
Citation: Stoica, R.M.; Moscovici, M.;

Lakatos, E.S.; Cioca, L.I.

Exopolysaccharides of Fungal Origin:

Properties and Pharmaceutical

Applications. Processes 2023, 11, 335.

https://doi.org/10.3390/

pr11020335

Academic Editor: Alina Pyka-Pająk
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Abstract: Fungal exopolysaccharides (EPSs) represent an important group of bioactive compounds
secreted by fungi. These biopolymers can be utilized individually or in combination with different
bioactive substances for a broad range of pharmaceutical field applications, due to their various
biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antiviral, anti-diabetic, and
anticoagulant effects. The paper presents an up-to-date review of the main fungal polysaccharides
(pullulan, schizophyllan, scleroglucan, botryosphaeran, lentinan, grifolan, and lasiodiplodan), high-
lighting their structures, producing strains, and useful properties in a double position, as controlled
release (rate and selectively targeting) drug carriers, but mostly as active immunomodulating and
antitumor compounds in cancer therapy.
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1. Introduction

Polysaccharides are the class of carbohydrates that are the most frequently encountered
biopolymers in nature, found in different organisms ranging from bacteria to eukarya and
playing essential roles in sustaining living organisms [1].

Fungi are eukaryotic organisms with a large spectrum of distribution in the biosphere
and an important biotechnological potential [2]. Fungal polysaccharides are represented by
biopolymers that are either part of the cell wall or form intracellular inclusions as energy
reserves, or are secreted extracellularly (EPSs), making up a mechanism to protect the cells
or for attachment to other surfaces [3].

Due to their significant biological activities, such as antitumor, immunomodulatory,
antimicrobial, hypocholesterolemic, and hypoglycemic activities, polysaccharides synthe-
sized by many species of fungi are used or are potentially useful in various biomedical
applications and the pharmaceutical industries [4].

A high number of fungi have been used for their capacity to synthesize polysaccharides
in submerged culture systems [5]. As a basic structure, fungal polysaccharides are glucans.

Glucans are polymers consisting of glucose monomers, known as a heterogeneous
class of polysaccharides. Glucans are biologically active, depending on their molecular
structure and molecular weight, and are closely related to various sources and production,
purification, and isolation activities that may affect their characteristics.

Glucans are divided into two large classes: α- and β-glycoside bound glucans, with
different characteristics and functions. In general, some α-glucans are amorphous and
soluble in hot water, forming an energy reserve, and those present in the fungal walls are
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water-insoluble and microfibrilar, playing a structural role. Most β-glucans are insoluble in
water and almost all solvents, mostly crystalline, and can form microfibrils.

Alpha glucans are represented by glucans with glycosyl units joined by α-1,4 and
α-1,6 bonds, and glucans in which the glycosyl units are bound solely through α-1,3 bonds,
or α-1,3 and α-1,4 bonds; in contrast, the classes of beta glucans are more complex, with
more various structures, consisting in β-1,3 joined glucose units with variable amounts of
β-1,6 joined branches [6].

The most common fungal β-glucans described in publications are those of (1→3)- and
(1→3; 1→6)-β-D-glucan types. The biologically active ones appear to be branched (1→3)-
β-D-glucans isolated from the fungal mycelia, but also possibly produced exo-cellularly by
cultivation of fungi on specific culture media [7].

For the production of mycelial biomass and extracellular polysaccharides, significant
attention has been paid to the use of submerged cultures of fungi, using various carbon and
nitrogen sources, including cheaper fermentation substrates (agro-industrial waste), and
beyond, as it also allows higher yields and good results to be obtained under controlled
and optimized conditions that are industrially scalable [8,9]. The use of these substrates
in biotechnological processes contributes to the reduction and valorization of agricultural
residues as a result of the microbial conversion of low-value by-products into value-added
products. Submerged fermentation can be performed in shaking flasks or stirred tank
reactors to provide oxygenation and moderate mycelial shearing for hyphae separation.
Regarding the physical conditions maintained during fermentation processes, generally,
the pH of the culture medium ranges between 3.0 and 6.5, the temperature interval is
between 22 ◦C and 30 ◦C, and the incubation period is 4 to 15 days for exopolysaccharide
production [5].

