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Abstract: In the evolving landscape of manufacturing, the integration of intelligent control theory
stands as a pivotal advancement, driving both process optimization and the paradigm of smart
manufacturing. This review delves into the multifaceted applications of intelligent control theory,
emphasizing its role in equipment, operations, and controls optimization. With a focus on three
primary methodologies—fuzzy logic, neural networks, and genetic algorithms—the paper elucidates
their biological parallels and their significance in simulation, modeling, and optimization. The
transformative potential of smart manufacturing, synonymous with Industry 4.0, is also explored,
highlighting its foundation in data, automation, and artificial intelligence. Drawing from a compre-
hensive analysis of recent literature, the review underscores the growing interest in this domain, as
evidenced by the surge in publications and citations over the past decade. The overarching aim is to
provide contemporary discourse on the applications and implications of intelligent control theory in
the realms of process optimization and smart manufacturing.
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1. Introduction

Process optimization is the iterative refinement of a system or process to enhance its
efficiency and adaptability. It adjusts parameters to achieve optimal outputs with fewer
resources and waste. The goal is to maximize metrics like yield or efficiency within set con-
straints, often using tools such as computational algorithms and real-time monitoring [1].

In the context of reaction systems, process optimization generally aims to maximize
feed rate and/or conversion in response to changes in feed quality, ambient conditions, or
market demands, all while adhering to as many constraints as possible [2].

The phrase “smart manufacturing” was first coined by the Smart Manufacturing
Leadership Coalition (SMLC) [3]. They defined smart manufacturing as an advanced
form of manufacturing that (a) relies on the integration and coordination of information,
automation, computation, software, sensing, and networking, and (b) utilizes state-of-the-
art materials and emerging capabilities stemming from both the physical and biological
sciences. This definition encompasses not only innovative methods to produce existing
products but also the production of novel products derived from cutting-edge technologies.

Moreover, a comprehensive review of standards and projected scenarios in smart
manufacturing process and system automation was undertaken [4]. This review offered an
overview of the prevailing manufacturing automation standards, with a focus on integrated
processes tailored for mass personalization and agile automation. The authors delineated
the vision of smart manufacturing and its prerequisites for upcoming automation. In
response to the demand for efficient production of personalized products, they explored
scenarios that amalgamate existing standards.

Smart manufacturing represents a profound integration of networked, information-
driven technologies across the manufacturing and supply chain spectrum. It emphasizes
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synchronization, integrated performance metrics, and cyber-physical–workforce dynamics.
This approach catalyzes a transformative shift towards customer-centric economics, stream-
lined enterprise performance, real-time materials engineering, and demand-responsive
supply chains. IT-enhanced smart factories and networks bolster national priorities, en-
hancing global competitiveness, fostering sustainable jobs, elevating performance, and
driving innovative manufacturing [5].

The relentless pursuit of advancements in equipment, operations, and controls is piv-
otal for process optimization. This pursuit aims to enhance productivity, curtail expenses,
and bolster quality. Equipment optimization [6–10] necessitates regular maintenance, equip-
ment upgrades, adoption of cutting-edge technology and designs, and the minimization of
maintenance downtime. In contrast, operations optimization [11–15] focuses on refining
processes, diminishing waste, and streamlining the flow of materials and information.
Controls optimization [16–20] leverages advanced control systems, sensors, and automa-
tion to fine-tune the performance of equipment and processes. A holistic optimization of
these domains can amplify efficiency, curtail costs, elevate quality, boost competitiveness,
and enhance customer satisfaction. Nevertheless, optimization is a perpetual endeavor,
and its success hinges on continuous refinement. Periodic evaluations and process en-
hancements are instrumental in optimizing the performance, efficiency, and profitability of
manufacturing operations.

Numerous studies have endeavored to tweak process parameters to achieve spe-
cific optimization goals or minimize certain process specifications all while adhering to
constraints. These studies span a plethora of sectors, including but not limited to chem-
ical [21–25], energy [26–29], business [30–33], agriculture [34–37], medical [38–41], and
manufacturing [9,42–46].

While smart manufacturing and Industry 4.0 are closely related and often used in-
terchangeably in some contexts, they are not strictly synonymous. Smart manufacturing
focuses on using advanced data analytics, automation, and other technologies to enhance
manufacturing processes. On the other hand, Industry 4.0 represents the fourth industrial
revolution, encompassing a broader range of technological advancements, including the
Internet of Things (IoT), cyber-physical systems, and more, of which smart manufacturing
is a significant component. Smart manufacturing [5] harnesses avant-garde information
and communication technologies to elevate manufacturing processes, enhance supply
chain efficiency, and improve customer satisfaction. This paradigm encompasses real-time
monitoring and control, integrated performance metrics, and holistic participation from
the workforce. The advantages of smart manufacturing encompass heightened competi-
tiveness, new types of job opportunities, elevated performance, and innovation within the
manufacturing industry. While it is true that the automation aspect of smart manufacturing
can reduce certain manual labor roles, it simultaneously creates specialized job opportu-
nities. These include positions in system design, maintenance, data analysis, software
development, quality assurance, system optimization, and cybersecurity. As manufac-
turing processes become more technologically advanced, there is a growing demand for
skilled professionals who can design, implement, and maintain these sophisticated systems.
Thus, smart manufacturing shifts the job landscape from traditional manual roles to more
technologically centric positions.

The quintessence of smart manufacturing is the production of bespoke products
efficiently and cost-effectively. A comprehensive study [4] delved into contemporary guide-
lines for automating manufacturing processes and systems. It emphasized the paramountcy
of seamless integration and the role of advanced automation in facilitating large-scale cus-
tomization and reactive factory automation.

Smart manufacturing integrates Internet of Things (IoT) devices [47–52], cloud com-
puting [51,53–56], robotics [57–60], and artificial intelligence (AI) algorithms [61–64] to
ensure real-time oversight and management of production processes.

