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Abstract: Vaccine supply has a bottleneck in manufacturing capacity due to operation personnel and
chemicals needed. Assessment of existing mRNA (messenger ribonucleic acid) vaccine processing
show needs for continuous manufacturing processes. This is enabled by strict application of the
regulatory demanded quality by design process based on digital twins, process analytical technology,
and control automation strategies in order to improve process transfer for manufacturing capacity,
reduction out-of-specification batch failures, qualified personnel training and number, optimal
utilization of buffers and chemicals as well as speed-up of product release. In this work, process
control concepts, which are necessary for achieving autonomous, continuous manufacturing, for
mRNA manufacturing are explained and proven to be ready for industrialization. The application of
the process control strategies developed in this work enable the previously pointed out benefits. By
switching from batch-wise to continuous mRNA production as was shown in previous work, which
was the base for this study, a potential cost reduction by a factor 5 (i.e., from EUR 0.380 per dose to
EUR 0.085 per dose) is achievable. Mainly, based on reduction of personnel (factor 30) and consumable
(factor 7.5) per campaign due to the significant share of raw materials in the manufacturing costs
(74–97). Future research focus following this work may be on model-based predictive control
to gain further optimization potential of potential batch failure and out of specification (OOS)
number reduction.

Keywords: process automation; process control; digital twin; PAT; QbD

1. Introduction

Messenger ribonucleic acid (mRNA)-based vaccines and treatments have demon-
strated their potential during the international COVID-19 (coronavirus disease 2019) pan-
demic containment effort. Compared to traditional and established technologies, e.g., inac-
tivated viruses, spike proteins, and AV (adenovirus) based vectors, mRNA-based vaccines
have shown higher long-term efficacy with reduced side effects. The worldwide acceptance
for this drug type was the necessary catalyst to open the way for further indications, such
as prohylactic vaccination against other diseases, oncology, and molecular therapies.

1.1. State-of-the-Art in mRNA Manufacturing

The manufacturing process of mRNA starts with template DNA (desoxyribonucleic
acid) that contains the genetic code for the respective protein. Cell-free manufactured
DNA is feasible [1,2], state-of-the-art is still plasmid manufacturing by E. coli fermentation
followed by purification and linearization [3]. The linearized DNA is used as a template in
the in vitro transcription step. Often transcription and capping are separate process steps;
however, nowadays co-transcriptional capping is regularly applied [4].

There are a wide variety of different separation technologies and overall purification
strategies published in the literature (Figure 1). Although the major manufacturing steps of
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transcription, purification, and final encapsulation into lipid nanoparticles are similar for
the mRNA vaccines on the market and in development, the overall purification strategy
and unit operations that are applied are not standardized [5,6].
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Figure 1. Main process phases in mRNA vaccine manufacturing. Plasmid manufacturing by E. coli
fermentation followed by purification and linearization, followed by in vitro transcription, capping,
and formulation including encapsulation of mRNA in LNP.

Reversed phase chromatography mode is essential for final product quality purity
attributes in order to enrich PolyA-mRNA as target component and side components
adenosine and polymerase above 99.9% purity [7]. In addition, a priori for safety reasons
an orthogonal purification method based on mixed-mode chromatography before the
final reversed-phased (RP) step may be a logical choice to improve RP polishing perfor-
mance [8,9].

RP chromatography purification task is dedicated to gain final polishing of the singe-
strain mRNA end product from adenosine and polymerase above 99.9% purity. In RP
mode, the product is bound by differing polarity and all those side components are eluted,
therefore a periodic counter current operation is the set-up of choice within all available
continuous chromatography modes [10,11].

Whereas a preceding mixed-mode chromatography step has the objective to purify
the product fraction by about 99%, in order to relieve the RP separation task [8].

The corresponding process control simulation study is described in detail in [12]
as it would expand the scope of this total process overview too much into continuous
chromatography specific details. The results may be summarized as the conclusion that
any industrialization of the proposed automation concept is straight forward based on
standard PID controller positioning and configuration [12,13]



Processes 2022, 10, 1783 3 of 24

1.2. Quality Assurance, Quality Control and Quality-by-Design (QbD)

QbD-based process development is established as the gold standard for new pharma-
ceutical products, such as virus-like particles, plasmid DNA, fragments, etc., because it
ensures quality over the entire life cycle and allows process changes even after approval if
there is potential for optimization, and because there are no comparable platform processes
as for monoclonal antibodies [14–17].

FDA (U.S. Food and Drug Administration), EMA (European Medicinal Agency), ICH
(International Council for Harmonization of Technical Requirements for Pharmaceuticals
for Human Use), and several industry working groups have launched initiatives and
published a number of guidance documents, the most prominent example being QbD-
related ICH Q8 to Q13 [18–21].

However, the application of QbD principles to process development requires a val-
idated design space that guarantees consistent quality, which can be developed either
through experimentation or process understanding. Therefore, there is a need for digital
twins in process development as well.

At the beginning of a QbD-based process development, a quality target product profile
(QTPP) must be derived. This is necessary to define what is crucial for the product quality.
Characteristics for biologics are e.g., sterility and purity, but also certain therapeutic effects,
bioactivity and dosage. Depending on the QTPP, critical quality attributes (CQAs) have to
be defined, i.e., a property or characteristic that ensures the desired product quality when
controlled within a defined limit, range, or distribution [15,22].

