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Abstract: Axial flow fans are commonly used for a system or machinery cooling process. It also
used for ventilating warehouses, factories, and garages. In the fan manufacturing industry, the
demand for varying fan operating points makes design parameters complicated because many design
parameters affect the fan performance. This study combines the deep neural network (DNN) with
a genetic algorithm (GA) for axial flow design and development. The characteristic fan curve (P-Q
Curve) can be generated when the relevant fan parameters are imported into this system. The system
parameters can be adjusted to achieve the required characteristic curve. After the wind tunnel test is
performed for verification, the data are integrated and corrected to reduce manufacturing costs and
design time. This study discusses a small axial flow fan NACA and analyzes fan features, such as
the blade root chord length, blade tip chord length, pitch angle, twist angle, fan diameter, and blade
number. Afterwards, the wind tunnel performance test was performed and the fan performance
curve obtained. The feature and performance test data were discussed using deep learning. The
Python programming language was used for programming and the data were trained repeatedly. The
greater the number of parameter data, the more accurate the prediction. Whether the performance
condition is met could be learnt from the training result. All parameters were calculated using a
genetic algorithm. The optimized fan features and performance were screened out to implement the
intelligent fan design. This method can solve many fan suppliers’ fan design problems.

Keywords: axial flow fan; deep learning; deep neural network; Python; genetic algorithm; axial
fan design

1. Introduction

Axial flow fans have been used for many decades [1]. This fan forces the air to move
parallel to the shaft about which the blades rotate. Axial fans are commonly used for system
or machinery cooling processes, such as transferring heat from a condenser and cooling
electronic equipment or computer rooms. Axial flow fans are also used for warehouse,
factory, and garage ventilation. In the industry sector, the axial fan is often mounted to a
motor to cool it.

Axial flow fan designs have been discussed in depth in many industries for fan devel-
opment. In the fan manufacturing industry, the demand for varying fan operating points
makes the design complicated since many design parameters affect the fan performance.
There is numerous literature on axial flow fan design. Shahsavari et al. [2] increased the
by-pass ratio in a constant diameter turbofan. The design is investigated in detail using a
computational fluid dynamics (CFD) tool. The result indicates that the new design strategy
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is capable of more efficient performance in turbofan engines. Xu et al. [3] controlled axial-
flow aerodynamic noise by designing fans using metal foams. Sarraf et al. [4] studied two
blade thicknesses on the performances of an axial-flow fan. The overall performance was
measured in a test bench design. Several aspects were discussed, such as the aerodynamic
characteristic curve, the efficiency of thick blade fans, the total level of fluctuations, etc. Fan
modeling is crucial for performance analysis. Podgaietsky et al. [5] advanced a methodol-
ogy for axial fan efficiency mapping. The simulation model was built using a mathematical
model called “blade element theory”. Different parameters were designed in the past using
modeling and meshing simulations. These operations are time-consuming, as finishing a
fan design can take as long as half a day.

Zhang et al. [6] improved the volume flowrate for an axial fan through optimizing
the blade shape under the demand for a specific static pressure. The optimization was
performed using a GA coupled with a NN. Lin et al. [7] combined the CFD and ANN
to design a three-dimensional blade for an axial-flow fan. The DNN was used to set up
the flow field models and forecast the axial-flow performance. Ding et al. [8] adopted
bending and twisting laws for the blade design and optimization of a low-pressure axial
flow fan. A multi-objective genetic algorithm was introduced to optimize the fan pressure
and efficiency. Hang et al. [9] optimized the structural parameters combination and made
an axial fan with the best performance using the back propagation neural network (BPNN)
and a GA. The optimized result proved to be received using CFD simulation. The literature
indicates that only a few studies adopt Al for axial flow fan design. In addition, there are
few Al intelligent fan design predictions, especially for the design of customized small
axial fans. Many industries mostly use big data for technical analysis, such as traditional
industries, technology industries, etc., or water-cooled chiller equipment. The deep neural
network (DNN) is used to predict different models after data collection, select the model
with the least error in the test set as the best model, and implement the best predictive
model to evaluate system performance and create maintenance plans [10-18].