Numerous studies have explored the application of intelligent control in process
optimization, examining the practical implementation of intelligent control principles. In
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the Web of Science database, topic searches scrutinize record fields, including title, abstract,
author keywords, and Keywords Plus®, for relevant terms. As Figure 1 demonstrates, the
past decade has witnessed a substantial increase in both publications and citations on this
topic, indicating escalating interest among researchers and practitioners.
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Figure 2 presents the distribution of papers across various subject areas and published
during the past decade that relate to intelligent control and process optimization. Data in-
dicate that computer science, electrical electronics, and telecommunications jointly account
for 65% of total publications.
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Figure 3 showcases the volume of papers and citations on intelligent control and smart
manufacturing over the past decade, sourced from topic searches in the Web of Science
database. A marked uptrend in both publications and citations is evident.
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Figure 4 portrays the percentage distribution of papers related to intelligent control and
smart manufacturing across various subject areas over the past decade. Notably, computer
science, electrical electronics, material science, and manufacturing jointly comprise 67% of
total publications.
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This review aims to offer a contemporary discourse on intelligent control theory and
its applications in process optimization and smart manufacturing. It delves into three
intelligence approaches: inference intelligence (simulation-based), learning intelligence
(modeling-based), and evolutionary intelligence (optimization-based). Specifically, the
review evaluates these approaches in the context of process optimization, examining
how equipment optimization, operational procedures, and control optimization influence
optimal performance. Similarly, the review assesses these methodologies concerning their
potential to achieve four primary objectives in smart manufacturing: curtailing product
development cycles, cost reduction, production efficiency enhancement, and product
quality improvement.

Figure 5 delineates the nuanced distinction between autonomous and automatic oper-
ations, emphasizing their approximation capabilities. This encompasses myriad factors,
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such as ambiguity, vagueness, generality, imprecision, uncertainty, fuzziness, belief (sub-
jective probability), and plausibility, as elaborated in [65]. While Industry 3.0 accentuates
automatic operations and competitiveness via cost-cutting and leveraging affordable labor,
Industry 4.0 emphasizes autonomous operations and enhancing value, potentially leading
to price hikes due to the integration of machine intelligence. While Industry 4.0 emphasizes
autonomous operation and competitiveness through value enhancement, which in some
cases may lead to increased prices due to the integration of machine intelligence, it is
essential to note that the economic implications can vary. Specifically, in regions where
labor costs are high, the adoption of Industry 4.0 technologies might indeed lead to cost
savings and potentially reduced prices for end products.
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The faculty of approximation, emblematic of intelligence, is inherently a “soft” concept.
“Soft computing” complements traditional AI in the domain of machine intelligence (or
computational intelligence), underpinning intelligent control theory. Three predominant
methodologies in this realm are fuzzy logic, neural networks, and genetic algorithms. As
elucidated in [65], these techniques draw parallels with biological phenomena:

- Fuzzy logic emulates inference intelligence, striving to mirror human cognition and
the associated reasoning mechanisms;

- Neural networks inspired by learning intelligence, offer a rudimentary representation
of brain neuron structures;

- Genetic algorithms echoing evolutionary intelligence, employ mechanisms akin to
biological evolutionary processes.

Table 1 showcases a system or process diagram comprising three elements: input,
model, and output. It also details their interrelation with approach, intelligence, and
behavior. In engineering, problem-solving typically encompasses three primary stages:
simulation, modeling, and optimization. During simulation, the goal is to determine the
outputs based on the inputs, aligning with inference intelligence and the SEE behavior. In
the modeling phase, the objective is to discern the relationship between input and output,
aligning with learning intelligence and the THINK behavior. Finally, optimization seeks
the input(s) that yield the desired output, corresponding to evolutionary intelligence and
the ACT behavior.

Table 1. Mapping among approach, intelligence, and behavior.

Component in System/Process
Approach Intelligence Behavior

Input Model Output

Known 3 Known 3 Unknown
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Figure 6 illustrates the hierarchical control architecture utilized in both process opti-
mization and smart manufacturing systems, often termed supervisory control. High-level
tasks define the system’s objectives and guide its overarching decision-making processes.
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Conversely, low-level tasks manage the system’s execution, addressing specific functional
requirements like component design, algorithm execution, and resource management.
Distributing tasks between high and low levels ensure a clear responsibility demarcation,
promoting a modular and scalable system. This structure also streamlines problem diagno-
sis and resolution since each component can be individually addressed without affecting
others. This supervisor control architecture employs conventional crisp techniques for
low-level direct control. In contrast, upper levels handle supervisory tasks such as
process monitoring, performance assessment, tuning, adaptation, and restructuring.
The distributed architecture in Figure 6 denotes a system design where components are
dispersed across multiple locations, operating autonomously. The components exchange
data and communicate via a network, devoid of a central point of control. Conversely,
a centralized architecture design centralizes component control, with all components
communicating through a singular communication point, managed and regulated by the
central authority.
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Figure 6. Hierarchical architecture.

In hierarchical architectures, ensuring optimal and secure control techniques for non-
linear systems is paramount, especially when these systems are exposed to various external
disturbances and attacks. Several methodologies have been proposed to address these
challenges, emphasizing system stability and efficiency [66–68].

One notable approach utilizes the event-triggered adaptive dynamic programming
(ETADP) algorithm, focusing on the decentralized control of interconnected nonlinear
systems influenced by stochastic dynamics [66]. Another method introduces a combination
of an anti-attack control strategy and a decentralized adaptive self-triggered control (ASTC)
mechanism. This is particularly tailored to manage the control challenges in nonlinear
multiagent systems (MASs) that are vulnerable to denial-of-service (DoS) attacks over
directed graphs [67].

