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Abstract: In this paper, a double locally weighted extreme learning machine model based on a moving
window is developed to realize process modeling. To improve model performances, an improved
sparrow-searching algorithm is proposed to optimize the parameters of the proposed model. The
effectiveness of the proposed model and algorithm are verified by data from a hematite grinding
process. The experimental results show that the proposed algorithm can significantly improve the
global search ability and convergence speed in the parameter optimization of the proposed model.
The proposed model can correctly estimate the grinding particle size which is expected to be applied
to other complex industries.

Keywords: extreme learning machine; double locally weighted model; sparrow searching algorithm;
moving window; hematite grinding process

1. Introduction

Iron is the most widely used metal, and hematite is one of the most common raw
materials for iron smelting. In hematite iron-smelting, the grinding process is the most
critical production unit, as it connects the previous crushing and the following separation
operations. Thus, useful minerals can be separated from gangue and different minerals are
dissociated to offer raw material for the subsequent beneficiation works [1,2]. Moreover, the
grinding particle size in the grinding process is a very important parameter that is directly
related to the grade of concentrated ore and metal recovery rate [3–5]. Thus, accurate
and real-time particle size information is the key to improve the grinding efficiency and
product quality. The existing instruments for measuring the grinding particle size are
expensive, complicated in structure, prone to failure and time-consuming [6,7]. At the
same time, the strong magnetic particles in hematite have the phenomenon of “Magnetic
agglomeration” [8]. Therefore, it is difficult for the instruments to measure the grinding
particle size online [9]. In addition, the grinding process has the characteristics of a complex
mechanism, non-linearity and time variance, making it difficult to establish an accurate
prediction model through mechanism analysis. In recent years, a large amount of data
collected in the industrial field has been useful for predicting the grinding particle size.
It is critical to investigate the data-driven modeling of the grinding particle size for the
hematite grinding process.

Many studies have been working on data-driven modeling for the grinding process to
address the limitations of mechanism modeling methods, such as the radial basis function
(RBF) neural network (NN) method [10,11], support vector machine (SVM) [12,13], extreme
learning machine (ELM) [14] and so on. Du et al. [15] and Del Villar et al. [16] used the data
of Dynafrag which established a NN model for the grinding particle size. Sun et al. [17]
created a model for the grinding particle size of the hydrocyclone overflow using a back
propagation NN, but there are large errors. Although the modeling method of NN can
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deal with the strong nonlinearity of the grinding process, there are problems of numerical
metamorphosis in output weight calculation and weak network generalization ability,
which lead to the decline of model accuracy. Ding et al. [18] used multiple least-squares
SVM to model the clustered data and then perform multiple weighted combinations of
models to establish a hematite productivity forecast model. However, SVM has problems,
such as difficulty in selecting kernel function and overfitting [19]. Tang Jian et al. [20]
proposed a selective integrated modeling method to obtain the soft-sensor model of the
mill load by multi-sensor information. Although the real-time prediction of the grinding
particle size is possible, the accuracy of the model needs to be further improved. In recent
years, extreme learning machine(s) (ELM) [21] have been used in soft-sensor modeling for
industry process. Deepika et al. [22] proposed an ELM combined PCA method for boiler
output prediction in thermal power plants. Compared with other methods, the ELM has
fewer parameters. In ELM, the hidden layer’s threshold, as well as the connection weights
of the input layer and the hidden layer, can be set at random and do not need to be adjusted
after setting. Therefore, the parameter identification of the ELM is relatively easy, which is
suitable for the process modeling that requires real-time learning [7]. However, ELM has
the problem of poor non-linear representation ability and less stable results, which needs
to be further studied.

Aside from complex mechanisms and nonlinear problems, process time variation also
should be taken into account when modeling the hematite grinding process. The traditional
modeling methods such as NN, ELM and SVM are often adapted to the global model,
so it is easy to lead to more accurate models with sufficient data and poor accuracy in
models with insufficient data or large changes. Hence, just-in-time learning (JITL) [23–25]
and moving window (MW) [26,27] have been proposed to deal with the time-varying
process problems. The MW technology is often applied to process time-varying adaptive
modeling, and the prediction model is constantly reconstructed in a certain step length
in the process sampling direction. Therefore, the MW technology can track the state
changes of the modeling process and improve the real-time performance of the model.
In the JITL framework, when the prediction of a query sample is required, online local
models are built to track the process state. [28–30]. Yuan et al. [31] have proposed a new
ensemble JITL (E-JITL) framework. For sample selection in the E-JITL, different similarity
measurements are used. The local models are then built and trained to estimate the query
data output as relevant samples with different groups corresponding to the similarity
measures. Finally, an ensemble strategy was used on each local model to obtain the final
prediction. In Pan et al. [32], Ding et al. [33] and Peng et al. [34], JITL is combined with
ELM. The JITL-ELM model has better online adaptive ability compared to traditional ELM
methods. The JITL technique is very effective in dealing with the rapid change of process
state. However, hematite grinding is typically a time-varying problem, which may reduce
the performance of the JITL model because samples far from the current state may be
selected for local modeling. To address the process time-varying and the change of process
state, JITL is combined with MW technology for process modeling [27,30]. These works
provide a good foundation for building the model of grinding particle size in the hematite
grinding process. However, the parameter identification of the model which combined JITL
with MW is difficult and time-consuming. It is important to further study the parameter
identification of the model.

