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Abstract: This work demonstrates the potential utility of ferrate(VI)-based advanced oxidation
processes for the degradation of a representative UV filter, BP-4. The operational parameters of
oxidant dose and temperature were determined with kinetic experiments. In addition, the effects
of water constituents including anions (Cl−, HCO3

−, NO3
−, SO4

2−), cations (Na+, K+, Ca2+, Mg2+,
Cu2+, Fe3+), and humic acid (HA) were investigated. Results suggested that the removal rate of
BP-4 (5 mg/L) could reach 95% in 60 min, when [Fe(VI)]:[BP-4] = 100:1, T = 25 ◦C and pH = 7.0, The
presence of K+, Cu2+ and Fe3+ could promote the removal of BP-4, but Cl−, SO4

2−, NO3
−, HA and

Na+ could significantly inhibit the removal of BP-4. Furthermore, this Fe(VI) oxidation processes
has good feasibility in real water samples. These results may provide useful information for the
environmental elimination of benzophenone-type UV filters by Fe(VI).

Keywords: benzophenone-4; ferrate (VI); oxidation; kinetics

1. Introduction

Benzophenone (BP)-type UV filters are a kind of oil soluble substance that is easy to
dissolve in aromatic hydrocarbons such as benzene and toluene but difficult to dissolve
in water. Therefore, it is easier for this substance to enter the organism than water-soluble
substances, thus causing toxic effects (Table 1 lists the structure and solubility of some
substances). BPs are discharged into the sewage treatment system in a large amount and
are difficult to degrade, and there are a large number of residues in the activated sludge. At
the same time, BPs can also be brought into water through water entertainment activities
such as swimming and bathing [1]. BPs have been detected in various water samples [2]
and other environmental media [3,4]. Furthermore, BPs can also enter the human body
through the skin, diet and air, which poses a threat to human health. BP residues have been
detected in human samples [5,6]. Song et al. [7] reported that BP-3 concentrations showed
positive correlations between maternal serum (MS) and cord serum (CS), while the CS/MS
ratios of BP-1, BP-3, BP-8 and 4-OH-BP were affected by molecular weight or logKow, along
with negative correlations.

Table 1. The structure and solubility of Part BPs.

NO. Name Structure Solubility

1 Benzophenone
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Table 1. Cont.
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Passive diffusion may play an important role in the placental transfer of these BP-type
UV filters. BP-3, BP-4, BP2 and 4-OH-BP were frequently detected in featured aquatic
environments of Shanghai, and BP, BP-4 and BP-3 might adversely affect fish and other
aquatic organisms [8].

Since BP substances are harmful to organisms and human, removing them from the
environment is very important. Photochemical transformation is an important transfor-
mation pathway of UV sunscreen in natural water, which affects its environmental fate
and ecological risk. The reaction rate and pathway of photochemical transformation are
affected by pH and soluble substances in the water environment, and products with greater
ecological risk can be produced under the light of BPs [9]. Vione et al. researched the
light conversion process of BP-3 under the conditions related to surface water and found
that BP-3 can be directly photodegradated and can also be indirectly photodegradated
by hydroxyl radical (OH) and soluble organic matter DOM* [10]. The photolysis half-life
of BPs varies with the environmental conditions and is possible in a few days to several
months. Generally, organic pollutants can be removed by microbial degradation. Gago
Ferrero et al. [11] studied the degradation and photodegradation processes of BP-1 and
BP-3 by aerobic bacteria. The results showed that more than 99% of BP-1 and BP-3 could
be degraded by biological treatment within 24 h, while the removal efficiency of phase
reflective degradation was very low, especially for BP-3, which had little degradation effect.
The results of metabolite analysis showed that BP-1 was decomposed by T. versicolor of
BP-3, but the glycoconjugate derivative was the main metabolite. Moreover, there was no
metabolite formation with a higher estrogen effect during the biodegradation of BP-1 and
BP-3. Liu et al. [12] used activated sludge and digested sludge to study the biodegrada-
tion process under anaerobic and aerobic conditions. The results showed that anaerobic
biodegradation was more suitable for the removal of BP-3. Beel et al. [13] explained the
anaerobic biodegradation process of BP-4 in the activated sludge of the urban sewage
treatment system and found nine kinds of transformation products that showed a higher
toxicity of bacteria (Vibrio fischeri) than BP-4.