Furthermore, a comprehensive solution has been proposed that integrates a dynamic
threshold adjustable event-triggering mechanism, a neural network-based observer, a
dynamic surface control method, and the Nussbaum function. This approach is designed
for an event-based adaptive decentralized output feedback control scheme, targeting
interconnected systems affected by Bouc–Wen hysteresis and those with unmeasured
system states [68].

2. Inference Intelligence

The process of problem-solving through simulations entails using inputs to derive
corresponding outputs, as depicted in Figure 7. This is realized through an AI paradigm
termed as inference intelligence, which seeks to emulate expert knowledge to facilitate ap-
proximate reasoning. The cycle associated with this approach is termed SEE, encompassing
the perception of incomplete, imprecise, and fuzzy data.
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Fuzzy logic (FL) is an algorithmic approach that harnesses imprecise and incomplete
sensor data (as the known inputs in Figure 7), combined with expert rule-based knowledge
(the known model in Figure 7), to make practical inferences (the unknown outputs in
Figure 7). Traditional binary logic, which allows only two states, falls short in addressing
vague terms like “slow”, “near”, “speed up”, or “turn slightly right”. For these subjective
and approximate situations commonly faced in intelligent machine-related problems, fuzzy
logic provides a more pragmatic solution. It is built on if–then rules incorporating fuzzy
descriptors, allowing for partial truths. Unlike conventional Boolean logic, which strictly
adheres to true or false values, fuzzy logic accommodates shades of truth. Detailed insights
are available in [65], summarized as:

A fuzzy set A’s mathematical representation is through a membership function, ex-
pressed as

Fz[x ∈ A] = µA(x) : R→ [0, 1], (1)

Each element of A, symbolized by a point x on the real line <, is mapped to a value
µA(x) ranging from 0 to 1, indicating x’s membership grade in A.

Membership functions amalgamate to form a fuzzy rule, exemplified as

1. If A1 and B1 then C1
2. If A2 and B2 then C2

The antecedent consists of two fuzzy states, A and B, while the consequent comprises
two fuzzy actions, C1 and C2, linked through logical connectives.

Initially, a set of if–then rules with vague descriptors for both antecedent and conse-
quent variables is established. The data, D, undergoes initial processing as per

FD = FP(D), (2)

Typically, this corresponds to “fuzzification”, defining D’s membership grades. The
fuzzy inference FI for a knowledge base FK is then deduced using fuzzy-predicate approxi-
mate reasoning, represented by

FI = FK ◦ FD, (3)

The composition operator ◦ is articulated as

µI = sup
X

min(µK,µD), (4)

The fuzzy rule base’s multidimensional membership function is symbolized by µK,
while µD denotes the fuzzified data’s membership function. µI signifies the fuzzy infer-
ence’s membership function, and x ∈ X represents the context variables set used in aligning
with the knowledge base.

A centroid method can then ascertain the crisp value ĉ necessary for the action:

ĉ =

∫
s cµI(c)dc∫
s µI(c)dc

, (5)
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where c denotes inference I’s independent variable, while S signifies the inference member-
ship function’s support set or region of interest.

Figure 8 illustrates the comprehensive fuzzy inference process, encompassing (1) in-
put variables’ fuzzification, (2) antecedent’s AND, OR, and NOT operators’ application,
(3) consequent’s implication operator application (IF–THEN), (4) all rules’ consequents
aggregation, and (5) output variable defuzzification.
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Fuzzy logic’s versatility spans various domains, including control systems like process
temperature regulation [69], energy management [70,71], vacuum cleaning [72], automatic
transmission [73], washing machines [74], and pattern recognition tasks such as gait [75],
speckle [76], and behavior [77] pattern analysis. In image processing, it aids in image
enhancement [78,79], segmentation [80,81], and registration [82]). Within control systems,
fuzzy logic control mirrors human decision-making processes.

In process optimization, a fuzzy logic control system ingests parameters like temper-
ature, pressure, and flow rate. It then outputs control signals, adjusting process variables
to achieve optimization objectives. Using fuzzy logic in process optimization primarily
addresses inherent uncertainty and imprecision in the data. This involves applying
fuzzy rules to correlate input values with control outputs, leveraging expert knowledge,
and adjusting for optimal performance. Optimal performance hinges on three variables:
equipment, control, and operation. Table 2 delineates these variables across industries
and processes.

Table 2. Fuzzy logic in process optimization.

Parameter Adjusted Industry Process Approach

equipment

manufacturing device design [83]
reliable machine selection [84]

power power management [85]
insulation [86]

automotive maintenance [87]

control
manufacturing

electric discharge machining [88]
drilling [89]

thermal drilling [90]

power diesel hydrotreating [91]

operation

power energy management [92]
maintenance [93]

manufacturing chemical vapor deposition [94]
management supply chain [95]
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In smart manufacturing, fuzzy logic control-process inputs like production data,
process parameters, and machine status. The system analyzes these data, generating a
control signal to modulate the production process, resulting in enhanced efficiency and
efficacy.

Smart manufacturing’s objectives encompass accelerating product development, re-
ducing costs, boosting production efficiency, and improving product quality. Table 3
encapsulates these goals across industries and systems.

Table 3. Fuzzy logic in smart manufacturing.

Goal Industry System Approach

shorten product development cycle
power hydrogen production [96]

agriculture orchids greenhouse [97]
manufacturing lifecycle assessment [98]

reduce costs
automotive procurement cost [99]

power energy consumption [100]

improve production efficiency manufacturing
materials selection [101]

cutting force [102]
cost predication [103]

improve product quality
automotive reliability monitoring [104]

manufacturing deposition modeling [105]
business risk factor analysis [106]

Type-2 fuzzy logic systems enhance type-1 fuzzy logic systems by allowing member-
ship functions to be fuzzy sets. This introduces a more intricate layer to address greater
uncertainties than type-1 systems [107,108].

