N/A 3.3111 × 10−20 3.3111 × 10−20 N/A
F12 3.3111 × 10−20 1.1011 × 10−14 3.3111 × 10−20 3.3111 × 10−20 N/A
F13 1.5991 × 10−4 9.0593 × 10−10 1.4307 × 10−3 1.1417 × 10−17 8.7729 × 10−9Processes 2022, 10, 1691 13 of 31 
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At present, improved SSA versions based on different strategies have been proposed
by scholars. In this paper, the sparrow search algorithm based on the Sobol sequence and
crisscross strategy (SSASC), the improved sparrow search algorithm combining the sine
search and the diversity mutation processing (ISSA1), and the improved sparrow algorithm
combining Cauchy mutation and opposition-based learning (ISSA2) in the references [39–41]
are selected as a comparison, and further tests are conducted on 12 benchmark functions
of 500 dimensions. All parameter settings are the same as SSA, and each algorithm runs
50 times independently.

In the initialization phase, ISSA1 and the original SSA adopt the random population
method, while SSASC and ISSA2 adopt the chaotic sequence generated by the Sobol map
and the Sin map as the initial population, respectively. In the iteration phase, the three
improved SSA versions all introduce dynamic inertia weights into the iterative equations,
which played an adaptive role in adjusting the algorithm. In addition, SSASC introduces
the concept of the genetic algorithm (GA) [42] to optimize the fitness of some individuals
by crossover and mutation in each iteration. ISSA1 implements Cauchy mutation on the
individuals trapped in the local optimum to improve the diversity of the population. ISSA2
adds a reverse learning strategy based on the Cauchy mutation of ISSA1, and the two
operations are performed alternately according to the selection probability in each iteration.

Similar to NESSA, the above three improved SSA versions have made efforts in balanc-
ing the local search and global exploration of the algorithm, and also have supplemented
the mutation mechanism in each iteration, which has improved the ability of the algo-
rithm to escape the local extremum. However, the convergence characteristics introduced
by different iterative equations need to be further investigated on the high-dimensional
benchmark functions. Table 4 shows the solution results of SSA, SSASC, ISSA1, ISSA2, and
NESSA on F1 to F12 when the dimension is 500, and their iterative trajectories are provided
in Figure 17.
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Table 4. Test results of five algorithms.