Various microorganisms are important sources of α- and β-glucans, e.g., Aureobasidium
pullulans, Schizophyllum commune, Sclerotium rolfsii, Botryosphaeria rhodina, Lentinus edodes,
Grifola frondosa, and Lasiodiplodia theobromae being commonly used in microbial fermentation
processes to produce bioactive compounds. Therefore, this review article focuses on
some important fungal exopolysaccharides, including their pharmaceutical properties
and applications.

2. Methodology

This paper summarizes aspects related to the main fungal polysaccharides, their
chemical structures, pharmaceutical properties, and potential applications in the pharma-
ceutical industry. To ensure an efficient coverage of this research field, different open access
databases were accessed to present an up-to-date review of the literature, using keywords
such as microbial strains, fungi, submerged fermentations, exopolysaccharides, chemical
structures, properties, applications, medicine, and pharmaceutical industry. A total of
137 bibliographic sources were used in this review paper to approach the research topic.

3. Results on Pharmaceutical Properties and Applications of Fungal Polysaccharides

Biopolymers are represented by α- and β-glucans, formed from repeating glucose
units, but also of varying weights. These compounds exhibit a number of unique properties,
given by the differences present in their bonding, chemical structure, branching, and
substitutions [10]. Some of the commonly used fungal polysaccharides in the biomedical
field include pullulan, schizophyllan, scleroglucan, botryospheran, as well as lentinan,
grifolan and lasiodiplodan. These bioactive compounds offer a wide range of structural
and physicochemical properties, making them suitable for a variety of applications [11].

3.1. Pullulan

Pullulan is a biopolymer obtained from the fermentation broth of the polymorphic
fungus Aureobasidium pullulans as an extracellular polysaccharide [12]. So far, different
microorganisms producing pullulan have been found: Tremella mesenterica, Cytaria harioti,
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Cytaria darwinii, Cryphonectria parasitica, Teloschistes flavicans, and Rhodototula bacarum, but
Aureobasidium pullulans remains the main microorganism used to produce it [13,14].

The production cost of pullulan is mostly determined by the raw materials used as
carbon sources in the biosynthesis processes. Different types of sugar substrates have been
reported for pullulan production by submerged fermentation, such as glucose, sucrose,
fructose, maltose, galactose, mannose, lactose, or agro-based wastes [15].

Agricultural wastes used as a starting point in carbon generation (e.g., sugarcane
molasses residues, starch waste, olive oil waste, coconut by-products, rice hull hydrolysate)
in fermentation media show the ability to make pullulan production more efficient, as
well as the ability to be a promising substrate from an ecological and economic point
of view [16,17], taking into account the fact that the development of the biotechnology
industry is based on expanding the base of raw materials with new and cheaper substrates.

Moreover, nitrogen availability is an important factor in polysaccharide biosynthesis.
Several nitrogen sources have been investigated for pullulan production, including peptone,
malt extract, yeast extract, tryptone, (NH4)2SO4, NH4Cl, NaNO3, or NaNO2 [18]. It was
shown that a 10:1 carbon/nitrogen ratio is the most favorable condition for obtaining
pullulan [19].

Regarding the temperature and pH for polysaccharide production by the A. pullulans
fungus, the optimum temperature was found to be 26 ◦C, and the optimum initial pH of
the culture medium was in the interval range of 6.0–6.5. [20]. The fermentation period can
be completed after 120 h of cultivation, depending on the strains and growth conditions, in
order to achieve high pullulan production [16].

Pullulan is an α-glucan, which consists of α-(1,6) repeated maltotriose units via an
α-(1,4) glyosidic bond [21,22]. The presence of α-(1→6) and α-(1→4) glyosidic linkages
endows particular physico-chemical properties to pullulan [23]. The structure of pullulan
is shown in Figure 1.
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It is an odorless, highly water-soluble, tasteless, non-ionic, non-hygroscopic and non-
reducing, non-mutagenic, and non-toxic edible natural polymer [12,24,25], with an average
molecular charge (Mw) close to 362–480 kDa [12], properties that are extremely useful in
different industrial applications [26].