1. Type-1 Fuzzy Sets: Traditional fuzzy logic uses a membership function to assign a
membership grade between 0 and 1 to each object, indicating its belongingness to
the set.

2. Type-2 Fuzzy Sets: Here, the membership grade itself is a fuzzy set within the [0, 1]
interval, introducing uncertainty in membership degrees.

Type-2 fuzzy logic excels in handling heightened uncertainties. Where type-1 might
falter due to noise and imprecision in real-world scenarios, type-2 offers a more nuanced
approach. For instance, when experts provide varied membership functions for a concept,
a type-2 system can encompass all these variations, capturing the inherent uncertainty.

In essence, while type-1 fuzzy logic adeptly manages uncertainty, type-2 offers a
refined approach for scenarios with layered uncertainties.

3. Learning Intelligence

The objective of the modeling process, illustrated in Figure 9, is to discern the relation-
ship between input and output variables. A prime example of this approach is the neural
network algorithm. It utilizes interconnected nodes to emulate complex systems without
the necessity of an analytical model, mirroring the neural architecture of the human brain.
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Neural networks are computational constructs comprising vast arrays of intercon-
nected “neurons” that function in parallel, distributing processing tasks. Their design is
inspired by the biological configuration of neurons in the human brain. Notable features
include their capacity to approximate arbitrary nonlinear functions and undertake intricate
nonlinear decision-making processes. A neural network is structured with nodes grouped
into layers, interconnected by weighted elements termed synapses. In a biological context,
dendrites receive information from other neurons, process it in the soma (cell body), and
relay it to other neurons via an axon. The neural network’s prowess in learning from exam-
ples, approximating nonlinear functions, offering significant computational capabilities,
and memory retention can be attributed to this biological parallel, underscoring its inherent
“intelligence”.

The perceptron, depicted in Figure 10, represents one of the earliest neurons endowed
with intelligent attributes and autonomous learning capabilities. Within the perceptron
model, the weights w1, w2, . . ., wn can adaptively adjust in response to fresh data, leveraging
feedback and a learning rule.
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Figure 10. Single neuron (perceptron).

The operational steps for a single neuron are as follows:

1. Initialization of weights: Assign small values (w1, w2, . . ., wn).
2. Feed-forward: Present the input vector x = (x1, x2, . . ., xn)T and obtain the output o

using an activation function f as

o = f
(
∑n

i=1 wixi

)
, (6)

3. Error Calculation: Determine the error E as

E =
1
2
(t− o)2, (7)

4. Training (Back-propagation): Ascertain the weight change wi by

∆w = −η∇wE(w) = −η∂E(w)

∂w
, (8)

5. Weight Adjustment: Modify the weights based on:

w new
i = w old

i + ∆wi, (9)
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The artificial neural network (ANN), termed the multiple layer perceptron (MLP), is
depicted in Figure 11. It comprises individual neurons as showcased in Figure 10. Two
architectural designs are presented: feed-forward (denoted by the black solid arrow),
employing the back-propagation learning algorithm, and recurrent (highlighted with a red
dashed arrow). Recurrent architectures include the Hopfield network, recurrent neural
network (RNN), and time-delayed neural networks (TDNN). The methodology aligns with
the single neuron concept, with further elaboration available in [65].
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3.1. Machine Learning

An artificial neural network (ANN) is a machine learning technique that employs com-
putational methods to extract information directly from input/output data. Its performance
can dynamically improve as the volume of training samples grows. During the network’s
training phase, weight parameters at the neuron interconnection level are adjusted using
one of three learning algorithms, as depicted in Figure 12.
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In supervised learning, the input is processed by the neural network to produce an
output. The output is then contrasted with the target signal, yielding a cumulative error.
This error informs the weight updates in the neural network through a supervised learning
method. Two primary techniques exist:

(1) Classification, where the neural network yields a discrete response;
(2) Regression, where the response is continuous.

Unsupervised learning involves input processing by the neural network to generate
an output. The weights in the neural network are then updated through unsupervised
weight adjustment. The two main techniques follow:

(1) Clustering, which groups input data based on similarity patterns;
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(2) Dimensionality reduction, which reduces the number of inputs or features.

Reinforcement learning uses the neural network’s input to produce an output. A
reinforcement signal then guides the weight updates in the neural network. This method
involves software agents acting within an environment to maximize cumulative reward,
often discovering solutions via trial and error.

Originating in the early 1940s, ANNs were initially designed for pattern classification.
Over time, their functionalities have expanded significantly. Today, ANNs find applications
in a wide array of scientific and technological domains, especially within the industrial
sector. They serve as pivotal tools for diverse applications such as process monitoring and
control [109], power systems [110], medical diagnosis [111], stock market prediction [112],
nuclear plant control [113], robotics [114], communication systems [115], data mining [116],
pattern recognition [117], and decision fusion [118].

ANNs can be incorporated into the supervisory control architecture, as shown in
Figure 2, to aid in the development of high-level control and optimization of low-level
processes. By analyzing historical data, ANNs can identify relationships between inputs
and outputs (i.e., process control models) and provide accurate predictions of optimal
parameters. This real-time adaptability allows ANNs to fine-tune process parameters as
required. Table 4 lists typical parameters for equipment, control, and operation across
various industrial processes.

Table 4. Machine learning (ANN) in process optimization.