Benchmark Algorithm Mean Std. Time p-Value

F1

SSA 6.1212 × 10−41 4.1750 × 10−40 9.3090 1.6907 × 10−18

SSASC 0 0 12.9206 N/A

ISSA1 4.6707 × 10−80 1.7467 × 10−79 9.2791 7.3684 × 10−16

ISSA2 8.3657 × 10−176 3.0297 × 10−175 9.2900 3.3111 × 10−20

NESSA 0 0 7.5399

F2

SSA 3.1521 × 10−42 2.9376 × 10−41 9.2487 4.6715 × 10−19

SSASC 0 0 11.7667 N/A

ISSA1 1.1675 × 10−122 7.7152 × 10−121 9.5825 1.4596 × 10−12

ISSA2 6.7188 × 10−198 3.8761 × 10−197 9.5071 3.3111 × 10−20

NESSA 0 0 7.2796

F3

SSA 2.0271 × 10−43 1.4299 × 10−42 16.5706 1.2593 × 10−19

SSASC 0 0 23.7165 N/A

ISSA1 5.3247 × 10−76 3.7646 × 10−75 12.3822 5.2454 × 10−13

ISSA2 2.8774 × 10−181 2.0346 × 10−180 13.2727 3.3111 × 10−20

NESSA 0 0 14.8767

F4

SSA 1.5016 × 10−41 9.7589 × 10−41 9.3427 4.6715 × 10−19

SSASC 0 0 12.7269 N/A

ISSA1 1.9506 × 10−88 1.3375 × 10−87 9.3298 1.4596 × 10−12

ISSA2 4.5823 × 10−182 3.2275 × 10−181 9.5706 3.3111 × 10−20

NESSA 0 0 6.9401

F5

SSA 1.8602 × 10−32 1.3011 × 10−31 9.8776 3.3111 × 10−20

SSASC 0 0 14.4102 N/A

ISSA1 5.3900 × 10−63 3.8108 × 10−63 9.1247 1.4596 × 10−12

ISSA2 1.5771 × 10−107 1.0312 × 10−107 9.4143 3.3111 × 10−20

NESSA 0 0 7.7876

F6

SSA 1.0350 × 10−3 6.8883 × 10−4 11.0312 1.7355 × 10−15

SSASC 1.5502 × 10−4 1.3788 × 10−4 15.2722 8.5865 × 10−4

ISSA1 3.6258 × 10−4 2.5674 × 10−4 10.9255 9.4565 × 10−12

ISSA2 2.4691 × 10−4 3.0829 × 10−4 11.1934 2.8105 × 10−12

NESSA 7.7617 × 10−5 6.6362 × 10−5 7.5121

F7

SSA 1.3791 × 10−46 9.6292 × 10−46 9.0189 1.2593 × 10−19

SSASC 0 0 12.5317 N/A

ISSA1 1.3618 × 10−70 1.7302 × 10−71 9.2598 1.4596 × 10−12

ISSA2 3.2087 × 10−163 2.2657 × 10−162 9.4015 3.3111 × 10−20

NESSA 0 0 7.2973

F8

SSA 4.3985 × 10−25 2.6406 × 10−24 9.2677 3.3111 × 10−20

SSASC 0 0 13.7007 N/A

ISSA1 8.5571 × 10−38 4.5731 × 10−37 8.8911 7.3687 × 10−16

ISSA2 2.0627 × 10−97 1.4497 × 10−96 9.0786 3.3111 × 10−20

NESSA 0 0 7.0836
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Table 4. Cont.

Benchmark Algorithm Mean Std. Time p-Value

F9

SSA 5.9257 × 10−37 4.1898 × 10−36 14.3982 4.6715 × 10−19

SSASC 0 0 23.2557 N/A

ISSA1 1.2759 × 10−56 9.0185 × 10−55 14.3770 1.4596 × 10−12

ISSA2 8.7874 × 10−186 6.1896 × 10−185 15.3228 3.3111 × 10−20

NESSA 0 0 12.7107

F10

SSA 2.7796 × 10−21 1.4596 × 10−20 9.1717 3.3111 × 10−20

SSASC 0 0 13.9827 N/A

ISSA1 1.2358 × 10−61 6.1296 × 10−60 9.0212 2.0607 × 10−17

ISSA2 5.7257 × 10−92 4.0786 × 10−91 9.1532 3.3111 × 10−20

NESSA 0 0 6.5867

F11

SSA 0 0 9.1857 N/A

SSASC 0 0 15.5796 N/A

ISSA1 0 0 9.3172 N/A

ISSA2 0 0 9.3216 N/A
NESSA 0 0 6.6278

F12

SSA 8.8818 × 10−16 0 9.2862 N/A

SSASC 8.8818 × 10−16 0 11.7655 N/A

ISSA1 8.8818 × 10−16 0 9.1125 N/A

ISSA2 8.8818 × 10−16 0 9.3269 N/A

NESSA 8.8818 × 10−16 0 6.7362

It can be seen from Table 4 that the average value of SSA in all tests has slightly
decreased due to the increased dimensions of the benchmark functions, while the accuracy
of F11 and F12 is maintained at a high level. For the three different improved algorithms,
the average values obtained by them are more accurate than the standard SSA from F1 to
F10. Among them, SSASC has the best performance, and its results are the same as NESSA
in terms of numerical value, with the highest accuracy and the smallest standard deviation,
representing the stability of the solution. However, SSASC has the longest running time and
is slower than SSA in all tests, while NESSA is the shortest, which indicates the superiority
of the proposed algorithm in terms of iteration efficiency. It can be seen from the iterative
trajectory in Figure 17 that NESSA maintains a fast convergence speed, and it can converge
to the optimum in less than 50 iterations from F1 to F5, F7, F9, and F11 to F12. It is also the
algorithm with the highest convergence speed among the four improved SSA versions,
which, once again, reflects the better optimization efficiency.
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3. WSN Coverage Optimization

In this section, we introduce a coverage optimization framework of WSN based on
the swarm intelligence algorithm, follow the parameter conditions in Section 2.4.1, and
further discuss the optimization performance of NESSA concerning application problems
in three cases.