As this emerging contaminant cannot be eliminated effectively by conventional pro-
cesses, it is necessary to explore efficient measures for the degradation of BPs from water.
In order to remove UV filters from water, many measures have been researched, includ-
ing ozonation, chlorine, persulfate and ferrate [14,15]. Amongst them, the products of
ferrate (FeO4

2−, Fe(VI)) reaction are ferric oxides/hydroxides, which can act as coagu-
lants/precipitants. Therefore, as an effective green oxidant, ferrate(VI) (Fe(VI)) has attracted
much attention [16,17]. Research works have proved that Fe(VI) is very promising for the
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degradation of organic materials, such as PPCPs, endocrine disrupting chemicals and
pesticides [18–21]. However, information on the degradation of BP-4 by Fe(VI) is scarce.

In this study, we attempted to investigate the oxidation of BP-4 by Fe(VI) in aquatic
environment. First, experiments were implemented in order to obtain the optimal reaction
conditions of oxidant dose and temperature. Then, coexisting water components such as
metal cations (Na+, K+, Ca2+, Mg2+, Cu2+, Fe3+), inorganic anions (Cl−, NO3

−, HCO3
−,

SO4
2−) and humic acid (HA) were tested for their effects on BP-4 removal. Finally, the

removal of BP-4 in natural waters was also evaluated.

2. Materials and Methods
2.1. Chemicals and Reagents

BP-4 (CAS no: 4065-45-6, 98% purity) and potassium ferrate (K2FeO4, CAS no: 39469-
86-8 Fe(VI), purity > 95%) were obtained from J&K Company (Shanghai, China). Methanol
and formic acid gained from Merck Company (Darmstadt, Germany) (for HPLC) were of
HPLC grade. The rest of the reagents were of analytical grade or higher. Ultrapure water
(18.2 MU cm) was prepared with a Milli-Q system (Millipore, Bedford, MA, USA).

2.2. Removal of BP-4 by Fe(VI)

Degradation experiments were carried out in batches with 100 mL brown glass in a
rocking bed (150 r/min) at 25.0 ± 0.2 ◦C. The pH of solution was initially adjusted by HCl
or NaOH. At the specified time interval, an 0.8 mL sample was collected and immediately
filtered into a 2.0 mL vial containing 0.2 mL chromatographic grade methanol to quench
the reaction (through a 0.22 µm filter). In order to study the potential effects of various
environmental factors, the initial BP-4 solution was adjusted to a different pH value or
pre-added with 0.5 mM ions (Fe3+, Ca2+, Mg2+, Cu2+, Na+, K+, SO4

2−, Cl−, NO3
−, HCO3

−)
and 1–30 mg/L humic acid (HA). The degradation of BP-4 in two environmental water
samples in Jiaxing (one surface water sample from canal, one sample of effluent of Jiaxing
domestic sewage treatment plant in Jiaxing, China) was also studied. All experiments were
carried out twice, and the average values are presented in the paper.

2.3. Analytical Methods

The concentrations of BP-4 were measured by an Agilent 1200 high performance liquid
chromatograph (HPLC) equipped with a quaternary pump and a diode array detector
(Agilent Technologies, Palo Alto, CA, USA). Chromatographic analysis was performed with
a 1.0 mL/min flow rate on a Zorbax Eclipse XDB-C18 analytical column (4.6 mm × 150 mm,
particle size 5 mm) (Agilent Technologies, CA, USA) at 30 ◦C. The injection volume was
20 µL, and the elution time was 10 min for all samples. The mobile phase was methanol
(A) and water (B) (60:40).

3. Results
3.1. Removal of BP-4 from Aqueous Solution

Initially, removal of BP-4 by Fe(VI) was investigated with different molar ratios of
Fe(VI) to BP-4. The results are presented in Figure 1. The concentration of BP-4 decreased
rapidly within 10 min and changed slightly after 60 min. This is because the strong oxidation
of Fe(VI) can effectively remove the target pollutants in a very short time when the oxidant
has a high initial concentration in the reaction solution. As time goes by, the concentration
of Fe(VI) decreases rapidly, and the reaction tends to stop. In addition, the removal rate
of BP-4 increases remarkably with increasing Fe(VI) (except [Fe(VI)]:[BP-4]) = 200:1). For
example, the removal rate BP-4 was from 30% to 95% (at 60 min) when the molar ratio was
from 25: 1 to 100: 1. At a higher ratio of 200:1, the degradation efficiency will be lower. This
is because Fe(VI) reacting with the target pollutant is enough in the reaction solution and
will only overflow as the dosage increases. In addition, the instability of ferrate will lead to
the auto-degradation of Fe(VI), and the auto-degradation rate will also increase with the
increase of the concentration of Fe(VI) solution. The ratio of Fe(VI) used to degrade BP-4
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decreases, meaning that the degradation efficiency decreases. Feng et al. also reported this
phenomenon in their research [20].
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Figure 1. Effect of dose of oxidants ([Fe(VI)) on the removal of BP-4 (experimental conditions:
[BP-4]0 = 5 mg/L; pH = 7.0 ± 0.2; T = 25.0 ◦C; reaction time = 90 min).