Parameter Industry Process Approach

equipment

construction degradation model from equipment [119]

energy
thermoelectric generator design [120]

component remaining useful lifetime [121]

agriculture optimization on hydraulic components [122]

control

automotive longitudinal control of vehicles [123]

chemical model predictive control [124]

construction supply air flow rate and temperature [125]

operation

environment filtrate flux operating conditions [126]

energy
hydrogen production [127]

indirect air-cooling power units [128]

By analyzing vast datasets and adapting to evolving scenarios, ANNs can identify
patterns and make informed decisions. In smart manufacturing, ANNs have diverse appli-
cations, including predictive maintenance, where ANNs utilize sensor data to anticipate
machine failures and schedule maintenance, enhancing reliability. For quality control,
ANNs can identify product defects from images, reducing waste and elevating overall
product quality. In production planning, ANNs can optimize schedules based on resources
and demand, enhancing efficiency and cutting costs. Harnessing ANNs allows manufac-
turers to expedite product development cycles, slash expenses, boost production efficiency,
and elevate product quality. These advantages extend beyond the applications listed in
Table 5, offering competitive edge in the global market.
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Table 5. Machine learning (ANN) in smart manufacturing.

Goal Domain System Approach

product development
cycle

environment impact product lifecycle design [129]

energy consumption changes in product specifications [130]

costs
manufacturing producing battery cells [131]

automotive cost control within supply chain [132]

production efficiency
energy waterflooding for oil production [133]

manufacturing wire arc additive manufacturing [134]

product quality
tube hydroforming estimate product parameters [135]

food freshness inspection [136]

3.2. Deep Learning

Deep learning, a subset of machine learning, distinguishes itself through its unique
implementation, as illustrated in Figure 13. Unlike traditional machine learning that
relies on input data such as images, text, and sound, deep learning leverages neural
network architectures for classification tasks. The “deep” in deep learning signifies the
number of layers within the network. Deep networks can possess hundreds of layers, in
contrast to shallow neural networks which typically have two or three layers. For optimal
performance, deep learning often necessitates vast amounts of data, sometimes numbering
in the hundreds of thousands or even millions. Moreover, deep learning is computationally
demanding, often requiring the support of high-performance GPUs.
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While machine learning can yield satisfactory results with smaller datasets and is
efficient in model building, it faces challenges like the need for feature engineering and
accuracy plateaus. In contrast, deep learning autonomously learns features and has theoret-
ically limitless accuracy potential. However, it requires extensive datasets and significant
computational resources.

Deep learning primarily encompasses two neural network architectures, convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). CNNs consist of two
main components: feature extraction and classification/regression, and are inherently static.
CNN applications in robotics span manipulator tasks like grasp detection [137–139], aerial
tasks such as landing area recognition [140,141], navigation [142], posture recognition [77],
ground tasks including face recognition [143], mask detection [144], auto-drive [145–148],
and both surface and underwater object tracking [149,150].
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RNNs, on the other hand, allow for cyclic connections between nodes, enabling out-
puts from certain nodes to influence their subsequent inputs, showcasing temporal dynamic
behavior. A specialized RNN, the long short-term memory (LSTM) network, excels in
learning long-term dependencies between sequential data time steps. Unlike conven-
tional CNNs, LSTM retains the network’s state across predictions. Robotic applications
for LSTM include ground tasks like auto-drive [151], underwater tasks such as collision
avoidance [152], surface tasks like model identification [153], collision avoidance [154], and
aerial tasks like communication [155].

Beyond robotics, deep learning finds applications in diverse domains including image
analysis [156–158], video analysis [159–161], natural language generation [162,163], speech
recognition [164–166], biometrics [167,168], text analytics [169,170], and natural language
processing [171–173].

In the realm of process optimization and smart manufacturing, the deep learning role
mirrors that of the ANNs discussed under machine learning. However, deep neural net-
works (DNNs) eliminate the need for explicit feature engineering, unlike shallow NN-based
machine learning that mandates feature definition and extraction using other methods.
Table 6 details parameters like equipment, control, and operation optimized using various
deep learning techniques. Conversely, Table 7 showcases smart manufacturing strategies
aimed at reducing product development durations, cost-cutting, bolstering production
efficiency, and enhancing product quality.

Table 6. Deep learning in process optimization.

Parameter Industry Process Approach

equipment

information memory usage on GPU CNN [174]

automotive sensor fusion CNN [175]

instrument electromagnetic interference CNN, LSTM [176]

manufacturing fault diagnosis transfer learning [177]

control
energy geothermal reservoirs CNN, LSTM [178]

production forecasting transfer learning, RNN [179]

food quality control CNN [180]

operation

energy shell coal gasification CNN [181]

manufacturing defect classification CNN [182]

fault diagnosis CNN [183]

electronics runtime adaptability RNN [184]

Table 7. Deep learning in smart manufacturing.

Goal Industry System Approach

product development
cycle

e-commerce product design matching CNN [185]
garment shirt design LSTM [186]

costs

food reduce food waste CNN [187]
manufacturing cost estimation CNN [188]

furniture electricity consumption RNN [189]

production efficiency
CNC machines tool breakage detection CNN [190]

part manufacturing machining feature
recognition

product quality textile fabric defect CNN [191]
laser powder bed fusion surface roughness CNN [192]
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In recent years, the integration of deep learning frameworks like TensorFlow, PyTorch,
and MXNet has revolutionized various industries, driving innovation and efficiency.

1. TensorFlow:

# Healthcare: TensorFlow has been instrumental in medical imaging, aiding in
the diagnosis of diseases by analyzing X-rays, MRIs, and CT scans with high
precision.

# Finance: Financial institutions use TensorFlow for risk management, fraud
detection, and investment predictions by analyzing vast datasets.

# Automotive: Self-driving cars leverage TensorFlow for their vision processing,
object detection, and decision-making processes.

2. PyTorch:

# Research: Due to its dynamic computational graph, PyTorch is a favorite
among researchers, enabling rapid prototyping and experimentation.

# Gaming: Game developers use PyTorch for creating AI-driven NPCs (non-
player characters) that can adapt and respond to player actions in real-time.