With advances in science and technology, deep learning and a genetic algorithm
(GA) can be used as a rapid and effective method for fan development. There are some
important factors in fan design, including noise, manufacturing cost, fan performance,
and manufacturing simplicity [1]. In this study, axial flow fan design focuses on fan
performance, which is affected by P,., and Q,,,. The Al optimization design is applied
in this study. A fan is designed using data collection, deep learning, and a GA. An
artificial intelligence (Al) fan design application system can be conceived to shorten the
development schedule. As long as the relevant fan parameters are imported into the system,
the characteristic curve (P-Q Curve) for this fan can be generated. The parameters can
be adjusted in the system to achieve the required characteristic curve. The fan is drawn
using 3D modeling. When the sample is completed and the wind tunnel test verification is
performed, the data are integrated and corrected to reduce the design cost and time [19-26].

2. Research Method

This study involves Al applications for small axial flow fans design by combining the
DNN and a genetic algorithm. The DNN technique is used to build the fan modeling. The
genetic algorithm is then used to find the optimum fan parameters values. This study used
the Python programming language using Anaconda distribution. Several libraries also
included scikit-learn, Keras, TensorFlow, and DEAP. Figure 1 shows an overview of the
proposed approach. There are three main steps: data preprocessing, pressure prediction
model, and design parameter optimization.
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Figure 1. A conceptual framework of the proposed approach.

2.1. Data Preprocessing

The dataset was collected from the axial fan parameters, chord length root, chord
length tip, pitch angle, twist angle, impeller diameter, hub outer diameter, blade number,
tip clearance, frame thickness, rotating speed, flowrate, and static pressure. The input or
independent (x) and output or dependent (y) variables for each model should be deter-
mined. The data need to be split randomly into three parts: 70% for training data, 15%
for validation data, and 15% for testing data. Data scaling is applied to avoid the models
being dominated by large or small data ranges. A standardization technique is used to
scale the data where the data values are centered on the mean with the standard deviation
as formulated in Equation (1).

x —%

;tand = S (1)

X

where xé tand” x(i), X, and s are the standardized data, observed data, sample mean, and

sample standard deviation, respectively.

2.2. Modeling Using DNN

A fan design model was built using the DNN technique. DNN is an artificial neural
network for executing complex tasks. It has multiple layers and multiple nodes. Figure 2
shows the DNN architecture diagram used in this study. The input layer consists of
11 neurons, which are nine design parameters, rotation speed, and x. The nine design
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parameters are chord length root, chord length tip, pitch angle, twist angle, impeller
diameter, hub outer diameter, blade number, tip clearance, and frame thickness. There
are five hidden layers. Each hidden layer consists of 35 neurons, while the output layer
consists of 1 neuron [4-7]. Two DNN models were tested in this study: the flowrate model
and the static pressure model. With reference to Figure 2, the flowrate model uses static
pressure as x and flowrate as y. In contrast, the static pressure model uses flowrate as x
and static pressure as y. One of the two models will be selected for further optimization
in the GA based on evaluation assessment. The hyperparameters need to be determined
before training the models. Manual hyperparameter tuning is applied to optimize the
hyperparameter DNN training [27-30].

[ Chord length root ——>

Chord length tip ——>
Pitch angle —>
Twist angle ——>

— Impeller diameter —>

Hub OD —>

Design Parameters

Blade number ——>

Tip clearance —>

Frame thickness ——>
—

Rotation speed —>

X
— | —
Input Hidden Layer Output
Layer Layer

Figure 2. DNN architecture diagram [13].

The neuron output is expressed as Equation (2), where y is the neuron output, f is the
activation function, x; is the input variable, w; is the weight, and b is the bias. The weight
and bias are learned during the training model. The training objective is to reduce the loss
or the error between the algorithm and measured values using mean squared error (MSE)
as the loss function, as shown in Equation (3). The activation function used in this study
was a ReLU function, expressed as Equation (4), with the function 0 representing negative
values and return x representing positive values [31-33].