Following the QbD philosophy, CQAs are not static but dynamic and need to be
updated during the life cycle of products when newly developed product and process
knowledge suggests this. CQAs guide further process development and are derived
through risk management and experimentation. Risk assessment is part of risk management
and should be performed early in process development. Its purpose is to establish known
and hypothetical links between material, equipment, and process parameters to CQAs. In
doing so, it establishes the framework for further process design. Common tools for this,
which are also suggested by FDA, EMA, PDA, and ICH, are the preparation of Ishikawa
diagrams, also called fishbone diagrams, and the performance of a failure mode and effects
analysis (FMEA) [19]. The Ishikawa diagram mainly summarizes different groups of effects,
e.g., material properties, plant design and process parameters, which can cause a risk for
certain CQAs, such as yield, purity, or processability in general. The major branches are
broken down into minor branches that show more detailed causality between cause and
risk. The level of detail depends only on the prior knowledge gathered by the process
development team. This diagram may already show critical process parameters (CPPs)
that need to be kept within a certain range during the process and therefore should be part
of a process management strategy and may need to be investigated further.

Predictive process models as digital twins are the key tools for a quantitatively defined
and knowledge-based process optimum. They accelerate process development and gener-
ate process knowledge at the same time. They help reduce experimental effort and their
validity does not end in the initial approved design space due to their physicochemical
nature. Of course, any model to be used in this way must be at least as accurate and precise
as the particular experiments it is intended to replace [17,23]. One-factor-at-a-time studies
can show which parameters should be included for multivariate studies based on their
impact. By applying DoE (design-of-experiments) principles, an experimental design can
be created to characterize the design space.

1.3. Process-Analytical-Technology (PAT) and Process Control Strategies

Continuous biomanufacturing studies have proven the potential to maintain high
product quality and timely, reliable supply of biologics [24–28]. The continuous production
suggests to automate the process [29,30]. Even if continuous operation may be compara-
bly short, with about 2 weeks to 2 months when compared to bulk and petro chemicals
operation times of up to several months. Autonomous operation reduces product quality
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variance and keeps the operation state constant around an optimum by advanced process
control strategies [31]. Benefits are reduced operation costs, reduction of manufactur-
ing [32], and significant QA (quality-assurance) cost reduction by real-time-release-testing
(RTRT) [33]. The basis of advanced-process-control (APC) are models either artificial neural
networks (ANN), rigorous or hybrid [33,34]. Digital twins based on process models which
need to be distinctively validated for regulatory decisions are combined with PAT via
statistical-based data evaluation toward process control strategies.

The digital twin in continuous biologics manufacturing will require key technologies
and concepts such as PAT and QbD [35–37]. In the case of mRNA vaccine production
(see Figure 2), lengthy quality controls occur first when controlling the linearized DNA,
which is the starting material in the production of the actual mRNA drug, and secondly
they are necessary before the purified mRNA drug can be encapsulated. This results in
holding times of up to several weeks [32]. PAT is a necessary key-enabling technology for
continuous biomanufacturing. Most (spectroscopic) sensors are based on chemometric
calculations (e.g., partial least square regression, principal component analysis), which
are already widely used in the literature. Additionally, there are model-based sensors,
which can be based on mass and/or energy balances as well as (extended) Kalman filters,
whose implementation are more time-consuming. However, the last-mentioned sensors
provide an extended process understanding, as they can be based on physicochemical
effects [28,38–40].
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Figure 2. Process overview of continuous mRNA manufacturing.

In terms of automation digital twins in continuous biomanufacturing rely on online
process data that updates the information fed into the process models in real-time [28,41–44].
Besides simple process parameters such as pressure, conductivity, pH, temperature, etc.,
concentration of the target component and main impurities are necessary to ensure that the
information gathered from the digital twin are reliable. Spectroscopic technologies such
as Raman, Fourier-transform-infrared (FTIR), UV-vis, fluorescence, and circular dichro-
ism have been demonstrated to be suitable detection methods for a variety of biologics
manufacturing processes.

2. Materials and Methods
2.1. In Vitro Transcription

The equations describing the reaction kinetics of in vitro transcription were taken
from the literature. They are based on Michaelis–Menten kinetics, which additionally
consider inhibition by by-products [45]. The maximum reaction rate (rmax) is a function of
the turnover rate (keff ) and the enzyme concentration (ce).

rmax = ke f f ·ce (1)
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The dependency of the enzyme activity (acti) on temperature (actTemp), pH (actpH), and
magnesium chloride concentration (actMgCl2) can be described using sigmoidal functions
based on data from the literature [46].

acti = (YLS,i +
Ymid,i − YLS,i

1 + e−KLS ·(X−rmax,low,i)
)·(1 +

YRS,i
Ymid,i

− 1

1 + e−KRS,i ·(X−rmax,high,i)
) (2)

X is either the temperature, the pH, or the magnesium chloride concentration, depend-
ing on which parameter the dependency of the activity is to be described by means of the
sigmoidal function given in Equation (2).