# E-commerce: Companies like Amazon use PyTorch for recommendation sys-
tems, enhancing user experience by suggesting products based on browsing
history and preferences.

3. MXNet:

# IoT (Internet of Things): MXNet’s lightweight architecture is suitable for edge
devices, enabling real-time analytics and decision-making on IoT devices.

# Natural Language Processing: MXNet is used in chatbots and personal assis-
tants for its efficiency in processing and understanding human language.

# Supply Chain: Industries utilize MXNet for demand forecasting, ensuring that
products are available when and where they’re needed.

While deep learning is a subset of AI, its capabilities, especially when harnessed
through frameworks like TensorFlow, PyTorch, and MXNet, have been pivotal in advancing
industry applications. These frameworks not only provide the tools necessary for building
robust AI models but also support the scalability and efficiency required by industries.

3.3. Reinforcement Learning

Reinforcement learning (RL) enables a computer to accomplish a task by interacting
with a dynamic environment, without the need for explicit programming or human inter-
vention, as illustrated in Figure 14. Through a process of trial and error, the computer makes
decisions, receives feedback in the form of rewards or penalties based on those decisions,
and refines its strategy over time. The ultimate goal is to maximize the cumulative reward.
RL has found applications in diverse areas such as robotics [193–196], gaming [197,198],
autonomous driving [199], defense [200], and decision-making systems.

Prominent RL algorithms encompass Q-learning (Q), SARSA, deep Q-network (DQN),
policy gradient (PG), actor–critic (AC), deep deterministic policy gradient (DDPG), twin-
delayed deep deterministic policy gradient (TD3), soft actor–critic (SAC), proximal policy
optimization (PPO), trust region policy optimization (TRPO), and model-based policy
optimization (MBPO). Each of these algorithms employs distinct methods to assess action
values and subsequently update their policies. The overarching objective is to discover the
optimal policy that yields the maximum reward over time.

Within the supervisory control architecture shown in Figure 2, RL can automate
decision-making tasks traditionally executed by human operators. The RL agent learns to
optimize a reward signal, which evaluates the system’s performance against predefined
operator objectives. One of the primary benefits in integrating RL into supervisory control
is its inherent adaptability to environmental changes or shifts in system objectives. This
adaptability enhances decision-making based on accumulated experience and operator
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feedback. However, challenges persist, including ensuring system and environmental safety
and crafting a reward signal that accurately mirrors the operator’s goals and priorities.
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RL algorithms observe actions and make decisions contingent on the received rewards.
Through iterative trial-and-error, RL refines strategies to achieve objectives like equipment
selection, operating procedure refinement, and control optimization. By actively engaging
with the process, RL selects optimal equipment configurations and determines the best
conditions for peak output and energy efficiency. Furthermore, RL streamlines operating
procedures, minimizing production time and bolstering efficiency. Control optimization
is realized by discerning the optimal strategy, which reduces energy consumption while
preserving desired operational points. RL emerges as an indispensable tool for enhancing
decision-making over time and perpetually refining various process facets. Table 8 lists
several RL techniques tailored for different optimization facets, specifically equipment,
operation, and control, across diverse processes.

Table 8. Application of RL in process optimization.

Parameter Adjusted Industry Process Approach

equipment
manufacturing metal additive Q-learning [201]

energy voltage optimization DQN [202]

control

chemical
PID, MPC PG [203]

polymerization DDPG [204]

robot path planning DDPG [205]

automotive hot sheet metal forming Q-learning [206]

heating energy consumption DQN, PPO, AC [207]

operation
construction tunnel excavation DQN [208]

manufacturing injection molding AC [209]

RL holds significant promise for smart manufacturing, facilitating continuous refine-
ment and optimization of production processes. By leveraging RL, industries can curtail
costs, augment efficiency, and elevate product quality, concurrently reducing the product
development cycle. Table 9 showcases various RL methodologies designed to fulfill the
objectives of smart manufacturing.
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Table 9. The role of RL in smart manufacturing.

Goal Domain System Approach

product development
cycle

manufacturing process planning AC [210]

centrifugal impeller geometry optimization DDPG [211]

costs
chemical model development Q [212]

inventory cost making ordering decisions Q [213]

production efficiency
service job shop scheduling Q [214]

hybrid flow-shop material scheduling DQN, PPO [215]

product quality
robot quality inspection AC [216]

laser powder bed
fusion surface roughness MBPO [192]

3.4. Generative Adversarial Network

Generative adversarial networks (GAN) [217], a prominent deep learning model,
consist of two intertwined networks: a generator and a discriminator. As illustrated in
Figure 15, these networks engage in a competitive dance, with the goal of producing syn-
thetic data indistinguishable from real data. The generator endeavors to craft data deceptive
enough to fool the discriminator, while the discriminator’s mission is to discern the authen-
ticity of the data. The ultimate objective of a GAN is to reach a state of equilibrium where
the generator’s artificial data are so convincing that the discriminator cannot differentiate
it from genuine data. GANs have found applications in diverse areas, including image
dataset generation [217], clothing translation [218], and video prediction [219].
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Figure 15. Generative adversarial networks.