Y = f (¥, xiw; +b) v)

z

1
N :

f(x) = max(x,0) 4)

MSE = (Y; - P)? 3)

Il
_
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This study used the coefficient of determination (R?), mean absolute error (MAE), and
root mean square error (RMSE) as assessment criteria to evaluate the errors in different
models, expressed as Equations (5)-(7). N is the number of samples, Y; is the measurement
value, P; is the predictive value, and Y is the average measurement value. The MAE and
RMSE are correlated with the model; R? is uncorrelated with the model and hence can be
used for studying the performance. The lower the MAE and RMSE values, the better the
model performance. The R? value usually ranges from 0 to 1, or is negative. It varies with
the model.

©)

(6)

@)

2.3. Optimization Using GA

The genetic algorithm (GA) is an evolution method developed from elimination and
evolution in nature, and is also known as a hereditary algorithm. It was proposed by Dr. J.
Holland in 1975 and evolved from the “survival of the fittest, elimination of the unfit” ethics
in the evolutionary process of organisms. The fitness is calculated by random sampling and
then the optimum value is calculated by crossover and mutation. This is generally used in
the domains of machine learning, optimal combination, and signal processing. The GA is
like a natural selection mechanism, where one chromosome imitates biological mating and
mutation, and the objective of chromosomes is determined according to their fitness, to
achieve optimization, as illustrated by the GA flow chart in Figure 3 [34-37].

The goals of GAs are to find the optimum design parameters based on the operating
points. The operating points are static pressure, flowrate, and rotating speed. The selected
DNN model is included for fan modeling. Equation (8) shows the fitness function used
in this study. The objective function minimizes the y,r+r, where y is the selected model
whether pressure or flowrate, y,, is the y operating point, and ¥4 is the model output.
Several constraints are applied: The P, ., and Q,,4j, values should be in the 0.5~0.6 range.
The chord length root should equal or be less than the chord length tip. A fixed penalty is ap-
plied if a constraint is violated. Py, and Q,4+, are calculated using Equations (9) and (10),
where Py, and Qo are the static pressure and flowrate operating points, respectively. Pyqx
is the maximum static pressure, or the static pressure when the flowrate is near 0. Q;ax is
the maximum flowrate, or the flowrate when the static pressure is near 0.

Fitness function = objectivefunction + penalty

Objective function = min (Yerror) ®)
_ [vor=ymoaa|

Yerror = Yop

Pyp
Pratio = =—— 9
ratio Prax ( )

Q

Qratio = P (10)

Qmax
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Figure 3. GA flow chart.

3. Results and Discussion
3.1. Axial Flow Fan Erection

Air Movement and Control Association International, Inc. (AMCA) is an interna-
tional not-for-profit organization dedicated to certifying the performance of fans, louvers,
dampers, and other air-handling equipment. Currently, AMCA can provide third-party
testing and certification for buyers and sellers for most manufacturers worldwide and has
formulated some important industry standards, as shown in Figure 4 [38].

This research used the fan performance measurement system SW-300, as shown in
Figure 5, which is a schematic diagram of the wind tunnel equipment. The equipment
size is 1.9 m in length x 1.5 m in width X 1.4 m in height, and the power supply system
is DC 60 V, 10 A 600 W, as shown in Table 1. Wind tunnel equipment is shown in the
specification sheet. Fan performance tests were conducted on 19 small axial flow fans,
knowing the pressure (P), flowrate (Q), and speed (RPM) of the fan. The characteristic
fan parameters were analyzed, including chord length root, chord length blade tip, pitch
angle, torsion angle, impeller diameter, outer hub diameter, number of blades, tip clearance,
and frame thickness, as shown in Tables 2-5 [38]. The existing 19 fan types were used for
data collection. Deep learning training and genetic calculation were performed on the
collected data.



Processes 2023, 11, 122 7 of 16

~
v
-
w

=
R %

il Fan ’

T

T T ———
besssssssssacnanannd

——

Variable
PL.& Exhaust System

Figure 4. Wind tunnel structure diagram.

Figure 5. Fan performance measurement system SW-300 [38].