The change in pH during the reaction is described with the aid of the Henderson-
Hasselbalch equation. This describes the pH of buffer systems by considering the negative
decadic logarithm of the acid constant (pKa) as well as the acid (cHA) and the conjugated
base concentration (cA− ) [47].

pH = pKa + log
(

cA−

cHA

)
(3)

The reaction rate (r) of in vitro transcription results in [45]:

r =
actpH ·actTemp ·actMgCl2

·rmax

1+
N
∑

j=1

KM,NTP,j
cNTP,j

·(1+ cPPi
KI,PPi

+
N
∑

i=1

cNTP,i
KI,PPi

)+
KM,DNA

cDNA
·[1+ KG

cGTP
·(1+ cPPi

KI,PPi
+

N−1
∑

i=1

cNTP,i
KI,NTP,i

)]

· ccap
ccap+KM,cap

· cmRNA
cmRNA+KM,mRNA

(4)

It describes the influence of the concentrations of nucleotides (cNTP), pyrophosphate
(cPPi), promoter (cDNA), cap analog (ccap), and mRNA (cmRNA), as well as inhibition by
competition of the nucleoside tri phosphates (KI,NTP), excluding GTP, and pyrophosphate
(KI,PPi). Furthermore, it includes the Monod constants of the nucleotides (KM,NTP), pro-
moter (KM,DNA), cap analog (KM,cap), and mRNA (KM,mRNA). In addition, there is the
dissociation constant of the initial binding of GTP (KG), whereas (cGTP) represents the
guanosine triphosphate concentration. The equation in the square brackets in the denomi-
nator describes the initiation process of in vitro transcription. This consists of binding of
the promoter to the enzyme.

The change in concentration due to the reaction of the nucleotides ( fi describes the
proportion of the nucleotide i in the mRNA) and also the by-product PPi is dependent on
the length of the mRNA nmRNA [45]:

dcNTP,i,reac

dt
= − fi·nmRNA·r (5)

dcPPi,reac

dt
= (nmRNA − 1)·r (6)

The reaction takes place in a plug flow reactor (PFR), which is described using an axial
dispersion model. This gives the total concentration change via the sum of the concentration
change over the reactor length resulting from convection due to the fluid velocity u, the
concentration change due to dispersion analogous to Fick’s law, where the parameter Dax
describes the extent of back-mixing, and the concentration change due to the reaction
(r) [48].

∂ci
∂t

= −u ·∂ci
∂z

+ Dax ·∂
2ci

∂z2 + r (7)

The differential equations can be solved by introducing the Danckwerts boundary
conditions for the closed-closed vessel [49,50].

∂c(z = L)
∂z

= 0 (8)
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Dax·
∂c(z = 0)

∂z
= u·(c(z = 0)− cin) (9)

2.2. Single-Pass Tangential Flow Filtration

Characterization and control studies for inline diafiltration by SPTFF (single-pass-
tangential-flow-filtration) are based on a validated process model previously developed
and published by Huter et al. [51–53] and Thiess et al. [54,55]. The permeate volume flow
in ultrafiltration is in general dependent on the permeability LP, the total membrane area
Am, as well as the driving force DF:

.
VP = Lp · DF · Am = JV · Am (10)

Driving force reducing effects such as osmotic pressure POsm can be calculated by
correlations based on the solute concentration on the membrane surface cm.

DF = TMP − POsm(cm) (11)

The transmembrane flux decline by concentration polarization is then described by
Equation (10), first introduced by Michaels [56]:

JV = k f · ln
(

cm

cb

)
(12)

The permeability of the membrane is given by:

LP =
1

η · Rm
(13)

So that the total transmembrane flux can be calculated as:

.
VP =

TMP − Posm

η · Rm
· Am (14)

Final buffer exchange BE and the volumetric concentration factor VCF are defined as:

BE =
cSC,in

cSC,out
× 100 (15)

VCF =
cTC,in

cTC,out
(16)

2.3. Lipid-Nanoparticle Formation

The LNP formulation is carried out in a T-mixer, with the mRNA in an aqueous buffer
at pH 4. The lipids, which are composed of an ionizable lipid (cion.lipid), a helper lipid
(chelper lipid), cholesterol (cCholesterol), and a PEG lipid (cPEG lipid), are present in an organic
solvent phase such as ethanol. The phases are mixed in a ratio of 3:1 (aqueous:organic
solvent phase).

The pH value obtained when the two phases are mixed can be calculated using the
Henderson–Hasselbalch Equation (see Equation (3)).

It is assumed that the reaction follows the following kinetics with r as the reaction rate.

r = k·cmRNA·cion.lipid·chelper lipid·cCholesterol ·cPEG lipid (17)

The change in concentration due to the reaction for the mRNA and lipids is calculated
using Equation (11).

dci,reac

dt
= − fi·r (18)
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The proportions of lipids and mRNA ( fi) in an LNP and the rate constant were
taken from the literature. The pH dependence of the rate constant (k) can be described as
follows [57–59].

k =
k1·Ka + k2·cH3O+

Ka + cH3O+
(19)

The rate constant depends on the rate constants (k1 and k2) of the forward and reverse
reactions of ionization as well as the oxonium ion concentration (cH3O+ ) and the acid
constant of the ionizable lipid (Ka).

The LNP formulation in the T-mixer is represented by the axial dispersion model
with Danckwerts boundary conditions (see in vitro transcription). The modeling of the
subsequent buffer exchange is analogous to SPTFF as described in Section 2.2.

2.4. Impact Assessment and Statistical Analysis

In order to plan process characterization and control studies, a risk assessment ap-
proach as presented in the A-mab case study by the CMC (chemical, manufacturing and
control) working group is chosen. The workflow to select which parameters are included in
OFAT (one-factor-a-time), DoE, and finally control studies consists of the following steps:

1. Identification of parameters for OFAT studies in Ishikawa analysis;
2. Main effect ranking based on impact attributes after OFAT studies and assessment of

possible impact of interaction;
3. Calculation of severity scores and execution of derived statistical experimental designs;
4. Analysis of study results to quantify parameter effect strength, identify CPP, KPP

(key process parameter), and process optima as well as to define design space, control
space, and PAR (proven acceptable range).