Figure 16 showcases the conditional GAN (C-GAN), a GAN variant that generates
samples based on supplementary information or labels. The generator network ingests a
label and a random array, subsequently producing data that mirrors the structure of training
data linked to that label. The discriminator network then classifies these observations
as “real” or “fake”, utilizing batches of labeled data that encompass both training and
generator-produced data. Such a methodology has established the way for advancements
like image-to-image translation [220], photograph editing [221], semantic image-to-photo
translation [222], and face aging [223].
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Figure 17 portrays the cycle GAN (Cycle-GAN) framework, designed to facilitate
transformations between two distinct domains. This architecture allows for the transference
of characteristics from one image to another or remapping image distributions. A notable
accomplishment in CycleGAN’s journey has been image-to-image translation [224].
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The GAN landscape is vast, with various types and their significant developments
including:

1. DCGAN (deep convolutional GAN) for image dataset generation [225];
2. StyleGAN, such as progressive GAN for human face imagery [226];
3. DRAGAN (deep regret analytic GAN) for cartoon characters creation [227];
4. StackGAN (stacked GAN) for text into images [228];
5. TP-GAN (two-pathway GAN) for frontal views of faces creation [229];
6. PG2 (pose guided person generation network) for human poses generation [230];
7. DTN (domain transfer network) for photos into emojis [231];
8. GP-GAN (Gaussian–Poisson GAN) for photos blending [232];
9. SR-GAN (super resolution GAN) for image resolution enhancement [233];
10. Context Encoders [234] for photo inpainting;
11. 3D-GAN [235] for 3D objects generation;
12. BigGAN [236] for realistic photographs generation.

In process optimization, GANs can be harnessed to fabricate artificial data that mirrors
the process under optimization. This synthetic data can train machine learning models to
pinpoint optimal configurations for the process, especially beneficial when genuine data
acquisition is cumbersome or expensive. Table 10 encapsulates how the three parameters
(equipment, control, and operation) can be tweaked to achieve pinnacle performance across
various industries and processes.
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Table 10. GANs in process optimization.

Parameter Adjusted Industry Process Approach

equipment

manufacturing fault detection MRLAN [237]

manufacturing 3D NAND fabrication [238]

medical image registration [239]

automotive cyber-attack detection [240]

control
energy energy disaggregation [241]

manufacturing mechanical design [242]

operation
medical layout design [243]

energy renewable scenario forecasts [244]

In the realm of smart manufacturing, GANs can simulate production process and
products, enabling testing and optimization sans physical production. They can also detect
and rectify defects, thereby elevating product quality. GANs can further streamline product
development by generating virtual prototypes, identifying design flaws, and refining
the overall design. By analyzing and refining production processes, GANs can bolster
efficiency and minimize waste, translating to cost savings and a greener manufacturing
process. Table 11 offers a panoramic view of the objectives for smart manufacturing success
across diverse industries and systems.

Table 11. GANs in smart manufacturing.

Goal Product System Approach

shorten product
development cycle

tolerance analysis shape-agnostic [245]

spot weld locations StarGAN [246]

visualization models [247]

reduce costs
manufacturing fringe type CNN based [248]

rolling bearing fault diagnosis [249]

improve production
efficiency

worker efficiency analysis [250]

raw leather defect identification [251]

quality
mechanical fault detection [252]

nanoscale film coating quality [253]

4. Evolution Intelligence

The modeling process seeks the appropriate input(s) to achieve a desired output, as
depicted in Figure 18. A key example of this is the genetic algorithm (GA), a derivative-free
optimization technique that emulates biological evolution to produce a globally optimal
control system.
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Millions of years of biological evolution have culminated in natural intelligence. In a
similar vein, GA stands as a computational method that mirrors these intricate biological
evolutionary mechanics. The GA employs the principles of natural selection, allowing
for the optimization of methodologies by evolving a solution algorithm and retaining the
“fittest” components. This technique parallels biological evolution through processes like
natural selection, crossover, and mutation.

Evolutionary computing (EC) encompasses a diverse array of optimization method-
ologies (both discrete and continuous) grounded in evolutionary algorithms [65]. Drawing
inspiration from biological evolution, EC employs derivative-free and population-based
search techniques. The core categories of EC include:

1. Evolutionary programming (EP);
2. Evolutionary strategies (ES);
3. Genetic programming (GP);
4. Genetic algorithms (GA).

GAs are specialized evolutionary algorithms that replicate the natural selection process
to discern optimal solutions. The applications of GAs span numerous domains: robotics
(e.g., path planning [254] and grasping [255]), image and signal processing (like image
segmentation [256] and feature extraction [257]), game theory (optimal strategy for playing
games [258]), bioinformatics (protein structure prediction [259], DNA sequencing [260]),
economics (optimal portfolio of stocks [261], optimizing the allocation of resources in a
market [262]), transportation and logistics (optimize transportation routes [263], optimizing
airline schedules [264]). The steps of genetic algorithm are shown in Figure 19.

Processes 2023, 11, x FOR PEER REVIEW 20 of 34 
 

 

1. Evolutionary programming (EP); 
2. Evolutionary strategies (ES); 
3. Genetic programming (GP); 
4. Genetic algorithms (GA). 

GAs are specialized evolutionary algorithms that replicate the natural selection 
process to discern optimal solutions. The applications of GAs span numerous domains: 
robotics (e.g., path planning [254] and grasping [255]), image and signal processing (like 
image segmentation [256] and feature extraction [257]), game theory (optimal strategy for 
playing games [258]), bioinformatics (protein structure prediction [259], DNA sequencing 
[260]), economics (optimal portfolio of stocks [261], optimizing the allocation of resources 
in a market [262]), transportation and logistics (optimize transportation routes [263], op-
timizing airline schedules [264]). The steps of genetic algorithm are shown in Figure 19. 

 
Figure 19. Steps of the GA. 

The operational modus operandi of GAs involves the generation of a potential solu-
tions population, often depicted as binary genetic code strings. Each solution undergoes 
an evaluation based on a fitness function gauging its performance. The “fittest” solutions 
interbreed, producing offspring with inherited traits. The population evolves over itera-
tions, enhancing solution quality. The algorithm is listed in Algorithm 1. 

  

Population

Initial population of chromosomes

fitness 
evaluation

objective 
achieved ?

stop

reproduction
No

Yes

offspring

crossover

mutation

genetic 
operator

Figure 19. Steps of the GA.