Parameter identification of the hematite grinding process model is an important
factor to improve the model performance. The parameter identification problem is usually
described as a nonlinear optimization problem. In recent years, the swarm intelligent
optimization algorithm is an effective tool for nonlinear optimization problem. Scholars
have put forward a series of swarm intelligent optimization algorithms through ants,
wolves, birds, moths, whales, sparrows and other biological behaviors. The sparrow
searching algorithm (SSA) is a new swarm intelligent optimization algorithm proposed by
Xue et al. [35] in 2020. Compared to other algorithms, the Sparrow searching algorithm has
a higher solution efficiency. However, it is still possible to get stuck in the local extremum
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at the end of the algorithm iteration. Many scholars have proposed various improvement
strategies in order to improve local and global search ability. Oliva et al. [36] applied
the logistic chaos mapping to the particle swarm algorithm to enhance the diversity of
understanding and reduce the probability of the algorithm being trapped in the local space
to some extent. Hezagy et al. [37] and Wang et al. [38] accelerated the convergence of the
algorithm and successfully applied to the feature selection problem by adding an adaptive
weight factor, effectively balancing the global and local search abilities. Li et al. [39] applied
a reverse learning strategy to PSO, which not only increased population diversity but also
improved global exploration ability. Wang et al. [40], Xu et al. [41] and Pappula et al. [42]
added Gauss and Cauchy mutations to improve both local and global search capabilities.
Farah et al. [43] proposed a new teaching–learning-based optimization algorithm (TLBO) for
optimizing the tuning of power system stabilizers (PSS) and controllers based on static var
compensators (SVC). Dong et al. [44] used niche the optimization technique to improve the
optimization effect of multi-objective SSA and introduced Levy flight strategy to enhance
the ability of the multi-objective sparrow search algorithm to jump out of the local optimum.
Ding et al. [45] proposed a transformer fault diagnosis method based on an improved SSA
for optimal SVM. To a certain extent, the improvement of the swarm intelligence algorithm
reduces the possibility of the algorithm falling into the local extremum, but it still has some
flaws, such as low convergence precision and insufficient development ability.

To solve the problems of modeling and parameter identification in the hematite
grinding process, this paper studies the data-driven modeling method of the grinding
particle size and the optimization method of the model. A double locally weighted extreme
learning machine based on a moving window (MW-DLW-ELM) modeling method is
proposed for the hematite grinding process. In this method, an on-line model of grinding
particle size is established by double locally weighted technique. The moving window
technique is used to track the process’s time variation. Furthermore, to optimize the
parameters of the MW-DLW-ELM model, an improved sparrow searching algorithm (ISSA)
is developed.

2. The Grinding Particle Size in Hematite Grinding Process

Hematite is the main ore source in iron smelting. Most hematite is characterized by
low grade, complex mineral composition, low magnetic susceptibility of iron minerals,
uneven size distribution of useful minerals and close intergrowth of minerals. Hematite
grinding process refers to the process in which the crushed raw ore is treated by a series of
equipment, and the minerals are separated to the maximum extent, and finally, the particle
size of the ore conforms to the industrial requirements. The closed-circuit grinding with
two-stage ball mills and hydrocyclones are widely used in the hematite grinding process
when the grinding particle size is required to be less than 0.15 mm. Figure 1 depicts a
two-stage closed-circuit grinding process that includes No. 1 and No. 2 ball mills, a spiral
classifier, a pump sump, and a hydrocyclone. First, ore, water and a certain number of
steel balls are fed into the No. 1 ball mill for grinding. After grinding in the No. 1 ball mill,
the ore pulp is discharged into the spiral classifier for the ore particles that do not meet
the process specifications to be sent back to No. 1 ball mill for re-grinding. The smaller
particles of ore are fed into the pump sump. Through the underflow pump, ore pulp is sent
to the hydrocyclone for classification. The hydrocyclone separates the coarse and fine ore
particles. The overflow fines will flow to the next process. The coarse particles are ground
in the No. 2 ball mill. No. 1 ball mill and No. 2 ball mill work in recycling to complete the
two-stage closed-circuit grinding process.