The determined value for impact and interaction is then multiplied and based on the
scores given in Table 1, either a univariate or multivariate examination on the parameter is
performed. Variables with a score of ≤2 are not studied, those with scores 4–8 can be studied
univariately or multivariately and those with higher scores are studied multivariately.
The decision of whether variables with 4–8 scores have to be studied univariately or
multivariately must be properly justified.

Table 1. Ratings for the impact and interaction assessment of potential variables on the process
attributes and the CQAs.

Impact Critical Quality Attribute (CQA) Process Attribute

No Impact/Interaction 1 1
Minor Impact/Interaction 4 2
Major Impact/Interaction 8 4

The resulting multivariate study is the design space for the chromatographic process.
The endpoints of this multidimensional space are modelled in a full-factorial DoE and the
resulting design space can be evaluated statistically.

2.5. Process Control Parameter Determination

Controller design and parameter determination for all PID were done according to the
Ziegler–Nichols [60,61] and Chien–Hrones–Reswick tuning method [61,62].

3. Results
3.1. Risk Assessment and Impact Ranking
3.1.1. Ishikawa Analysis

In Vitro Transcription

To qualitatively determine the risks to the space-time yield (STY) of capped mRNA
in in vitro transcription, a risk analysis was performed using an Ishikawa diagram (see
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Figure 3). In addition to variables that are not easily quantifiable, such as risk factors
affecting staff, and product properties that cannot be influenced, such as mRNA sequence,
the materials used as well as the equipment and some process parameters have an impact
on STY. In particular, parameters that have an impact on kinetics, enzyme stability, and
hydrodynamics pose a major risk to the critical process attribute (CQA) of STY. These
include enzyme and template concentration, the amount of nucleotide and cap analog used,
the ratio of reactor length to diameter, and process parameters such as temperature, pH,
and volume flow rate. Accordingly, these risk factors are quantified using one factor at a
time (OFAT) analysis.
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Inline Diafiltration by SPTFF

In case of continuous ultrafiltration, the process is mainly influenced by pressure and
flowrate. While higher flow rates increase the throughput, they also lead to higher feed
pressures and pressure losses. Furthermore, the used equipment sets the boundaries for
possible throughput and the used membrane configurations have an impact on the feed
pressure resulting from the feed flow. Besides this process optimization, fluctuating process
parameter or other solubility reducer can affect the buffer exchange efficiency, e.g., by
increased membrane resistance. This can be the result of fouling.

LNP Formation

The risk factors in the LNP formulation are qualitatively represented in an Ishikawa
diagram (see Figure 3). Both personnel, especially their training levels, stress load, and
motivation, and product characteristics such as lipid composition and mRNA content are
risks in LNP formulation. These factors are either difficult to quantify or are influenced
by the materials, equipment, and process parameters used. Consequently, risks such as
substrate amounts, mRNA concentration, and factors affecting hydrodynamics such as
volume flow rate and volume flow ratio will be quantified using OFAT. Furthermore, the
number of diafiltration volumes and the transmembrane pressure (TMP) will be considered.

3.1.2. One-Factor-A-Time Studies and Impact Ranking

In Vitro Transcription

According to OFAT analysis, the concentrations of enzyme, nucleotides, cap analog,
and template used have barely any effect on the space-time yield if only one parameter is
currently fluctuating (see Table 2). For the template concentration, this was to be expected
because it only minimally affects enzyme kinetics and is used in excess because it is
cheap. In contrast, the kinetics are strongly influenced by the enzyme and substrate
concentrations. This primarily comes into account in the interactions of the parameters
with each other, which is why these variables are investigated multivariately in the statistical
experimental design. Furthermore, the enzyme kinetics depend on the temperature and
the pH value. The latter decreases in the progress of the reaction, which is why it is
investigated multivariately, whereas the temperature is easily controllable in the process
and consequently enters univariately. The volumetric flow rate, which is crucial for back-
mixing, flow regime, and residence time, among others, has a large main effect on the STY.
In addition, strong interactions with the other parameters are expected, which is why the
volume flow rate is investigated multivariately.

Inline Diafiltration by SPTFF

In inline diafiltration, the most important CQA is to achieve a necessary degree of
desalination by buffer exchange before formulation. As a process attribute, the volumetric
concentration factor must be kept within process—technically reasonable—but also eco-
nomic limits. Too high a concentration after diafiltration unnecessarily increases and thus
complicates dilution directly before LNP formation. However, it is even more important
not to let the concentration in the DF drop too much, so that an optimal concentration
before formulation is still possible by dilution.

Within the limits studied, most of the process parameters (VF_in, TMP), module
parameters (membrane permeability, diameter, length and number of fibers), as well as
feed solution viscosity are of significance for the degree of desalting (see Table 2). Since
after MMC and RPC the product is of high purity, no decisive influence of the component
concentrations on the desalting efficiency due to e.g., gel layer formation is to be expected,
which is in line with the experience of similar DF operations. The volumetric concentration
factor shows a more differentiated picture of the effect strengths. Thus, the main process
variables TMP and volumetric flow rate of the exchange buffer are again significant. The
other parameters (feed and module properties) are less so. Due to the previously defined
severity limits for the planning of the investigation studies, all parameters are included in
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the multivariate investigation, whereby TMP and volume flow of the exchange buffer can
now be expected as the strongest effects from the OFAT (40 simulations) study. This results
in 1025 simulations for a full factorial investigation and a center point.