Table 1. Fan performance measurement system specifications.

Product Name Fan Performance Measurement System
Airflow Rate air volume 2.5~300 CFM
Static Pressure wind pressure 0~2490 Pa
Structure AMCA 210-2016.
System SRC, DC/AC fan P-Q characteristic curve test.
Performance Test Item Automatic measurement of thermal resistance, TRC curve.

dp: Static pressure measurement range before and after the
nozzle 1277 mmAq
Static pressure PS1: static pressure measurement range 25.4 mmAq
PS2: static pressure measuring range 101.6 mmAq
PS3: static pressure measuring range 254 mmAq
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Table 1. Cont.

Product Name

Fan Performance Measurement System

Weight 200 kg
Machine size W XSi];eX H) 1.9 x 1.5 x 1.4 (m)
Power Systems DC power supply DC 60V, 10 A 600 W
Control method PC Base/LONG VIGTQRY high-precision wind tunnel
Control System testing software
Control program automatic/manual
Cavity material steel plate painting
Equipment Structure - —
Internal material steel plate painting
Table 2. Fan characteristics.
Fan Specification FAN1 FAN2
Chord length root (mm) 20.47 12.17
Chord length tip (mm) 27.61 16
Pitch angle 62.5 39.86
Twist angle 21.32 6.56
Impeller diameter (mm) 75.25 74.3
Hub OD (mm) 32.83 34.24
Blade number 9 11
Tip clearance (mm) 0.9 0.9
Frame thickness (mm) 25.16 15.49
Fan specification FAN3 FAN4
Chord length root (mm) 17.62 12.17
Chord length tip (mm) 30.5 16
Pitch angle 44 .45 39.86
Twist angle 17.66 6.56
Impeller diameter (mm) 74.05 74.3
Hub OD (mm) 3292 34.24
Blade number 7 11
Tip clearance (mm) 0.8 0.9
Frame thickness (mm) 254 15.49
Fan specification FANS FANG6
Chord length root (mm) 18.01 12.17
Chord length tip (mm) 25.97 16
Pitch angle 60.6 39.86
Twist angle 24.6 6.56
Impeller diameter (mm) 72.55 74.3
Hub OD (mm) 32.17 34.24
Blade number 7 11
Tip clearance (mm) 1.3 0.9
Frame thickness (mm) 25.12 15.49
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Table 3. Fan characteristics.

Fan Specification FAN7 FANS
Chord length root (mm) 7 12.17
Chord length tip (mm) 13 16
Pitch angle 51.7 39.86
Twist angle 16 6.56
Impeller diameter (mm) 479 74.3
Hub OD (mm) 25 34.24
Blade number 11 11
Tip clearance (mm) 1.3 0.9
Frame thickness (mm) 15.23 15.49
Fan specification FAN9 FAN10
Chord length root (mm) 16.9 12.17
Chord length tip (mm) 20.33 16
Pitch angle 60.3 39.86
Twist angle 13.87 6.56
Impeller diameter (mm) 74.21 74.3
Hub OD (mm) 32.26 34.24
Blade number 7 11
Tip clearance (mm) 0.5 0.9
Frame thickness (mm) 25.03 15.49
Fan specification FAN11 FAN12
Chord length root (mm) 20.63 12.17
Chord length tip (mm) 29.5 16
Pitch angle 45.8 39.86
Twist angle 14 6.56
Impeller diameter (mm) 117 74.3
Hub OD (mm) 40.24 34.24
Blade number 7 11
Tip clearance (mm) 1.5 0.9
Frame thickness (mm) 24.8 15.49

3.2. Fan Installation Process

Before conducting wind tunnel experiments:

First, confirm that the relevant system connections were completed.

Turn on the system and host computer power.

Install the fan to be tested in a suitable location.

To avoid air leakage, seal the test unit tightly with tape, as shown in Figure 6. After
the installation, open the test software, set the test parameters, and confirm whether the
parameter values are correct, as shown in Figure 7. After the test is completed, the software
will automatically output an Excel report. The P-Q Curve of each fan will be obtained
based on an Excel report. The outputs are used for the subsequent study of deep learning
and genetic algorithms.
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Table 4. Fan characteristics.