Processes 2023, 11, 3171 21 of 33

The operational modus operandi of GAs involves the generation of a potential solu-
tions population, often depicted as binary genetic code strings. Each solution undergoes an
evaluation based on a fitness function gauging its performance. The “fittest” solutions in-
terbreed, producing offspring with inherited traits. The population evolves over iterations,
enhancing solution quality. The algorithm is listed in Algorithm 1.

Algorithm 1. Pseudo code for the genetic algorithm

Input:
p: population size
i: number of individuals in the population
v: chromosome
x: variable to be solved
fit(x): fitness function
g, gmax: generation, maximum generation
Pc: crossover probability
Pm: mutation probability
Output:
y: solution
1: encode genes x as chromosomes vi (i = 1, 2 . . ., p)
2: initialize the population
2: while (g < gmax)
1: calculate individual fitness values fit(xi)
2: selection
3: reproduction
3: crossover
4: mutation
5: decoding genes
8: end while
8: return x and f (x)

In the realm of process optimization, each population solution corresponds to unique
process parameters, with the fitness function representing the targeted optimization objec-
tive (like yield maximization or cost minimization). Across various industries, optimization
often necessitates adjustments in three principal parameters: equipment, control, and
operation. Table 12 elucidates these parameters within distinct sectors.

Table 12. Application of the GA in process optimization.

Parameter Industry Process Approach

equipment
power equipment maintenance [265]

power safety test ageing equipment [266]

control
automotive damping control of sprayer [267]

manufacturing impedance control of grinding robot [268]

operation
civil urban tidal drainage pumping [269]

transportation operation of high-speed trains [270]

In smart manufacturing, GAs facilitates the optimization of several production facets,
including scheduling, routing, and resource allocation. Employing GAs empowers manu-
facturers to expedite product development cycles, pare down costs, amplify production
efficiency, and bolster product quality. Table 13 offers insights into achieving these objec-
tives across diverse industries and systems.
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Table 13. Genetic algorithm in smart manufacturing.

Goal Domain System Approach

product development cycle

furniture new product design [271]

air conditioner multiple engineering changes [272]

gas turbine modular product architectures [273]

costs
aerospace assembly lines [274]

automobile selective maintenance [275]

production efficiency
power production scheduling [276]

furniture assembly sequence [277]

product quality
machining control part dimensions [278]

rolling bearing improved fatigue life [279]

5. Conclusions

In summation, the domain of intelligent control theory has seen marked advancements
in the recent past, ushering in innovative methods for both process optimization and smart
manufacturing. This review delineated the multifaceted aspects of intelligent control theory
anchored in the soft computing paradigm and its relevance to industrial operations. Transi-
tioning from conventional control strategies to sophisticated AI-driven methodologies, this
paper accentuated the merits and constraints of each system, complementing these with
instances of their efficacious deployment in tangible settings. It becomes unmistakably clear
that intelligent control theory harbors immense potential to enhance the efficiency, output,
and caliber of industrial procedures. Notwithstanding, challenges persist, particularly
in devising sturdy, dependable control frameworks adaptable to dynamic environments
while preserving peak performance. To surmount these obstacles and fully harness the
advantages of intelligent control within process optimization and smart manufacturing,
further scholarly endeavors are imperative. Future works are summarized as follows:

1. Deep Learning Integration: While the current landscape of intelligent control theory
has made significant strides, there is potential in exploring the integration of deep
learning techniques to further enhance process optimization and smart manufacturing.

2. Real-time Adaptability: Future research could focus on developing real-time adap-
tive control systems that can instantaneously respond to unforeseen changes in the
manufacturing environment.

3. Interdisciplinary Approaches: Combining insights from fields like materials science,
robotics, and data analytics could lead to more holistic intelligent control systems.

4. Scalability: As industries grow and evolve, ensuring that intelligent control systems
can scale efficiently will be crucial. Research into scalable architectures and algorithms
will be beneficial.

5. Security and Privacy: With the increasing integration of AI and IoT in smart manufac-
turing, ensuring the security and privacy of these systems is paramount. Future work
should delve into robust security protocols and frameworks.

6. Human–AI Collaboration: As AI-driven methodologies become more prevalent,
understanding and enhancing the collaboration between human operators and AI
systems will be essential.

7. Benchmarking and Standards: Establishing standardized benchmarks for evaluating
the performance of intelligent control systems can help in comparing and improving
upon existing methodologies.

8. Economic Implications: Understanding the economic benefits and challenges in
implementing intelligent control systems on a large scale can guide industries in their
adoption strategies.
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9. Environmental Impact: Future research should also consider the environmental impli-
cations of smart manufacturing, ensuring that advancements in efficiency and output
do not come at the cost of sustainability.

In light of the extensive literature reviewed, it is evident that while many methodolo-
gies and techniques have been explored, a structured procedure for optimizing intelligent
control processes is still lacking. To bridge this gap, the following procedures are proposed:

1. Needs Assessment: Before implementing any intelligent control process, it is crucial
to conduct a thorough needs assessment. This involves understanding the specific
requirements of the process, the challenges faced, and the desired outcomes.

2. Selection of Appropriate Techniques: Based on the needs assessment, select the most
appropriate intelligent control techniques. This could involve a combination of neural
networks, fuzzy logic, or genetic algorithms, among others.

3. Integration with Existing Systems: Ensure that the chosen intelligent control methods
can be seamlessly integrated with existing manufacturing or process systems. This
might require customization or tweaking of the techniques.

4. Continuous Monitoring and Feedback: Once implemented, continuously monitor the
performance of the intelligent control processes. Use real-time data and feedback to
make necessary adjustments.

5. Periodic Review and Update: Technology and processes evolve. It is essential to
periodically review the intelligent control processes in place and update them as
necessary to ensure they remain optimized.

By following this structured procedure, organizations can ensure that they not only
implement intelligent control processes but also optimize them for maximum efficiency
and effectiveness.
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