Table 2. Final impact assessment after OFAT studies and overview of main effect, interaction, and
overall severity score. Green: no impact. Orange: Minor impact. Red: major impact.
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n Factor
Main Effect

CQA (purity)
Main Effect

PA (STY)
Highest Main
Effect Score

Interaction Interaction Highest
Interaction Score

SeverityCQA (purity) PA (STY)
T7 conc 1 1 1 4 4 4 4
NTP conc 8 4 8 8 4 8 64
Cap-analog conc 8 1 8 8 2 8 64
Template conc 1 1 1 1 2 2 2
Temp 8 4 8 4 1 4 32
pH 8 4 8 4 1 4 32
VF tot 1 4 4 8 4 8 32
L/D 1 1 1 1 2 2 2

In
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D
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fil
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n

SP
T

FF Factor Main Effect
CQA (BE)

Main Effect
PA (VCF)

Highest Main
Effect Score

Interaction Interaction Highest
Interaction Score

SeverityCQA (BE) PA (VCF)
VF Feed 8 2 8 4 2 4 32
mRNA conc 2 2 1 2 2 2 2
SC conc 2 2 1 2 2 2 2
Viscosity 8 4 8 2 2 2 16
Fiber Diameter 8 4 8 4 4 4 32
Fiber Length 8 4 8 4 4 4 32
Fiber Count 8 4 8 8 8 8 64
Rm 8 4 8 2 2 2 16
TMP 8 8 8 8 8 8 64
VF EB 4 8 8 8 8 8 32

Li
pi

d-
N
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e

Fo
rm

at
io

n Factor Main Effect
CQA (EE)

Main Effect
PA (cLNP)

Highest Main
Effect Score

Interaction Interaction Highest
Interaction Score

SeverityCQA (EE) PA (cLNP)
mRNA conc 8 2 8 4 2 4 32
mRNA Feed pH 4 2 4 8 4 8 32
WR Lipids:mRNA 8 4 8 4 4 4 32
w% ionizable Lipid 8 4 8 4 4 4 32
w/w ion./PEG-Lipid 8 4 8 2 2 2 16
w/w ion./help Lipid 8 4 8 2 2 2 16
w/w ion./Chol. 8 4 8 4 2 4 32
VF tot 1 4 4 8 4 8 32
v/v aq/EtOH 8 4 8 4 4 4 32
DV 1 4 4 1 2 2 8
TMP 1 4 4 1 1 1 4

LNP Formation

In particular, the lipid composition, the mRNA concentration, the total volume flow,
and the volume ratio of aqueous to organic solvent phase influence the LNP formulation.
The lipid concentrations used and the amount of mRNA present significantly affect the
reaction kinetics (see Table 2). In addition, the amount of helper lipids used is responsible for
stability and that of the PEG lipid for inhibiting aggregate formation. Whereas the mRNA
concentration and the amount of ionizable lipid additionally influence the encapsulation
efficiency (EE). The adjusted volume flow rate determines the residence time as well as
the hydrodynamics of the LNP formulation. Furthermore, interactions between these
parameters are expected, which is why they are investigated multivariately in the statistical
experimental design. Further risks are posed by the pH of the aqueous buffer and the
diafiltration volumes used, which are also multivariately included in the DoE. Here, the pH
plays an important role for ionization of the ionizable lipid and the diafiltration volumes are
responsible for efficient buffer exchange for neutralization and quenching of the reaction.
Only the TMP is studied univariately, since it has a minor influence on the process time as
well as the blocking behavior and hardly any interactions are expected.

3.2. Multivariate Studies and Design Space Characterization

IVT

By reducing the p-value, the two-stage full factorial statistical experimental design,
which corresponds to a total of approx. 8200 simulations substituting experiments, was
evaluated and as Figure 4 shows, a good regression quality can be achieved with an R2 of 0.9
and a p-value < 0.0001 even though there are a few clusters in the lower region. The biggest
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influence on the space-time yield in in vitro transcription is the volume flow rate. This
agrees with the results from the OFAT study. The nucleotide and enzyme concentrations
and their interactions with each other and with the volume flow rate were identified as
further significant factors. Consequently, the significance of these factors emerges only
through their interactions, because if only one factor varies, the effect on STY is small (see
Figure 4).
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Figure 4. Regression and effect strengths IVT STY. (a) Actual-vs-predicted plot. (b) log-worth
of effects.

In addition to the identification of significant factors influencing the space-time yield,
a design space can be spanned by the statistical evaluation of the experimental design (see
Figure 5). To maximize STY, the use of high nucleotide concentrations is necessary. Further-
more, the use of large amounts of enzymes and the establishment of a high volumetric flow
rate is beneficial.

Figure 5. Contour plot IVT STY. (a) ATP concentration and volume flow inlet. (b) Concentration GTP
and concentration enzyme. (c) Concentration UTP and concentration CTP.

Inline Diafiltration by SPTFF

The evaluation of the multivariate process characterization of the SPTTF is shown in
Figure 6. The usual evaluation of DOE results via OLS (ordinary-least-squares) already
shows a very good regression quality with an R2 of 0.98. PLS (partial-least-squares) and
a ANN were used additionally to demonstrate the different possibilities in the statistical
evaluation. For ANN the size of training set was 970 and for validation 485. The p-value is
smaller than 0.001, so the statistical conclusions can be considered robust. An evaluation
by means of a neural network allows, moreover, an even better regression of the results
with an R2 of 0.99.
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Figure 6. Comparison of regression efficiency and probability of OLS, PLS, and NN in SPTFF.