3.1. Mathematical Modeling

In a WSN, sensor nodes are the basic unit for sensing and collecting external in-
formation and the coverage rate of all nodes can reflect the monitoring and tracking of
information in the region, which is an essential embodiment of WSN service quality [43–45].
Hence, this paper takes the coverage rate as the evaluation index of coverage optimization
and focuses on the maximization of coverage rate in monitoring areas.

Assume S is a l× l two-dimensional plane in which n sensor nodes with the same attributes
are placed, which is defined as c = (c1, c2, · · · , cn). Each node has the same sensing radius r and
communication radius R and meets R = 2r, where ci = (xi, yi), i = 1, 2, · · · , n represents a
closed circular area with (xi, yi) as the center and r as the radius. The area S is discretized into
p× q target points, and their coordinates are defined as zj =

(
xj, yj

)
, j = 1, 2, . . . , p× q, then

the Euclidean distance from the sensor node to the target point can be expressed as follows:

d
(
ci, zj

)
=
√(

xj − xi
)2

+
(
yj − yi

)2 (16)
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the Boolean model is utilized to describe the probability that any target point zj is covered
by the sensor node ci as follows:

p
(
ci, zj

)
=

{
1, d(ci, z) ≤ r

0, else
(17)

where p(ci, zj) is the sensing probability. If d ≤ r is satisfied, it indicates that the target
point has been covered by the sensing node. In the monitoring area, if the target point can
be sensed by multiple sensor nodes, the joint sensing probability of zj is defined as follows:

p
(
c, zj

)
= 1−

n

∏
i=1

(
1− p

(
ci, zj

))
(18)

where p
(
c, zj

)
is the joint sensing probability, n is the number of sensor nodes of the node,

and c is the set of all sensors. Then, the WSN coverage rate can be expressed as the ratio
of the number of target points covered by the sensor set to all target points in the region,
as follows:

pcov =

m×n
∑

j=1
p
(
c, zj

)
m× n

(19)

where pcov is the area coverage. In this paper, Equation (19) is utilized as the objective
function of the WSN coverage optimization problem to find an effective node deployment
scheme that can increase pcov.

3.2. Optimization Process Based on Swarm Intelligence Algorithms

In this study, swarm intelligence algorithms optimize the deployment coordinates of
sensor nodes to maximize the coverage of the monitoring area. In the two-dimensional
plane, the dimension value of an individual is twice the number of sensor nodes. The 2ith
and 2i− 1th dimensions are the x-axis coordinates and y-axis coordinates of the ith sensor
node, respectively, and each individual in the population represents a deployment scheme
containing the coordinates of all sensor nodes. Take Equation (19) as the objective the
function of the swarm intelligence algorithm; that is, the individual with the best fitness in
the population, represents the deployment scheme with the largest coverage rate.

In the simulation, the parameters to be set include the side length of the monitoring
area l, the number of sensors n, the sensing radius r, the discrete step size Step, the number
of populations pop, the maximum number of iterations Itermax, and the control parameters
of the specific algorithm. The universality process of using a swarm intelligence algorithm
to optimize the application problem is as follows, and its flowchart is shown in Figure 18.

(1) Relevant parameters of the monitoring area and specific control parameters of the
swarm intelligence algorithm are set.

(2) The population is initialized and the initial coverage rate is obtained by calculating
the objective function.