Grinding particle size is a key technical index to test the final product quality of the
grinding operation. The grinding particle size is usually expressed as mass proportion
of a specific particle size (such as 75 µm) content in the product [7]. The shape of ore
particles is generally irregular, the diameter of the selected grains indicates the particle
size value, units generally adopt millimeter or micron. In the actual grinding process, the
grinding particle size is an important basis for the field staff to determine the ore feed
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and water feed of the ball mill. However, the grinding process is complex so that it is
difficult to use measuring instruments to monitor the particle size online. The particle size
of the grinding process is generally obtained by manual analysis, which cannot meet the
requirements of real-time production. Thus, it is impossible to describe them accurately.
Secondly, the grinding particle size is related to many variables, such as ore feed rates of
the ball mills and feed water rate of the spiral classifier [7]. It has the characteristics of
strong non-linearity and multi-variable coupling. To deal with the problems in the hematite
grinding process, a data-driven ELM model for the grinding particle size is proposed in
this paper. Because of the change of operating conditions during the grinding process,
the accuracy of the model may be reduced by the new data. A strategy based on moving
window technology combined with double locally weighted modeling is introduced to
make the model parameters track the process state changes.
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The right input variables must be chosen in order to build a data-driven model of the
grinding particle size. From the hematite grinding process, four main factors affecting the
grinding particle size can be selected. First, the ore feed rate of the No. 1 ball mill is very
important, which influences all subsequent parameters, including the grinding particle
size. Second, the pulp % solids by volume have a significant impact on the No. 1 ball
mill’s grinding efficiency. The pulp % solids by volume can be stabilized by adjusting the
feed water rate of the No. 1 ball mill. Third, the overflow pulp % solids by volume of the
spiral classifier affects the No. 2 ball mill efficiency and capacity. The overflow pulp %
solids by volume of the classifier can be controlled by the feed water volume of the spiral
classifier. Fourth, the feed flow rate of the hydrocyclone plays an important role in the
final product quality. By reasonably adjusting the feed flow rate, the grinding particle size
can be controlled directly. Apart from the four factors, the size distribution and the bond
work index of the ore are main characteristics when feeding the circuit. However, they
are difficult to obtain online. For convenience, the size distribution and the bond work
index of the ore are regarded as constants rather than variables for modeling. Based on the
above analysis, taking into account the characteristics of the hematite grinding process and
available process variables, the ore feed rate of the No. 1 ball mill, the feed water rate of the
No. 1 ball mill, the feed water volume of the spiral classifier and the feed flow rate of the
hydrocyclone are taken as the input variables of the grinding particle size model.

3. A Double Locally Weighted Extreme Learning Machine Based on Moving Window
for the Grinding Particle Size Modeling
3.1. The Basic Principle of the Extreme Learning Machine

The extreme learning machine is distinguished by its rapid training speed, ease
of realization and strong generalization ability. ELM’s input weights and hidden layer
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thresholds are set at random, and the hidden layer activation function is typically chosen
as “RBF function” or “Sigmoidal function”. The ELM is described in more detail below.

For any the ith random samples (xi, yi), where xi = [xi1, xi2, . . . , xin]
T ∈ Rn, yi∈ R1×1,

n is the number of input layer nodes. The hidden layer activation function is denoted by
g(x), and the ELM model is depicted in Equation (1):

m

∑
i=1

βigi(xi) =
m

∑
i=1

βig(wi · xi + bi) = yj (1)

where j = 1, 2, . . . , N, N is the number of training samples, wi = [wi1, wi2, . . . , win]
T is

the weight between the ith hidden layer node and the input node, bi is the ith hidden
layer node’s threshold, βi = [βi1, βi2, . . . , βim]

T is the weight of the connection between the
output layer node and the ith hidden layer node, m is the number of hidden layer nodes.

The mentioned Equation (1) can be abbreviated:

Hβ = Y (2)

H =

g(w1x1 + b1) · · · g(wmx1 + bm)
...

. . .
...

g(w1xn + b1) · · · g(wmxn + bm)

 (3)

β = [β1, β2, · · · , βm]
T (4)

Y = [y1, y2, · · · , yn]
T (5)

where H is the hidden layer’s output matrix, β is the output layer’s weight matrix, Y is the
expected output. The least squares norm solution of Hβ = Y is β̂ = H+Y, where H+ is the
generalized inverse matrix of H.

The following are the steps of the extreme learning machine:
Step 1: Initialize the weight wi and the threshold bi at random;
Step 2: Using Equation (3), compute the output matrix H;
Step 3: Calculate the weight matrix β̂ = H+Y.

3.2. A Double Locally Weighted Extreme Learning Machine Based on Moving Window Technology

By incorporating the merits of ELM, local modeling methods [16,17] and moving
window technology [18–20], a MW-DLW-ELM algorithm is proposed in this paper. To
obtain the weight coefficients of historical samples and local modeling samples, the distance
between each historical sample and the query sample is first calculated. Second, different
weights are assigned to variables based on the correlation between each input variable and
output variable of local modeling samples. The ELM model is built to estimate the output
variable by simultaneously weighting samples and variables.