In the next set of experiments, the effects of pH on the degradation were determined,
as shown in Figure 2A. The removal rate of BP-4 was greatly affected by the pH value of
the solution. The reason is that the pH value of the solution will affect the oxidation ability
and stability of potassium ferrate. In acid conditions, potassium ferrate has the highest
oxidation potential (2.2 ev) in conventional water treatment agent, which is much higher
than 0.72 ev in alkaline condition, meaning the degradation rate of pH = 3 (highest) is much
higher than that of pH = 11 (lowest) in the first 10 min. There are different forms of ferrate
solution in different pH environments—generally, the forms are H3FeO4

+, H2FeO4 and
HFeO4

−. In the acidic environment, the ferrate in the aqueous solution is mainly in the
form of H2FeO4 and HFeO4

−, at which time the ferrate is active and easy to decompose;
in the alkaline condition, the ferrate is mainly in the form of stable FeO4

2−. Therefore,
the stability of potassium ferrate is better when the pH is higher than 7. When the pH is
3, the ferrate root is extremely unstable, and its self-decomposition is intensified, which
leads to basic non-degradation after 10 min, and the final degradation rate is the lowest.
Potassium ferrate with pH = 7 and pH = 9 has both high oxidation potential and good
stability, meaning these should be the best pH values for degradation of BP-4. At pH = 11,
its good stability enables ferrate to react with BP-4 continuously. Thus, the next experiment
was studied with pH = 7.0.

The reaction temperature also significantly influenced the degradation of BP-4. As
shown in Figure 2B, the BP-4 degradation rate is faster with the temperature increasing.
The reason is that heating can accelerate the efficient degradation of BP-4 by Fe(VI), and
the results are in accordance with the degradation of organic chemicals by other oxidants,
such as potassium permanganate and persulfate [22,23]. The degradation rate constants
(k) were 0.0204, 0.0290 and 0.0407 min−1 at 25 ◦C, 35 ◦C and 45 ◦C. In addition, based
on the experimental data, the activation energy (Ea) of the BP-4 oxidative degradation by
Fe(VI) was estimated to be 27.2 KJ/mol (R2 = 0.9999) with the Arrhenius equation. It can
be speculated that higher temperatures were of benefit to the removal of BP-4.
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ons] = 5 mM. 

Figure 2. Effect of initial solution pH (A) and temperature (B) on BP-4 removal by Fe(VI) (exper-
imental conditions: [BP-4]0 = 5 mg/L; T = 25.0 ◦C for pH (initial pH 7.0 ± 0.2 for temperature);
[Fe(VI)]0:[BP-4]0 = 100:1; reaction time = 90 min).

Based on the above results, experimental conditions were the following: [BP-4] = 5 mg/L,
initial pH 7.0 ± 0.2, [Fe(VI)]0:[BP-4]0 = 100:1; T = 25 ◦C, reaction time = 90 min.

3.2. Effect of Inorganic Ions on Degradation

The effect of inorganic ions on the degradation of BP-4 was evaluated (as seen in
Figure 3). Experimental conditions were as follows: [BP-4] = 5 mg/L, [Fe(VI)]0:[BP-4]0 = 100:1,
T = 25 ◦C, [Anions] = [Cations] = 5 mM. As shown in Figure 3A, Cl−, SO4

2− and NO3
−

ions significantly inhibited the removal efficiency of BP-4 by Fe(VI), but the impact on BP-4
removal was not apparent with the addition of HCO3

− at 5 mM. For monovalent cations
such as Na+ and K+, they had an obvious influence on BP-4 removal (Figure 3B). Na+ ions
reduced the removal of BP-4 by Fe(VI), while K+ ions could promote its degradation. When
Mg2+ and Ca2+ were added in reaction solution, the effects were not obvious. Ca2+ ions
inhibited the removal of BP-4 by Fe(VI), and Mg2+ ions presented no obvious effect on
BP-4 removal. Moreover, the effect of Cu2+ and Fe3+ (transition metal ions) on the removal
of BP-4 was also investigated. When these ions were present in the reaction solution, the
removal rate of BP-4 increased (Figure 3B). Cu2+ showed more increase than Fe3+.