The analysis of the effects (Figure 7) shows for all three regression methods that the
TMP and the volumetric flow rate of the exchange buffer are the most significant effects
on the buffer exchange BE and the volumetric concentration factor VCF. While the OLS
and PLS statements are very accessible via the log-p value (OLS) and the VIP score (PLS),
respectively, the analysis of the effect sizes in the neural network is more difficult, and
increases in complexity with the number of nodes and layers.
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Figure 7. Comparison of possible effect analysis between OLS, PLS, and NN in SPTFF.

The design space from the OLS (see Figure 8) over the two critical process parameters
buffer exchange flow rate and TMP shows that the optimum is at a TMP of 1.4 bar and a
buffer exchange flow rate of 13 mL/min.



Processes 2022, 10, 1783 13 of 24

Processes 2022, 10, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 7. Comparison of possible effect analysis between OLS, PLS, and NN in SPTFF. 

The design space from the OLS (see Figure 8) over the two critical process parameters 

buffer exchange flow rate and TMP shows that the optimum is at a TMP of 1.4 bar and a 

buffer exchange flow rate of 13 mL/min. 

    
(a) (b) 

Figure 8. Contour plot for buffer exchange (left (a)) and volumetric concentration (right (b)) factor 

in SPTFF based on OLS-regression model. 

Comparing the resulting optimizations (Figure 9) of OLS, PLS, and neural network, 

in principle similar curves can be seen for the two critical process parameters. However, 

the desirabilities differ between simple OLS and PLS or NN. Thus, the influence of the 

TMP is linearly positive for all three regressions, whereas PLS and NN are able to detect 

a nonlinear influence for the exchange buffer flow rate. 

❑Ordinary-Least-Squares (OLS) ❑Partial-Least-Sq. (PLS) ❑Neural Network (NN)

Figure 8. Contour plot for buffer exchange (left (a)) and volumetric concentration (right (b)) factor in
SPTFF based on OLS-regression model.

Comparing the resulting optimizations (Figure 9) of OLS, PLS, and neural network,
in principle similar curves can be seen for the two critical process parameters. However,
the desirabilities differ between simple OLS and PLS or NN. Thus, the influence of the
TMP is linearly positive for all three regressions, whereas PLS and NN are able to detect a
nonlinear influence for the exchange buffer flow rate.
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Figure 9. Comparison of optimization prediction by PLS, PLS, and NN regression.

LNP

The two-stage full factorial experimental design includes over 1000 simulations substi-
tuting experiments and was evaluated for the LNP formulation in terms of encapsulation
efficiency (EE) and the resulting LNP concentration by reducing the p-value stepwise. The
regression is sufficiently accurate for both target variables, with an R2 of 0.81 for EE and 0.71
for LNP concentration, respectively (see Figure 10). For the EE, the mRNA concentration
and the volume flows of the aqueous and organic phases, respectively, are particularly
significant, as was already evident from the OFAT analysis. Moreover, in good agreement
with the OFAT study is the influence of lipid concentrations and their interactions, as well
as the single influence of pH on EE. Only the expected strong interactions of pH could not
be observed.
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Figure 10. Regression and effect strengths LNP encapsulation efficiency. (a) Actual-vs-predicted plot.
(b) log-worth of effects.

For the resulting LNP concentration, the volume fluxes of the mRNA- and the lipid-
containing phases are mainly crucial. Furthermore, the diafiltration volumes and the TMP
are significant, as they affect significantly the concentration factor in the SPTFF. These
results are in good agreement with the results of the OFAT study (see Figure 11).
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Figure 11. Regression and effect strengths LNP concentration. (a) Actual-vs-predicted plot. (b) log-
worth of effects.

Based on the DoE, design spaces can be generated for both target variables (see
Figure 12). A condition for the release of the mRNA-LNPs is that the encapsulation effi-
ciency is above 80% [63], which is the case in the green area. From the experimental space
studied, it can be seen that, accordingly, the incoming mRNA concentrations must be in
a range of approximately 0.26–0.30 g/L. Moreover, this criterion is met when the concen-
tration of PEG lipid is approximately 1.2–1.6 g/L and that of cholesterol is approximately
4.7–6.3 g/L. In addition, the volumetric flow rate of the aqueous buffer should be in the
range of 250–295 mL/min.

To obtain maximum LNP concentration, the TMP should be maximum and the diafiltra-
tion volumes should be at a value of ten. For the volume flow rate of the mRNA-containing
phase, the range around 260 mL/min is ideal. This is within the optimal range for the EE.
The color in Figure 13 show low concentrations of LNP (red spectrum) a low DV and TMP
in combination with high mRNA flowrate. Toward higher values for TMP (yellow to green)
in combination with lower mRNA flowrate, the LNP concentration increases.
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Figure 12. Contour plot LNP encapsulation efficiency. (a) mRNA concentration and flow rate.
(b) PEG-lipid concentration and cholesterol concentration. (c) Flow rate and mRNA concentration.
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3.3. Process Control Strategies

IVT

In vitro transcription takes place in a coiled flow inverter (CFI), the flowsheet of this
process step is shown in the Figure 14. The CFI is supplied by two storage tanks containing
the master mix with the nucleotides and the master mix with the enzyme. These are each
fed by means of a pump at an identical flow rate, which is to be kept constant by means
of a mass flow controller (MFC). Both flows are then combined via a dynamic mixer and
applied to the reactor. PT100 sensors are located at both the inlet and outlet of the reactor
to detect any temperature fluctuations that lead to a loss of enzyme activity. These are
compensated by controlling the temperature at the cryostat. In addition to the temperature
sensors, pH meters are installed at the inlet and outlet of the reactor as well as at measuring
points in the CFI (shown simplified as one sensor in the Figure 14). These detect both
pH fluctuations caused by variations in the production of the buffers and the drop in pH
due to the reaction. In particular, the latter leads to a loss of enzyme activity of almost
25%, which is why the pH is adjusted by adding base distributed along the length of the
reactor. In order to determine the mRNA concentration at the end of the reactor, DAD and
MALS/DLS detectors are used, from whose signals the mRNA concentration is determined
using PLS models. Based on these results, the volume flow is manipulated by adjusting the
pump speed to obtain the optimal residence time and thus the maximum yield.
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To simulate the control of the process, the fluctuations in Table 3 were assumed.
These result from concentration and pH fluctuations of the purchased substrates as well as
fluctuations in the process such as deviating pump speed or temperature deviations. In
addition, the drop in pH value due to the reaction is taken into account.