The ball mill’s ore feed rate, feed water rate, spiral classifier’s feed water volume and
hydrocyclone’s feed flow rate are all used as input factors in the model for the grinding
particle size, and the output variable is the grinding particle size. Assume that N historical
input samples are {xi}N

i=1, the corresponding output samples are {yi}N
i=1. Local modeling

samples are chosen and assigned different weights based on their distance to the query
sample after evaluating the distance and similarity between historical samples and the
query sample. The query sample is designated as xq. To calculate the similarity between
each historical sample and the query sample, the common Euclidean distance is used,
which is shown in Equation (6):

di =
√
(xi − xq)

T(xi − xq), i = 1, 2, . . . , N (6)
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where di is the Euclidean distance between xq and xi. The assigned weight to xi is calculated as:

wj = exp(
−d2

j

σ2 ), j = 1, 2, . . . , N (7)

where σ is the adjust parameter. The larger the weight value, the closer the historical sample
is to the query sample. For local modeling, the closest samples N are chosen. The input
matrix is X = [x1, x2 . . . , xN ]

T and the output matrix is Y = [y1, y2 . . . , yN ]
T . Then, the

weighted training sample in the nonlinear characteristic space is xw
j = wjxj, j = 1, 2 . . . , N.

In order to improve prediction performance, consider the correlation between input
variables and output variable. As a result, the Pearson coefficient is used to calculate the
weight of each input variable, which is defined as follows:

r =
E(xy)− E(x)E(y)√

E(x2)− E2(x)
√

E(y2)− E2(y)
(8)

where E(x) represents a single variable’s expectation. The greater the r is, the more relevant
the two variables are. As a result, correlation coefficients are used to assess the significance
of variables. Assuming that the original input variables have a dimension of L, then the
weight of each dimension of the input variable is defined by a correlation coefficient:

λs =
|rs|

L
∑

k=1
|rk|

, s = 1, 2, . . . , L (9)

The weighted input sample is:

xp
j = xj · diag(λ1, λ2, . . . , λL) =

[
λ1xp

j1, λ2xp
j2, . . . , λLxp

jL

]T
(10)

where xp
js is the sth input of the j sample; λs, s = 1, 2, . . . , L is the weight value corresponding

to each input variable.
Finally, the double locally weighted input sample can be described as:

xωp
j = ωjx

p
j (11)

Therefore, the model based on double locally weighted extreme learning machine is
shown in Equation (12):

m

∑
i=1

βigi(xωp
i ) =

m

∑
i=1

βig(wi × (ωix
p
i ) + bi) = yj, j = 1, 2, . . . , N (12)

The DLW-ELM is a just-in-time learning method capable of dealing with nonlinearity
in the hematite grinding process. However, the hematite grinding process, like the ore raw
batches, frequently undergoes slowly time-varying working conditions. As a result, the
gap between historical data and new working conditions will gradually widen, resulting
in model performance degradation. Thus, the moving window technique is used to track
the most recent state of the grinding process in order to ensure the model’s long-term
prediction accuracy. As a result, the DLW-ELM models are gradually built in the moving
windows alongside the process running time for the prediction of grinding particle size.

Figure 2 depicts an illustration of the MW-DLW-ELM model. Assume Wm for the
window length and Dm for the step size. Denote {Xt1, Yt1} the input dataset and output
dataset in the first window. Firstly, DLW-ELM models are built to estimate the grinding
particle size for each of the subsequent Dm query samples in the first window. Then, the
window is moved forward by step size Dm according to the sampling direction, while the
datasets in the window are updated to {Xt2, Yt2}. In these datasets, the MW-DLW-ELM
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models are also constructed to predict the output of Dm query samples after the second
window. By repeating the above procedures, the datasets in the sth window can be
represented as {Xts, Yts}. The MW-DLW-ELM model trained in the moving window can
predict the output of the query samples until the predicted output for all query samples
is obtained.
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The MW-DLW-ELM steps are summarized as follows:
Step 1: The number N of local modeling samples, the window length Wm and the step

size Dm are determined by trial and error;
Step 2: The distance between each historical sample and the query sample is calculated

in the window. The local modeling samples are then arranged in descending order of
distance from small to large;

Step 3: The first N samples are chosen for local modeling, and their weights are
calculated using Equation (7);

Step 4: The Pearson coefficients of the L input variables are calculated by Equation (8).
Then, the input variables are weighted by Equations (9) and (10);

Step 5: The double locally weighted samples are obtained by Equation (11). Then,
using the least squares norm solution of Equation (12), the output of the query sample can
be obtained;

Step 6: After the subsequent Dm query samples in the window is estimated by DLW-
ELM, the window is moved forward by step size Dm. The historical samples in the window
are updated. Then, repeat Step 2 until all of the query samples receive the predicted output.

The wi and bi in Equation (12) are the key parameters that affect the performance of
the MW-DLW-ELM. However, the range of manually set parameters is limited, and they
are not the optimal parameters. Thus, in Section 4, an improved sparrow optimization
algorithm is developed to optimize the parameters of the MW-DLW-ELM.

4. Parameter Optimization Based on Improved Sparrow Optimization Algorithm
4.1. Parameter Optimization for the MW-DLW-ELM Model

To obtain optimal performance, MW-DLW-ELM parameters identification is described
as an optimization problem of solving the minimum objective function J:

min
θ

J =
Nt
∑

i=1
(yi − ŷi(θ))

2

s.t. θmin ≤ θ ≤ θmax

(13)

where θ = [wi, bi]
T is the parameter vector, yi denotes the actual grinding particle size

sample value, ŷi denotes the corresponding model prediction value, Nt is the number
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of samples used for training. The optimal parameters for the MW-DLW-ELM model are
obtained when all of the parameters are within the expected range [θmin, θmax] and the
objective function J is globally minimized. The algorithm proposed in this paper can
generate the parameter vector.