Due to the fact that it presents a pharmaceutical substrate, in current uses, it relies
on its unique film-forming and binding characteristics and is widely used for coating and
granulating tablets or for oral care and wound care products [27,28].

Pullulan and its derivatives are also essential in a variety of pharmacological and
biological applications [29], which include targeted drug delivery, gene targeting [30],
wound healing [31], tissue engineering [32], and vaccination [33].

Studied as a drug carrier in the pharmaceutical field, pullulan is special because of its
neutral nature, in which nine hydroxyl groups are present per repeating unit, making it
suitable in the field of chemical derivatization. Thermosensitive and pH-sensitive micro-
spheres have been made by grafting and crosslinking on the backbone of ether succinic
carboxyl groups as well as poly-(N-isopropylacrylamides)-coacrylamides [27]. Pullulan
proved to have an exceptional role as a carrier for anticancer drugs to target various body
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parts such as the liver, lungs, spleen, and brain, as well as for the sustained or prolonged
release of specific cytotoxic molecules to the specific diseased site [12,34].

Novel drug-loaded nanoparticles by chemical grafting of lovastatin onto pullulan
were developed by Wu et al. [35], who encapsulated doxorubicin, revealing inhibitory
effects on triple-negative breast cancer cells, presented as a potential drug delivery system
suitable for future clinical cancer treatment. Moreover, Wu et al. [36] studied the synergistic
effect of pullulan nanoparticles loaded with 10-hydroxycaptothecin and methotrexate
(MHNP) against drug-resistant tumors. MHNPs have a better ability to destroy HeLa
cells compared to individual drug-loaded nanoparticles, being a potential carrier with an
effective anti-tumor effect in tumor-targeted drug delivery.

Thus, it can be used to generate nanoconjugates based on different compounds. An
example of this can be seen in thiolate pullulan nanoparticles that have been coupled with
antibodies in order to remove portions of chromatin, but also to avoid AND degradation.
Because chromatin degradation often takes place in the liver in this situation, pullulan acts
as the ideal carrier [37]. Additionally, pullulan was partially oxidized (carboxylated) in
order to produce silver-containing nanoparticles that act as antimicrobials [38]. Another
feature of cholesteryl-pullulan nanoparticles is that they can interact hydrophobically with
oligomeric forms of beta-amyloid, exhibiting the ability to significantly reduce their toxicity,
which stands out as a potential complementary strategy present in neurological disorders
with the formation of soluble toxic aggregates, an example being Alzheimer’s disease [39].

Pullulan has a special characteristic that has been closely studied, as evidenced by its
ability to create cholesterol-containing nanogels in water in the presence of a self-bonding
process, that occurs due to hydrophobic zones in its structure. As prostaglandin E1 aids in
neovascularization and wound closure, these nanohydrogels have been employed to entrap
a variety of materials for different applications [40], such as bone engineering purposes [41].
Iswariya et al. [42] developed an excellent absorbent collagen-pullulan hydrogel with im-
proved mechanical firmness and well-defined biocompatibility for skin tissue engineering.
The scaffolds were built using pullulan combined with sodium trimetaphosphate and
collagen to create the polymeric linkages.

Furthermore, pullulan proved to be a good stabilizer of pomegranate seed oil na-
noemulsions containing ketoprofen for intravenous administration, ensuring a high rate of
drug delivery and selective antitumor efficiency (antiglioma) [29]. Taking into account all
these aspects, pullulan seems to have long-term commercial potential [43].

3.2. Schizophyllan

Schizophyllan, produced by the Schizophyllum commune fungus, can be obtained by
submerged culture fermentation using various types of sugars and soluble starch substrates
and also low-cost lignocellulosic residues, such as corn fiber, rice hull hydrolysate, wheat
bran, corn cobs, or corn steep liquor [44].