(3) The algorithm iterates circularly to update the location of individuals in the search space.
(4) The objective function value is evaluated to find the optimal individual with the best

fitness; that is, the current optimal node deployment scheme is obtained.
(5) Whether the maximum number of iterations is reached is determined. If yes, the

algorithm is terminated and the optimal coverage rate and corresponding node
coordinates are output. Otherwise, step 3 is repeated to continue the program, and
one is added to the current iterations.
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3.3. Case Studies

Based on the coverage optimization framework of the swarm intelligence algorithm,
we further investigate the optimization performance of PSO, WOA, GWO, SCA, SSA,
NESSA, and the three different improved SSA versions (SSASC, ISSA1, and ISSA2) in three
WSN deployment cases. The control parameters of all algorithms are the same as those in
Section 2.4.1, and the general parameters are set as pop = 30, Itermax = 500, and Step = 1.
Each case runs 30 times independently and records the optimal value, average value,
standard deviation, and running time(s) of the coverage rate as the evaluation indicators of
the optimization performance.

3.3.1. Case 1

In case 1, the monitoring area is a two-dimensional square plane of 30 × 30 (m2),
which is discretized into 31 × 31 target points, in which 20 sensor nodes with the same
structure are deployed, and the sensing radius of each node is r = 5 (m). Table 5 records the
optimization results of case 1. The coverage rate obtained by each algorithm and the node
deployment scheme is shown in Figures 19 and 20.

Table 5. Optimization results for case 1.

Algorithm
Coverage Rate p-Value

vs. NESSA
Average Time

Optimal Worst Mean Std.

PSO 0.9771 0.9344 0.9585 1.2067 × 10−2 1.1960 × 10−12 11.2371
WOA 0.9812 0.9094 0.9521 1.6991 × 10−2 1.2019 × 10−12 11.5263
GWO 1.0000 0.9906 0.9983 2.0740 × 10−3 1.2045 × 10−7 14.1711
SCA 0.9282 0.8607 0.8937 1.6331 × 10−2 1.2049 × 10−12 12.7758
SSA 0.9563 0.8821 0.9190 2.2586 × 10−2 1.2039 × 10−12 15.1322

SSASC 0.9625 0.8533 0.9116 2.8690 × 10−2 1.2049 × 10−12 40.0176
ISSA1 0.9823 0.8595 0.9433 2.7137 × 10−2 1.1921 × 10−12 14.2296
ISSA2 0.9761 0.8824 0.9205 2.2727 × 10−2 1.2198 × 10−12 14.8573

NESSA 1.0000 1.0000 1.0000 0 14.7867
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Figure 20. Node deployment of nine algorithms for case 1.

For the monitoring area of case 1, NESSA can stably achieve the optimization results
of complete coverage in 30 independent tests, and the p-value obtained from the Wilcoxon
test is always less than 0.05, which is significantly different from other algorithms. GWO
can also achieve the optimal result of 100% coverage of the region, but its stability is not
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as good as NESSA. It can be seen from Figure 19 that GWO only obtains a faster rising
speed in the later iterations and maintains a low coverage rate in the earlier iterations.
The optimization process of NESSA can achieve the optimal coverage rate in less than
40 iterations on average. Moreover, the average coverage rate of PSO and WOA reached
more than 95%, ahead of 91.90% of SSA and 89.37% of SCA. Compared with the standard
SSA, NESSA has boosted the optimal, worst, and average coverage rate by 4.37%, 11.79%,
and 8.10%, respectively, which validates the effectiveness of the improved strategy. We
can see the result distribution of each algorithm through the boxplot. Since the coverage
rate of NESSA in 30 independent tests is always 100%, its boxplot is a straight line, while
the results of other algorithms show the divergent state to a certain extent, which further
indicates that the proposed algorithm has high stability and solution performance.

For the three improved SSA versions, the average coverage rates of ISSA1 and ISSA2
are lower than NESSA by 5.67% and 7.95%, respectively, and 2.43% and 0.15% higher than
the standard SSA. Compared with NESSA, their improvement in case 1 is not significant.
SSASC is even lower than the standard SSA by 0.74%, and the time spent is 2.7 times that
of the proposed method. Although SSASC has reached a higher optimal coverage rate
than the standard SSA, the results obtained in 30 tests are not stable, which can also be
confirmed from the boxplot.