4.2. Original Sparrow Searching Algorithm

After determining the parameters needed to be optimized for the MW-DLW-ELM
model, the sparrow searching algorithm is used to find optimal parameters. The original
SSA is proposed in 2020, inspired by the predatory and anti-predatory behavior of the
sparrow in the biological world [35]. In order to complete the foraging, sparrows are
usually divided into producers and followers. In the natural state, sparrows will monitor
each other. The followers in the swarm usually compete for the food resources of their
high intake companions in order to improve their own predation rate. While foraging, all
sparrows will keep alert to the surrounding environment to prevent the arrival of natural
enemies. Sparrow set matrix is as follows:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
...

...
...

xnp ,1 xnp ,2 · · · xnp ,d

 (14)

where np is the number of sparrows, d is the dimension of variables. Sparrows have the
following fitness matrix:

Fx =


f
(
[x1,1 x1,2 · · · x1,d]

)
f
(
[x2,1 x2,2 · · · x2,d]

)
...

f
(
[xnp ,1 xnp ,2 · · · xnp ,d]

)
 (15)

where the value of each line in Fx represents the fitness value of sparrows.
In the SSA, the producer typically has a large energy reserve and is responsible for

searching the entire population for areas with abundant food, providing all participants
with the area and direction of foraging. The energy reserve is determined by the sparrow’s
fitness value. Sparrows with higher fitness values have first priority in obtaining food,
driving the entire population to seek food as producers. The producer’s location update
mode is as follows:

Xt+1
i,j =

{
Xt

i,j · exp
(

−i
α·itermax

)
R2 < ST

Xt
i,j + Q · L R2 ≥ ST

(16)

where t represents the number of current iterations, j = (1,2, . . . , d), Xt
i,j represents the

jth dimension position of the ith sparrow at iteration t. itermax represents the maximum
number of iterations. α is a random number of (0,1), R2∈ [0, 1] and ST ∈ [0.5, 1], R2 and
ST represent warning value and safety value, respectively. Q is a random number subject
to [0, 1] normal distribution. L stands for a matrix of 1 × d, and each element inside is 1.
When R2 < ST, it means that there is no natural enemy around, and the producer conducts
an extensive search mode. If R2 ≥ ST, it means that some sparrows have found natural
enemies, and all sparrows need to fly to other safe areas quickly.

Follower refers to a kind of sparrow with low energy and poor fitness value in the
population. The following is the follower’s position update formula:

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
i > np

2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L other
(17)
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where XP is the best position for producers, Xworst represents the worst position, A repre-
sents a matrix of 1 × d, each element in the matrix is randomly assigned with a value of
1 or −1, A+ = AT (AAT)−1. When I > np/2, it means that the ith follower with poor fitness
value does not get food and is in a very hungry state. At this time, it needs to fly to other
places for food to obtain more energy.

At the same time, the sparrow population has the behavior of detection and early warning:
While searching for food, some sparrows will serve as scouts, alerting others. When

danger approaches, they will abandon their current food source. Whether the producer
or follower will abandon their current food and take on a new role. SD (typically 10–20%)
sparrows are chosen at random from the population for early warning behavior. Its location
update equation is as follows:

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣ fi > fg

Xt
i,j + K·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
fi = fg

(18)

where Xbest is the global optimal position, β is a step control parameter, a random number
of normal distribution with mean value of 0 and variance of 1, K ∈ [−1, 1] is a uniform
random number. fi is the fitness value of the current sparrow. fg and fw are the current global
best and worst fitness values, respectively. ε is the minimum constant to avoid a zero in the
denominator. When fi > fg, it means that sparrows are at the edge of the population and
are extremely vulnerable to natural enemies. fi = fg indicates that sparrows in the middle
of the population are aware of this danger, so they need to be close to other sparrows.
K represents the direction of movement of the sparrow and is also a step control parameter.

4.3. Improved Sparrow Searching Algorithm

The original sparrow searching algorithm is slow to converge and easily falls into a
local optimum. This paper improves the original algorithm by incorporating aspects of the
evolutionary mechanism.