According to Figure 3, K+, Cu2+ and Fe3+ could promote the removal of BP-4, but Cl−,
SO4

2−, NO3
− and Na+ could significantly inhibit the removal of BP-4. The specific reason

was that K+, Cu2+ and Fe3+ play a catalytic role in the oxidative degradation of BP-4 by
Fe(VI).
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3.3. Effect of HA on Degradation

The effect of dissolved organic compounds on the removal of BP-4 by Fe(VI) was
measured by adding HA with a concentration of 1–30 mg/L. The addition of HA decreased
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the efficiency of removing BP-4 by Fe(VI) (Figure 4). With the increase of HA concentration,
the removal rate of BP-4 nonlinearly decreased. The results show that HA competes with
BP-4 to react with Fe(VI). In other words, Fe(VI) reacts not only with BP-4 but also with HA.
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Figure 4. Effect of humic acid (HA) concentration on the removal of BP-4.

In Figure 4, when the HA concentration was lower than 1 mg/L, the removal rate
of BP-4 did not show an obvious effect due to HA. The removal rate of BP-4 decreased
with the increase of concentration of HA. When the concentration of HA increased to
20 mg/L, the removal rate of BP-4 changed from 95.82% to 24.09% in 60 min, and when the
concentration of HA reached 30 mg/L, the removal rate of BP-4 was reduced to 16.31%.
The main reason was that HA has a variety of functional groups, such as -COOH, -OH, etc.
The organic matter with these functional groups could have different chemical reactions
with oxidants in water, including ferrates. The HA could be oxidized by FeO4

2− in the
reaction solution, and that would reduce its reaction with BP-4. At the same time, the HA
could not have been oxidized completely, and its products could also form complexes or
be subject to adsorption with the final product Fe(OH)3 colloid of potassium ferrate, thus
competing with BP-4 and reducing the removal rate of BP-4.

3.4. Removal of BP-4 in Environmental Water Samples

It is necessary to assess the feasibility of this oxidative technique to completely elim-
inate low levels of sunscreen agents in different waters. Initially, the removal of BP-4 by
Fe(VI) in different waters was evaluated at pH 7.0. The molar ratio of Fe(VI) to BP-4 was
100:1. The results of the removal of BP-4 as a function of time from various water matrices
are shown in Figure 5. Fe(VI) can almost completely remove BP-4 from most water samples
in 90 min, except for secondary effluent water samples. The reason may be the coexisting
constituents, which could significantly inhibit the removal of BP-4.
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(abbreviations: UPW—ultrapure water; DIW—deionized water; SEW–secondary effluent of sewage
treatment plant; RW—Jiaxing Canal River Water.).

3.5. Oxidation Products of BP-4 and Possible Reaction Pathways

To identify the identification of oxidation products, mass analysis experiments were
performed at 5 mg/L BP-4 (initial concentration), [Fe(VI)]:[ BP-4] = 100:1, T = 25 ◦C and
pH = 7.0. A total of three products were identified in positive mode by LC-TOF-MS, and
structural assignments were achieved with the product ion scan. The MS/MS spectra and
the proposed fragmentation patterns of BP-4 and its reaction intermediates are illustrated
in Figure 6.
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Figure 6 shows that the ring of benzene can be oxidized, and the results are in ac-
cordance with references with PMS and ozone [14,24]. While the ring of benzene is not
oxidized with the biological method [12], the ability of the chemical oxidizing agent is
stronger than biodegradation, so more effective methods need to be developed.

4. Conclusions

The research suggests that Fe(VI) has great potential to remove BP-4 and can be used
as a rapid and effective method. The presence of inorganic ions (i.e., K+, Cu2+ and Fe3+) in
water increased the removal efficiency of BP-4 by Fe(VI). In contrast, Cl−, NO3

−, SO4
2−,

Na+, Mg2+ and Ca2+ ions decreased the removal efficiency of BP-4 by Fe(VI). HA may affect
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the removal efficiency of BP-4 by Fe(VI). The removal of BP-4 by Fe(VI) varied with the
water type and constituents of water matrices.
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