Subfigures a–i in Figure 20 correspond to PSO, WOA, GWO, SCA, SSA, NESSA,
SSASC, ISSA1, and ISSA2, respectively. Through observation, it can be seen that the node
distribution optimized by NESSA is more uniform than other algorithms, and the effective
coverage of the region is realized.

3.3.2. Case 2

In case 2, the monitoring area is a two-dimensional square plane of 20 × 20 (m2),
which is discretized into 21 × 21 target points, in which 24 sensor nodes with the same
structure are deployed, and the sensing radius of each node is r = 2.5 (m). Table 6 records
the optimization results of case 2. The coverage rate obtained by each algorithm and the
node deployment scheme is shown in Figures 21 and 22.

Table 6. Optimization results for case 2.

Algorithm
Coverage Rate p-Value

vs. NESSA
Average Time

Optimal Worst Mean Std.

PSO 0.8707 0.7619 0.8057 2.1728 × 10−2 2.8809 × 10−11 7.1351
WOA 0.8367 0.7607 0.7973 2.1916 × 10−2 2.9045 × 10−11 7.4728
GWO 0.9387 0.7437 0.9057 3.8881 × 10−2 8.7576 × 10−9 7.5063
SCA 0.7709 0.7233 0.7421 9.9217× 10−3 2.8287 × 10−11 6.7501
SSA 0.7981 0.7188 0.7572 1.8913 × 10−2 2.8827 × 10−11 8.8687

SSASC 0.8752 0.7528 0.8215 2.9191 × 10−2 2.8682 × 10−11 21.6326
ISSA1 0.8357 0.7486 0.7878 2.1933 × 10−2 2.8871 × 10−11 8.6371
ISSA2 0.8299 0.7211 0.7680 2.2973 × 10−2 2.8682 × 10−11 9.1599

NESSA 0.9523 0.9161 0.9371 9.6561 × 10−3 7.7711

NESSA continued its high-performance advantage in the optimization of case 2, and
finally achieved an average coverage rate of 93.71. Compared with 90.57% of GWO, the
optimal and the worst of NESSA are higher than 1.36% and 17.24%, respectively, while the
average values of other algorithms are below 90%. The minimum standard deviation of
NESSA indicates that the results have high stability, which is further shown in the boxplot.
It can be seen from Figure 21 that the divergent state of NESSA results is smaller and
there is no abnormal value. Furthermore, different from the acceleration of GWO at the
later iterations, the coverage curve of NESSA has been ahead of other algorithms since the
beginning of iterations and has finally increased by 15.42%, 19.73%, and 17.99%, respectively,
in terms of optimal, worst and average value compared with the original version.
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Figure 22. Node deployment of nine algorithms for case 2.

In case 2, SSASC, ISSA1, and ISSA2 increased their average coverage rates by 6.43%,
3.06%, and 1.08% based on the standard SSA. Compared with NESSA, their improvement
is still not significant, and the coverage optimization effect is not ideal. It can be seen from
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the node distribution in Figure 22 that similar to PSO, WOA, SCA, and SSA, the three
improved algorithms also have large monitoring blind areas, while NESSA can better avoid
this situation, and its node distribution shows a better uniformity than GWO, which further
confirms the feasibility of the proposed method in coverage optimization.

3.3.3. Case 3

In case 3, the monitoring area is a two-dimensional square plane of 100 × 100 (m2),
which is discretized into 101 × 101 target points, in which 50 sensor nodes with the same
structure are deployed, and the sensing radius of each node is r = 10 (m). Table 7 records
the optimization results of case 3. The coverage rate obtained by each algorithm and the
node deployment scheme is shown in Figures 23 and 24.

Table 7. Optimization results for case 3.

Algorithm
Coverage Rate p-Value

vs. NESSA
Average Time

Optimal Worst Mean Std.