Table 3. Overview of control studies in IVT.

Process Variable Disturbance Fluctuation Control Mechanism

pH Decrease due to reaction +0.1/−1 Addition of base/buffer at predefined positions
Temperature Ambient temperature change ±0.5 ◦C Adjust thermostat temperature
Mass Flow Deviating pump speed ±5% Adjust pump speed
Master Mix Deviating concentration(s) ±10% Adjust volumetric flow rate = residence time

All fluctuations that occurred could be well compensated using PID controllers. In the
in vitro transcription, the regulation of the pH value at the first measuring point in the CFI
is shown in Figure 15 as an example. Before the control can be performed, the controller
must be parameterized. For this purpose, the step response of the system was determined
under open-loop condition, as shown in Figure 15, and the parameters were calculated
according to Ziegler–Nichols. The integral (Tn) and differential (Tv) parts are very small
with 3 × 10−4 min and 7 × 10−5 min, respectively, so they are neglected. The proportional
part of the controller is 45%. Figure 15 shows the pH decreasing due to the reaction to a
value of about 7.3 (red line), which is regulated back to the optimal pH (setpoint, black
line) of 7.9 by adding base (green line). The decrease in pH due to the reaction, which is
simulated as a step that is subsequently detected by the pH meter, initializes the addition of
base. The addition of base causes the pH to rise locally slightly above the set point. Mixing
causes the pH value to settle within the setpoint, so that the optimum pH value can be set
within approximately seven seconds.
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Figure 15. Overview control studies in IVT. (a) Parameter determination. (b) controlled process
variable.

Inline Diafiltration by SPTFF

The inline diafiltration process is shown in Figure 16. The feed solution coming from
the RPC is set to the target volume flow of 12.1 mL/min by means of a pump and monitored
via a mass flow meter. After an inlet pressure transmitter, the product passes through a
total of six filtration stages. At each stage, the same amount of exchange buffer is added via
a 6-channel pump. The process target is a buffer exchange BE of 99.9% and a VCF of 0.71 to
obtain an output concentration of 4.1 g/L. The control sections are shown in blue.
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Figure 16. Process flowsheet of inline diafiltration by SPTFF. Green: product stream, blue: sensor
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A PID controller is used to adjust the retentate valve, which is the setpoint to ensure a
constant BE and a constant VCF. Natural pump fluctuations from the setpoint (Table 4) are
instantaneously compensated via the mass flow meters, also via PID controllers. Product
concentration monitoring via DAD enables RT-QA. Further model-based controls would
also be conceivable via this process information, but it is shown that all disturbance cases
considered here are feasible for autonomous operation by means of PID controls.
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Table 4. Overview control studies in SPTFF.

Process Variable Disturbance Fluctuation Control Mechanism

mRNA Deviating concentration ±10% Adjust volumetric flow rate = residence time
Flow Rate Feed Deviating pump speed ±5% Adjust pump speed
Flow Rate EB Deviating pump speed ±5% Adjust pump speed
Permeate Flux Decrease due to fouling ±10% Adjust TMP

Thus, in addition to the natural pump fluctuation, a decrease in permeability due
to the increase in filtration resistance can be caused by the control strategy, which, if left
unregulated, would lead to a decrease from VCF 0.71 (4.1 g/L) to VCF 0.54 (3.1 g/L) here,
as well as an undershoot of the required desalination from 99.9% to 99.6%.

The equalization of these process fluctuations can be compensated within a few
minutes both in the case of a longer trend over 180 min and in a failure scenario in which
an increase in the membrane resistance is directly caused by unexpected formation of a gel
layer (Figure 17).
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Figure 17. Overview of controlled (green) constant buffer exchange efficiency (left image (a)) respec-
tively VCF (right image (b)) and uncontrolled slow and rapid decrease (dashed red line), when the
process is not controlled.