Fan Specification FAN13 FAN14
Chord length root (mm) 115 12.17
Chord length tip (mm) 16.5 16

Pitch angle 60.4 39.86
Twist angle 18.6 6.56
Impeller diameter (mm) 65 74.3
Hub OD (mm) 31.5 34.24
Blade number 9 11
Tip clearance (mm) 1.5 ] 0.9
Frame thickness (mm) 15.2 15.49
Fan specification FAN15 FAN16
Chord length root (mm) 135 12.17
Chord length tip (mm) 18.5 16
Pitch angle 40 39.86
Twist angle 12.5 6.56
Impeller diameter (mm) 55 74.3
Hub OD (mm) 54.6 34.24
Blade number 7 11
Tip clearance (mm) 1 0.9
Frame thickness (mm) 15.2 15.49
Fan specification FAN17
Chord length root (mm) 22 15
Chord length tip (mm) 25 18.5
Pitch angle 43 68.9
Twist angle 6.13 11
Impeller diameter (mm) 75.3 74.5
Hub OD (mm) 37.5 32.24
Blade number 7 7
Tip clearance (mm) 2 1.5
Frame thickness (mm) 253 2495

3.3. Modeling

Two prediction models were built with the DNN model architecture: the flowrate
model and the static pressure model. The dropout rate 0.01 is added to avoid overfitting
after the first, second, third, and fourth hidden layers. The ReLU was selected as the
activation function. The epochs were set as 1000, the batch was set as 32, the optimizer
was adam, and the loss function was MSE. Figure 8 shows a scatterplot between the actual
flowrate and the flowrate model output using (a) training data and (b) testing data. Figure 9
shows a scatterplot between the actual static pressure and the static pressure model output
using (a) training data and (b) testing data. From Figures 8 and 9, both flowrate and static
pressure can be successfully predicted. Both models are evaluated using R?, MAE, and
RMSE, as shown in Table 6.
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Table 5. Fan characteristics.

Fan Specification FAN19

Chord length root (mm) 19
Chord length tip (mm) 30
Pitch angle 46

Twist angle 15

Impeller diameter (mm) 110

Hub OD (mm) 39.6
Blade number 7

Tip clearance (mm) 23
Frame thickness (mm) 25

Figure 6. Schematic diagram of fan installation.

The table above indicates that the R? of the static pressure model is higher than that of
the flowrate model for both training and testing. The MAE and RMSE of the static pressure
model is lower than that of the flowrate model for both training and testing. Therefore, the
static pressure model is selected for further optimization.

3.4. Optimization

The fan parameter range was given, with the minimum and maximum values for each
parameter determined for the individual. The individual values will be converted into
integers, as described in Table 7. The GA parameters used in this study are the population
size is set to 300, the generation number is set to 300, the crossover probability is set to
0.8, the mutation is set to 0.1, the hall of fame is set to 30, the crowding factor is set to
20, and the penalty value is set to 10. The operating points are determined in advance,
namely, 50 Pa of static pressure, 0.01 m?3 /s of flowrate, and 6000 RPM of rotating speed.
From those operating points, the optimum fan parameters can then be obtained using a
GA based on a static pressure DNN model. Table 8 shows the operating point, optimum
design parameter, and assessment result. Using the optimum design parameter, flowrate,
and rotating speed, the static pressure can be predicted, which is 49.96 Pa. It is similar to
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our design with 0.1% error. Qyuax and Pp,y can also be obtained, while Q4+, and Py, are
still in our design range.
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Figure 7. Data collection interface.
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Figure 8. Scatterplot of the flowrate prediction model using (a) training data and (b) testing data.

Figure 10 shows the P-Q Curve using the optimum design parameter. The red dot
indicates the operating point and the blue dots indicate the static pressure values using
flowrate variation. In Figure 10, the red point is on the P-Q Curve, meaning that the
specified parameter conformed to the design range. P4, and Q,44i, are 0.5, which is within
the design range. Therefore, the red dot point is almost in the center of the blue line.