Introducing dynamic weight factor for producer location update:
The dynamic weight factor is introduced for the producer location update using

the concept of inertial weight [38]. With the weight that decreases adaptively with the
number of iterations, it indicates that the producer is affected by the global optimal solution,
and it can also effectively balance the local and global search abilities and improve the
convergence speed. The weight coefficient is denoted as follows:

ωd =
e2(1−t/itermax) − e−2(1−t/itermax)

e2(1−t/itermax) + e−2(1−t/itermax)
(19)

The improved producer location is updated as follows:

Xt+1
i,j =

{
Xt

i,j +
[
(ωd · f t

j,g − Xt
i,j)
]
· rand R2 < ST

Xt
i,j + Q R2 ≥ ST

(20)

where f t
j,g is the global optimal solution of the jth dimension in the previous generation,

and rand is a random number of (0,1).
Introducing Gaussian distribution strategy for follower location update:
To avoid sparrows blindly following the producer and to improve global search ability,

the Gaussian distribution strategy [41] is introduced to the follower update equation. The
improved follower’s updated equation is as follows:

Xt+1
i,j = Xt

best + N(0, 1) ·
∣∣∣Xt

best − Xt
i,j

∣∣∣ (21)

where N(0,1) is the standard Gaussian distribution.
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Introducing teaching–learning-based optimization for SSA:
Students are viewed as search points distributed in the decision variable space in

the teaching–learning-based optimization (TLBO) algorithm [43], and the best student is
defined as the class teacher. Different from the traditional evolutionary algorithm and
swarm intelligence algorithm, the iterative evolution process of the teaching optimization
algorithm includes the teaching stage and learning stage, as shown in the Figure 3. During
the teaching stage, students will improve their own level by learning from teachers in order
to raise the average level of the class; later, in the learning stage, the students will improve
their own level through interactive learning with another randomly selected student.
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The update equation for students at the learning stage is:

newXi =

{
Xi + rand · (Xi − Xk) i f f (Xi) < f (Xk)
Xi + rand · (Xk − Xi) otherwise

(22)

The SSA is improved by the mechanism that students learn from each other in the
learning stage of the TLBO. Thus, the producers can learn from one another, improving the
producer’s search ability and broadening the search scope. The final update equation of
the improved producer and follower is as follows:

Producers:

Xt+1
i,j =


Xt

i,j + rand · (Xt
i,j − Xt

k,i) +
[(

ωd f t
j,g − Xt

i,j

)
· rand

]
i f f (Xt

i ) ≤ f (Xt
k), R2 < ST

Xt
i,j + rand · (Xt

k,i − Xt
i,j) +

[(
ωd f t

j,g − Xt
i,j

)
· rand

]
Xt

i,j + Q
i f f (Xt

i ) > f (Xt
k), R2 < ST

i f R2 ≥ ST
(23)

Followers:

Xt+1
i,j = Xt

best + N(0, 1) ·
∣∣∣Xt

best − Xt
i,j

∣∣∣ (24)

Improved sparrow renewal equation for detection and early warning (scout):
In the SSA algorithm, the step control parameter β plays an important role in balancing

global search ability and local search ability [38]. However, β is a random number that
cannot satisfy the searching ability of the algorithm, which may lead SSA to local optimum.
Larger step control parameters β can facilitate global search ability, and smaller step control
parameters can facilitate local search ability. Thus, the step length control parameter β need
to be adjusted dynamically. The update equation for β is shown as follows:

β = fg −
(

fg − fw
)
· ( itermax − t

itermax
)

1.5
(25)

Xt+1
i,j =

{
Xt

best + β(Xt
i,j − Xt

best) fi 6= fg

Xt
best + β(Xt

worst − Xt
best) fi = fg

(26)

The final update equation of the scout is as follows:
According to the improved scout update equation, if the sparrow is in the optimal

position, it will escape to the random position between the optimal and worst positions;
otherwise, it will escape to the random position between itself and the optimal position.

Algorithm 1 depicts the improved ISSA algorithm’s pseudocode.
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Algorithm 1: Improved Sparrow Searching Algorithm

Input: Generate random population of sparrows Xi(t)
Output: Xi(t + 1) and F(Xi(t + 1))(Fitness value)
1: Initialize population parameters, such as population number, the maximum number of
iterations Itermax, discoverers PD, number of early warning sparrows SD, warning threshold
R2, etc.
2: Calculate the fitness value of each sparrow, find the current optimal individual fitness values,
the worst fitness and the corresponding location.
3: The producers were selected from the sparrows with better position, and the producer updates
the position by Equation (23).
4: The remaining sparrows act as followers and update the position by Equation (24).
5: Select some sparrows randomly among the sparrows as scout and update the position by
Equation (26).
6: Calculate the updated fitness of the entire sparrow population and find the global
optimal sparrow.
7: Determine if the end condition is met, and if so, proceed to the next step, otherwise jump
to step 2.
8: The program ends and the optimal result is output.

5. Experiments and Analysis

In this part, three experiments are carried out to validate the proposed method. Firstly,
the ISSA’s performance is validated with other three algorithms by 11 benchmark functions.
Secondly, the final grinding particle size model optimized by ISSA is compared with four
other models to verify the effectiveness of the algorithm and model. The samples used in
this paper are collected on a physical simulation experiment platform. There are a total
of 300 samples collected for modeling, with 200 serving as historical data for training and
100 serving as testing data. The detailed results are shown as follows.