LNP

Figure 18 shows the flowsheet of the LNP formulation, which is divided into two
process steps: Mixing in the T-junction mixer and subsequent quenching of the reaction via
diafiltration in the SPTFF. In the T-junction mixer, the mRNA-containing aqueous phase
is rapidly mixed in a 3:1 ratio with the lipid-containing organic solvent phase. The two
buffers are fed to the mixer via one pump each, with the volume flows controlled by one
MFC each. The aqueous buffer has a pH of four, so that a pH of about 5.5 is obtained
during mixing. This is below the pKa value of the ionizable lipid [64], as a result of
which it is ionized and thus positively charged. Accordingly, both the pH of the aqueous
buffer and the pH at the outlet of the mixer are measured and, if necessary, adjusted
by adding acid to the mRNA-containing phase to ensure that ionization can occur. The
second process step involves quenching the reaction by performing a diafiltration with ten
diafiltration volumes of PBS in a SPTFF. This is performed by connecting several hollow
fiber modules in series, which is simplified in the flowsheet as one filtration module. The
aim of diafiltration is to increase the pH and thus neutralize the lipid and stop the reaction
so that LNPs of defined size can be formed. Furthermore, diafiltration has the purpose
of removing the organic solvent phase. For this task, Quench Buffer is added via a pump
and the volume flow rate is controlled via an MFC to ensure the addition of sufficient
diafiltration volumes for pH adjustment and buffer exchange. To set the optimal TMP,
pressure sensors are used in the feed, permeate, and retentate streams. In order to be able
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to determine the product properties such as LNP concentration, size and encapsulation
efficiency continuously during the process, various PAT detectors are used. These include
in particular the MALS/DLS. In addition, Raman and FTIR spectrometers as well as DAD
and fluorescence detectors are used, although the determination of the best combination of
detectors for online spectral analysis is still pending. PLS models can then be used to draw
conclusions about the product properties from the measured signals and, if necessary, to
adjust the pump speed of the aqueous or organic phase to ensure an optimum residence
time in the mixer and the SPTFF.
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Figure 18. LNP process flow sheet.

To simulate the control of the process, the fluctuations in Table 5 were assumed.
These result from concentration and pH fluctuations of the purchased substrates as well
as fluctuations in the process such as deviating pump speed or fluctuations in previous
process steps. Furthermore, the permeate flux decrease due to fouling.

Table 5. Overview control studies in LNP.

Process Variable Disturbance Fluctuation Control Mechanism

mRNA Deviating concentration ±10% Adjust volumetric flow rate = residence time
pH aq. buffer Deviating value ±0.2 Addition of acid/buffer

Lipids Deviating concentration(s) ±5% Adjust volumetric flow rate = residence time
Flow Rate Deviating pump speed ±5% Adjust pump speed

Dv Deviating pump speed ±5% Adjust pump speed
Permeate Flux Decrease due to fouling ±10% Adjust TMP

All occurring fluctuations could be well compensated by means of a PID controller.
The controller was designed open-loop by determining the step response of the system.
Subsequently, the parameters were determined according to Ziegler–Nichols. Figure 19
shows an example of the control of the volumetric flow rate of the aqueous buffer. For
the control task, it was assumed that the pump speed and the mRNA concentration jump
simultaneously. This reduces the residence time in which the encapsulation reaction of
mRNA can occur. Consequently, the encapsulation efficiency decreases. After evaluating
the step response, the proportional component is found to be 0.8%, the integral component
is 12 s, and the differential component is 3 s. After the sharp loss of EE has been registered
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by the PAT detector, the volumetric flow rate of the aqueous buffer is reduced to increase
the residence time and thus the encapsulation efficiency. This allows the loss of EE to be
reduced by 86% to only 0.2% within 2.6 min.
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Figure 19. Overview control studies in LNP. (a) Parameter determination. (b) controlled process
variable.

4. Conclusions

Digital twins support accelerated process design and development [13,65–68] up to
basic and detail engineering including process control system configuration and enable
among others an operator training simulator in combination with the existing process
control system, and are a well-established and beneficial procedure in petro-, basic-, and
fine-chemicals industry. Moreover, operator workload is reduced drastically, as they are
enabled of operating different plants in parallel—a most wanted capacity increase option
at enhanced product robustness [32]. Digital-twin based process automation reduces the
number of operators required by factor of two and lowers their workload and even stress
level drastically [69]. In addition, product quality is subject to less fluctuation due to
the continuous production method and the steady-state thus ensured, which has a lower
time-to-market due to PAT-supported RTRT as well as lower batch failure rates which
enlarges productivity in case of mRNA manufacturing by about 20% [69].

It was shown that manufacturing costs could be reduced to about 25% (factor of four)
by continuous in vitro transcription. The largest savings can be achieved by reducing
personnel and consumables per campaign; in the semi-continuous case, a reduction in
consumable costs by a factor of six and a reduction in personnel efforts (proportional to
costs) by a factor of 20 is possible. In the fully continuous case, savings of a factor of
7.5 (consumables) and a factor of 30 (personnel) can be achieved. Due to the significant
share of raw materials in the manufacturing costs (74–97%), these factors are not reflected
proportionally in the manufacturing costs. If a recycling strategy for the most cost-intensive
starting materials (T7 RNA polymerase and cap analog), which has already been discussed
in the literature, is implemented, the raw material costs can be reduced by a factor of about
four. Combining the above cost reduction approaches leads to a potential reduction in
manufacturing costs by a factor of about five (i.e., from EUR 0.380 per dose to EUR 0.085
per dose) [32,69].

This points out the specific competitiveness of the whole continuous biomanufacturing
approach based on consistent industrialization of digital twins. Moreover, the QbD-based
process control design with aid of digital twins for the whole process proves the statement
that industrialization of an autonomous continuous mRNA vaccine manufacturing plat-
form is directly based on standard clever PID controller on hand. Additional advanced
process control approaches are recommended to be based on the already existing digital
twins as model-based predictive control integration of the available PAT strategies [70–72].
Potential improvement of addition about 15–20% productivity increasement and person-
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nel as well as chemicals reduction of about 30% could be predicted with the simulation
studies evaluated [40]. While discussing efforts and benefits it should be kept in mind
that autonomous operation is a key technology for any decentral local container-based
manufacturing concept in the future [73,74] as those approaches are only feasible without
skilled operators transferred abroad but less local manpower and remote access sophisti-
cated support by the main manufacturer. Efficient and fast worldwide mRNA therapeutics
supply at lowest cost and resources is technically feasible for industrialization.
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