PSO 0.9378 0.8958 0.9171 1.2070 × 10−2 2.9972 × 10−11 195.7561
WOA 0.9507 0.8888 0.9264 1.4455 × 10−2 2.9953 × 10−11 201.8856
GWO 0.9925 0.9687 0.9818 5.7332 × 10−3 1.8486 × 10−10 207.3233
SCA 0.8756 0.7897 0.8337 1.5766 × 10−2 2.9953 × 10−11 197.1167
SSA 0.8862 0.8271 0.8636 1.2899 × 10−2 2.9935 × 10−11 208.3121

SSASC 0.9411 0.7082 0.8532 6.1694 × 10−2 3.0161 × 10−11 702.6788
ISSA1 0.9447 0.8913 0.9156 1.3141 × 10−2 2.9972 × 10−11 216.7396
ISSA2 0.9207 0.8522 0.8770 1.3337 × 10−2 3.0161 × 10−11 219.6671

NESSA 0.9957 0.9885 0.9927 1.8950 × 10−3 202.7887
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In case 3, the number of discrete target points has reached 10201, so the complexity of
the calculation process is significantly improved, and the running time of each algorithm is
correspondingly increased. However, the slowest SSASC reaches 702 s, 3.2 to 3.6 times that
of other algorithms, about 500 s slower than NESSA, and 13.95% lower than NESSA in the
average coverage rate; ISSA1 and ISSA2 are also lower than NESSA by 7.71% and 11.57%,
respectively. We can see from Figure 23 that the coverage curve of NESSA continues to
maintain the leading trend. After 30 tests, it finally reaches the average value of 99.27%,
which is increased by 10.95%, 16.14%, and 12.91% in terms of the optimal, worst, and
average values compared with the original version. From the boxplots listed above, the
results of NESSA show high concentration and stability. The optimization result of GWO
is only inferior to that of NESSA, reaching an average value of 98.18%, better than that of
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WOA, 92.64%, PSO, 91.71%, and ISSA1, 91.56%, while the optimal of ISSA1, SSA and SCA
does not exceed 90%.

Although the three improved SSA versions have better accuracy than the standard SSA
algorithm in the tests of benchmark functions, they perform mediocrely in the optimization
of coverage enhancement, and the results contrast sharply with the method proposed in
this paper, which fully illustrates that the applicability of the improved algorithms based
on different iteration mechanisms to the same problem is not completely consistent, and
the specific performance of the algorithms needs to be further verified in simulation tests.
In the three calculation cases, SSASC, ISSA1, and ISSA2 obtained an average coverage rate
of 86.21%, 88.22%, and 85.52%, respectively. NESSA achieved the highest average coverage
rate of 97.66% among the nine algorithms, which increased by 13.00% compared with the
standard SSA algorithm, followed by 96.19% of GWO, 89.37% of PSO, 89.19% of WOA, and
82.32% of SCA with the worst performance.

Processes 2022, 10, 1691 28 of 31 
 

 

 

  

Figure 23. Coverage rate curves and boxplots for case 3. 

In case 3, the number of discrete target points has reached 10201, so the complexity 
of the calculation process is significantly improved, and the running time of each algo-
rithm is correspondingly increased. However, the slowest SSASC reaches 702 s, 3.2 to 3.6 
times that of other algorithms, about 500 s slower than NESSA, and 13.95% lower than 
NESSA in the average coverage rate; ISSA1 and ISSA2 are also lower than NESSA by 
7.71% and 11.57%, respectively. We can see from Figure 23 that the coverage curve of 
NESSA continues to maintain the leading trend. After 30 tests, it finally reaches the aver-
age value of 99.27%, which is increased by 10.95%, 16.14%, and 12.91% in terms of the 
optimal, worst, and average values compared with the original version. From the boxplots 
listed above, the results of NESSA show high concentration and stability. The optimiza-
tion result of GWO is only inferior to that of NESSA, reaching an average value of 98.18%, 
better than that of WOA, 92.64%, PSO, 91.71%, and ISSA1, 91.56%, while the optimal of 
ISSA1, SSA and SCA does not exceed 90%. 