5.1. Experiment of Benchmark Function

Eleven benchmark functions F1~F11 are selected to test the original SSA [35], parti-
cle swarm optimization (PSO) [46], grey wolf optimizer (GWO) [47] and the ISSA. The
benchmark functions F1~F5 are unimodal functions and F6~F11 are multimodal functions.
The unimodal functions F1~F5 mainly test the convergence speed of the algorithm. The
multimodal functions F6~F11 have many local extreme points, which are difficult to jump
out, and they are used to test the global search ability of the algorithms. The specific test
functions are shown in Table 1. By trial and error, in the four algorithms, the population
numbers are set as np = 30, and the numbers of iteration are set as Itermax = 1000. In the
PSO algorithm, the acceleration factors are set as c1 = c2 = 2, the minimum inertia factor
ωmin is 0.4, the maximum inertia factor ωmax is 0.9. The convergence factor in the GWO
algorithm is set from 2 to 0. The alarm values of SSA and ISSA are 0.8, the numbers of
producers PD are 0.2, and the numbers of sparrows who perceive the danger SD are 0.2.
Each test function runs 200 times independently to eliminate randomness. The calculated
best value (Best), worst value (Worst), average value (Mean), standard deviation (STD) are
used as indices. The results of F1 to F5 are shown in Table 2.

Table 2 shows that ISSA achieves most satisfactory results for five test functions.
Especially in the F1~F4 functions, ISSA can find the optimal value 0 in both F1 and F3.
There is a certain high requirement for the algorithm’s ability to jump out of the local
optimal on F5. It can be seen that in the F5 test results, ISSA still has certain advantages
over other algorithms. In terms of global search ability, the simulation results show that
the ISSA algorithm outperforms the SSA algorithm and the other two algorithms. Figure 4
depicts the convergence curve of the F1 function to demonstrate the performance and speed
of the ISSA algorithm more intuitively.

It can be seen from the convergence curve in Figure 4 that ISSA is superior to PSO,
GWO and SSA algorithms in convergence speed. From Table 2 and Figure 4, In terms of
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global search capability and convergence speed in low peak functions, the ISSA algorithm
clearly outperforms the competition.

Table 1. Benchmark functions F1~F11.

Test Function Expression Symbol Range of Values Value of Optimal Solution

f1 =
n
∑

i=1
x2

i
F1 [−100, 100] 0

f2 =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | F2 [−10, 10] 0

f3 =
n
∑

i=1

(
i

∑
j=1

xi

)2
F3 [−100, 100] 0

f4 = maxi{|xi |, 1 6 i 6 n} F4 [−100, 100] 0

f5 =
n
∑

i=1
ix4

i + random[0, 1) F5 [−1.28, 1.28] 0

f6 =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] F6 [−5.12, 5.12] 0

f7 = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e F7 [−30, 30] 0

f8 = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 F8 [−600, 600] 0

f9 =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1 (xi−aij)
6

)−1
F9 [−65.536, 65.536] 1

f10 = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 F10 [0, 10] 1/ci

f11(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(

xj − pij
)2

)
F11 [0, 1] −3.8628

Table 2. Experimental results of test functions F1 to F5.

Functions PSO GWO SSA ISSA Optimal Value

F1

Best 0.058933 3.396 × 10−62 1.714 × 10−158 0 0
Worst 0.38873 7.5113 × 10−58 2.3176 × 10−75 0
Mean 0.19735 6.8668 × 10−59 7.7423 × 10−77 0
STD 0.092988 1.5269 × 10−58 4.231 × 10−76 0

F2

Best 1.3475 4.0876 × 10−36 2.9828 × 10−84 7.0841 × 10−250 0
Wort 7.7625 3.8835 × 10−34 8.8405 × 10−41 2.6869 × 10−223

Mean 3.4671 8.7556 × 10−35 3.2694 × 10−42 8.9563 × 10−225

STD 1.5434 8.292 × 10−35 1.6118 × 10−41 0

F3

Best 6.6321 3.061 × 10−19 0 0 0
Worst 32.7164 2.8866 × 10−13 7.7326 × 10−35 0
Mean 17.1663 1.1034 × 10−14 2.7878 × 10−36 0
STD 7.6494 5.2766 × 10−14 1.4122 × 10−35 0

F4

Best 1.0528 5.2743 × 10−16 9.227 × 10−166 6.6986 × 10−243 0
Worst 4.7375 2.3154 × 10−14 1.2678 × 10−31 1.6359 × 10−222

Mean 2.8452 8.8794 × 10−15 4.245 × 10−33 5.7244 × 10−224

STD 1.1379 5.607 × 10−15 2.3144 × 10−32 0

F5

Best 0.043813 0.00019499 0.0001679 1.9965 × 10−5 0
Worst 5.3953 0.0020989 0.0013119 0.00040725
Mean 0.28151 0.0007823 0.0033844 0.0016521
STD 0.96657 0.00048393 0.0010085 0.00034993
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To verify the performance of ISSA algorithm on multi-dimensional complex functions,
multi-modal test functions F6~F11 are adopted. The convergence curve of the F7 test
function is shown in Figure 5. From Table 3 and Figure 5, SSA and ISSA have obvious
advantages over other algorithms. ISSA can find the optimal solution 0 on F6 and F7
while SSA and ISSA have the same optimization precision on F7, but ISSA has a faster
convergence speed. On the functions F9~F11 with more local extremum, ISSA performs
well in standard deviation and achieves high convergence accuracy. The simulation results
show that the ISSA algorithm performs well in solving complex multi-extremum problems.
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5.2. Experiments on the Parameters Optimization of the ELM Models