3.5. Discussion

The DNN is able to predict fan static pressure successfully, where the R? is higher
than 0.99. A GA is also then able to find the optimal design parameters with the specified
operating point, P, and Q,4,- Therefore, this technique will be implemented in the
fan manufacture. Over time, a new fan design will be produced and tested using test
measurements. The data will be collected as in the previous work. The fan dataset will be
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updated and will continue to be huge. The minimum and maximum operating parameters
will be wider. Therefore, the Al fan design application will continue to perform better.

TRAINING - static pressure TESTING - static pressure

100 — 100 —

R? : 0.998 R? 1 0.997
MAE 1 0.420
80} RMSE : 0.613

MAE : 0.565
80} RMSE : 0.818

Predicted static pressure (Pa)
Predicted static pressure (Pa)

0 20 40 60 80 100 0 20 40 60 80 100

Actual static pressure (Pa) Actual static pressure (Pa)
(a) (b)

Figure 9. Scatterplot of the static pressure prediction model using (a) training data and (b) testing data.

Table 6. Performance evaluation of flowrate and static pressure models.

Flowrate Model Static Pressure Model
Performance Evaluation . ; . ;
Training Testing Training Testing
R? 0.994 0.991 0.998 0.997
MAE 0.000 0.001 0.420 0.565
RMSE 0.001 0.001 0.613 0.818
Table 7. Design parameters range.
Parameters Range
Chord length root 20~50 mm (interval 1 mm)
Chord length tip 25~60 mm (interval 1 mm)
Pitch angle 35~50° (interval 1°)
Twist angle 0~20° (interval 1°)
Impeller diameter 40/50/60/70/80/92/120/140 mm
Hub OD 25~60 mm (interval 5 mm)
Blade number 3/5/7/9/11
Tip clearance 1~2.5 mm (interval 0.5 mm)
Frame thickness 15/20/25/38 (mm)

Table 8. Operating point, optimum design parameter, and assessment result.

Static pressure (Pa) 50
Operating point Flowrate (m3/s) 0.01
Rotating speed (RPM) 6000

Chord length root (mm) 22

Chord length tip (mm) 40

Pitch angle (°) 42

Twist angle (°) 7

Optimum design parameter Impeller diameter (mm) 80

Hub OD (mm) 30

Blade number 5

Tip clearance (mm) 2

Frame thickness (mm) 38




Processes 2023, 11, 122

14 of 16

Table 8. Cont.

Predicted static pressure (Pa) 49.96
Assessment Static pressure error (%) 0.1
Pmtia 0.50
Qratio 0.50
PQ Curve
100
80
_. 60
®
a
o
40
20

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Q (m%s) X107

Figure 10. P-Q Curve using optimum design parameter.

4. Conclusions

This study used a deep neural network to build two prediction models: the static pres-
sure model and the flowrate model. The static pressure prediction model was selected for
further optimization using GA. The performance model using testing data had R? = 0.997,
MAE = 0.565, and RMSE = 0.818. The inputs are nine design parameters, rotating speed,
and flowrate. The nine design parameters are chord length root, chord length tip, pitch
angle, twist angle, impeller diameter, hub outer diameter, blade number, tip clearance, and
frame thickness. The goals of the GA were to find the optimum design parameters based on
the operating points. The operating points are static pressure, flowrate, and rotating speed.
Several constraints are applied: The GA will search for the design parameters that have
Pratio and Qy4ti0 in the 0.5~0.6 range. The chord length root should equal or be less than the
chord length tip. The operating points are determined in advance, namely, 50 Pa of static
pressure, 0.01 m3/s of flowrate, and 6000 RPM of rotating speed. The results show that the
GA is able to find the optimal design parameters with the specified operating points and
constraints, with only 0.01% of static pressure error. The results can be used as a reference
for engineers to evaluate whether the fan met requirements. This approach can reduce the
design time and material. Various design parameters can be obtained from numerous data.
Therefore, a new small axial flow fan was developed.
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