   

   

0 100 200 300 400 500
Iteration

0.75

0.80

0.85

0.90

0.95

1.00

PSO
WOA
GWO

SCA
SSA
NESSA

SSASC
ISSA1
ISSA2 PSO

W
OA

GW
O

SCA
SSA

NESSA

SSASC

ISSA1
ISSA2

C
ov

er
ag

e 
ra

te

Y/
m

Y/
m

Y/
m

Y/
m

Y/
m

Y/
m

Processes 2022, 10, 1691 29 of 31 
 

 

   

Figure 24. Node deployment of nine algorithms for case 3. 

Although the three improved SSA versions have better accuracy than the standard 
SSA algorithm in the tests of benchmark functions, they perform mediocrely in the opti-
mization of coverage enhancement, and the results contrast sharply with the method pro-
posed in this paper, which fully illustrates that the applicability of the improved algo-
rithms based on different iteration mechanisms to the same problem is not completely 
consistent, and the specific performance of the algorithms needs to be further verified in 
simulation tests. In the three calculation cases, SSASC, ISSA1, and ISSA2 obtained an av-
erage coverage rate of 86.21%, 88.22%, and 85.52%, respectively. NESSA achieved the 
highest average coverage rate of 97.66% among the nine algorithms, which increased by 
13.00% compared with the standard SSA algorithm, followed by 96.19% of GWO, 89.37% 
of PSO, 89.19% of WOA, and 82.32% of SCA with the worst performance. 

4. Conclusions 
This paper focused on increasing the coverage rate of a WSN, proposed a node de-

ployment optimization method based on NESSA, and improved the shortcomings of 
standard SSA from the perspective of solving application problems involving three as-
pects: population initialization, iterative search, and disturbance mutation, comprehen-
sively improving the optimization performance of the algorithm, and validating the su-
periority of NESSA in convergence speed, accuracy, and robustness. Furthermore, the 
simulation results of three different cases show that NESSA is an effective WSN coverage 
optimization algorithm, which significantly improves the deployment quality of sensor 
nodes compared with its original version. 

This study confirms the feasibility of NESSA in theory. However, more complex fac-
tors need to be considered in practical applications, such as the geographical environment, 
which is no longer two-dimensional but three-dimensional, the energy of sensor nodes, 
and the communication link between nodes after final deployment. Thus, the future re-
search direction will be to complete the deployment optimization of the WSN under the 
premise of comprehensively considering multiple performance indicators and environ-
mental factors. 

Author Contributions: Conceptualization, R.L. and Y.M.; methodology, R.L.; software, R.L.; vali-
dation, Y.M.; formal analysis, R.L.; investigation, R.L.; writing—original draft preparation, R.L. and 
Y.M.; writing—review and editing, R.L. and Y.M.; visualization, R.L.; supervision, Y.M. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the National Natural Science Foundation of China under 
Grant No. 21466008; Guangxi Natural Science Foundation under Grant No. 2019GXNSFAA185017; 
the Scientific Research Project of Guangxi Minzu University under Grant No. 2021MDKJ004. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

0 20 40 60 80 100
X/m

0

20

40

60

80

100

Y/
m

g

0 20 40 60 80 100
X/m

0

20

40

60

80

100

Y/
m

h

0 20 40 60 80 100
X/m

0

20

40

60

80

100

Y/
m

i

Figure 24. Node deployment of nine algorithms for case 3.

4. Conclusions

This paper focused on increasing the coverage rate of a WSN, proposed a node
deployment optimization method based on NESSA, and improved the shortcomings of
standard SSA from the perspective of solving application problems involving three aspects:
population initialization, iterative search, and disturbance mutation, comprehensively
improving the optimization performance of the algorithm, and validating the superiority
of NESSA in convergence speed, accuracy, and robustness. Furthermore, the simulation
results of three different cases show that NESSA is an effective WSN coverage optimization
algorithm, which significantly improves the deployment quality of sensor nodes compared
with its original version.
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This study confirms the feasibility of NESSA in theory. However, more complex factors
need to be considered in practical applications, such as the geographical environment,
which is no longer two-dimensional but three-dimensional, the energy of sensor nodes, and
the communication link between nodes after final deployment. Thus, the future research
direction will be to complete the deployment optimization of the WSN under the premise of
comprehensively considering multiple performance indicators and environmental factors.
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