To examine the effectiveness and efficiency of the proposed method further, the ISSA
algorithms will be applied to the ELM model and the moving window double locally
weighted extreme learning machine (MW-DLW-ELM) model. The ELM model optimized
by PSO (PSO-ELM), ELM model optimized by GWO (GWO-ELM), ELM model optimized
by ISSA (ISSA-ELM) and MW-DLW-ELM model optimized by ISSA (denoted as Model 1)
are used to predict the grinding particle size. There are 300 samples sorted by time collected
for the experiments, with the first 200 samples serving for model training and the last
100 samples serving for testing. The parameters in PSO, GWO and ISSA are the same as
in Section 5.1. By trial and error, the length of moving window Wm is set as 20, and the
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step size Dm is set as 5. The maximum error (MAX), the mean square error (MSE) and the
mean absolute error (MAE) are used as the performance indices. The comparison results
are shown in Table 4, the convergence curves of each algorithm are shown in Figure 6, the
prediction results of each model are shown in Figure 7 and the prediction errors of the
models are shown in Figure 8.

Table 3. Experimental Results of Test Functions F6~F11.

Functions PSO GWO SSA ISSA Optimal Value

F6

Best 24.2468 0 0 0 0
Worst 84.1836 4.8221 0 0
Mean 53.8561 14.4021 0 0
STD 14.4021 1.1637 0 0

F7

Best 2.5838 1.1546 × 10−14 8.8818 × 10−16 8.8818 × 10−16 0
Worst 6.5662 2.2204 × 10−14 8.8818 × 10−16 8.8818 × 10−16

Mean 4.1938 1.5336 × 10−14 8.8818 × 10−16 8.8818 × 10−16

STD 0.93679 1.8504 × 10−15 0 0

F8

Best 2.4427 0 0 0 0
Worst 14.703 0.021561 0 0
Mean 5.8382 0.0021043 0 0
STD 2.7263 0.0055966 0 0

F9

Best 0.998 0.998 0.998 0.998 1
Worst 5.9288 10.7632 12.6705 0.998
Mean 1.5932 3.6837 4.6346 0.998
STD 1.0887 3.3394 5.2536 1.3039 × 10−16

F10

Best −10.1532 −10.1531 −10.1532 −10.1532 −10.1532
Worst −2.6305 −4.145 −5.0552 −10.1532
Mean −6.1408 −9.4457 −8.7937 −10.1532
STD 3.2554 1.8396 2.2929 5.8915 × 10−15

F11

Best −3.8628 −3.8628 −3.8628 −3.8628 −3.8628
Worst −3.8549 −3.8549 −3.0898 −3.8628
Mean −3.8617 −3.8612 −3.837 −3.8628
STD 0.002725 0.0028854 0.14113 2.6402 × 10−15

Table 4. Comparison results of models optimized by various algorithms.

Model MAX MSE MAE

ISSA-ELM 4.1087 1.6843 0.9377
Model 1 2.1324 1.0160 0.4926

PSO-ELM 5.8202 3.3760 0.9165
GWO-ELM 6.4012 4.6723 0.9704

It can be seen from the results in Table 4 that compared with PSO-ELM and GWO-ELM,
MAX, MSE and MAE of Model 1 are greatly reduced, and the accuracy of the Model 1 is
greatly improved. By comprehensive comparison of the models, the overall performance
of Model 1 is the best. The maximum error is 2.1324, the mean square error is 1.0160 and
the average absolute error is 0.4926.

As can be seen from the Figures 6–8, the ISSA algorithm has a good performance
of searching ability and jumping out of the local optimum. The Model 1 has a smaller
fitness value than the other models. Compared to other models, both ISSA-ELM and
Model 1 can better fit the target values than the other models, but the error distribution of
the Model 1 is relatively more uniform. The MW-DLW-ELM optimized by ISSA has the
fastest convergence speed, the highest accuracy and a better prediction performance than
other models, which verifies the effectiveness of the ISSA algorithm.
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6. Conclusions

This paper mainly studies a MW-DLW-ELM modelling technique and an improved
sparrow searching algorithm. The MW-DLW-ELM combines the advantages of ELM, local
modeling methods and moving window technology. In the improved sparrow searching
algorithm, a dynamic weight factor is introduced for producer and scout location update
to balance the local and global searching abilities and improve the convergence speed. The
Gaussian distribution strategy is introduced for the follower to improve the ability of the
algorithm to jump out of the local optimum. The teaching–learning-based optimization
is combined with the sparrow searching algorithm, which can improve the producer’s
searching ability and broaden the searching scope. The performances of the proposed
methods are validated by some test functions and a case study of the grinding circuit. The
results show the effectiveness of the ISSA algorithm and MW-DLW-ELM. The proposed
methods are expected to be applied to other complex industries in the future and have
important practical significance.
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