Liquid fermentation is the most common method used for production of this polysac-
charide, but it can also be obtained through a solid-state-fermentation process [45]. Ac-
cording to several studies, different production media containing sucrose, glucose, dextrin,
maltose, and fructose as carbon sources and yeast extract, beef extract, potato extract, and
malt extract as nitrogen sources were utilized for the production of this biopolymer [46,47].
As reported by Teoh and Don [48], the optimal conditions for maximum growth of S.
commune (33.1404 g L−1) were found to be pH 6.5–6.7, 30 ◦C, and 175 rpm after 120 h of
cultivation.

Schizophyllan is a non-ionic and water-soluble extracellular polysaccharide, having
a molecular weight between 100 and 200 kDa [49], and is composed of three glucose
molecules linked by β-1-3-glycosidic bond units, with one glucose side chain linked to
the basic chain by a β-1-6-glycosidic bond [50]. Figure 2 depicts the chemical structure
of schizophyllan.
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Extensive research on schizophyllan has led to its widespread use in pharmaceuticals
over the last four decades. Antineoplastic, antibacterial, antiparasitic, antioxidant, and hy-
poglicemic characteristics are the identified bioactivities [51]. Other physiological benefits
have been described, including hepatoprotective and anti-inflammatory properties. Its
anticancer and immunobiological activities are among the most promising bioactivities
described [52].

A large number of clinical trials have been reported in Japan on schizophyllan, which
is effective against head and neck cancer and has been licensed and approved for clin-
ical use in combination with chemotherapy for the two types of cancer mentioned [53].
Furthermore, schizophyllan can be used to reduce the probability of mammary tumors,
decreasing the progression of breast cancer. Another randomized clinical trial involving a
number of 312 patients, following surgery, chemotherapy (fluorouracil), radiotherapy, and
schizophyllan in various combinations, showed positive results. Schizophyllan mixed with
tamoxifen has been shown to have a major impact in reducing the occurrence of breast
tumors, but also has the ability to initiate apoptosis in liver carcinomas [54].

According to Zhou et al. [55], schizophyllan treatment inhibits the growth of rat
CNS-1 glioma cells via p53-mediated cell cycle and apoptosis suppression. Furthermore,
a low percentage of cells in the S phase, but also an increased percentage of cells in the
G0/G1 phase was shown. It was proved that enhances the anti-inflammatory response in
mouse macrophages and can activate the dectin-1 receptor, leading to increased secretion
of pro-inflammatory cytokines while also strongly promoting the production of IL-10, a
key anti-inflammatory cytokine that plays a key role in inflammation control [56].

Schizophyllan has been shown to be effective in immunomodulatory activities [44].
Lee and Ki [57] investigated the immunomodulatory results of ultrasound-treated schizo-
phyllan implants on RAW264.7 cells embedded in a three-dimensional polyethylene gly-
col hydrogel. Compared to 2D cultured cells, 3D cultured cells were less susceptible to
ultrasound-treated schizophyllan. Under both conditions, an increase in M1 macrophage
phenotype markers by ultrasound-treated schizophyllan was evident, but on the other
hand, ultrasound-treated schizophyllan promoted the production of fenotypic markers of
M2 macrophages under 3D conditions, indicating the induction of macrophage immunoreg-
ulation in real tissue.

Schizophyllan has also been shown to be effective as a drug delivery agent. It im-
proves tyrosine 15 phosphorylation by deactivating CDK1 and subsequently enhancing the
proportion of cells in the G2/M phase, as well as a reduction in G1 phase cells [58].

Modified schizophyllan forms stable complexes with antisense oligonucleotides, and
the cytotoxicity was found to be low in different melanoma and leukemia cell lines [59],
making this polysaccharide a new prospective candidate for an antisense oligonucleotide
carrier [60].
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3.3. Scleroglucan

Scleroglucan is a microbial polysaccharide, a non-ionic branched glucan which consists
in a backbone of (1,3)-β-linked D-glucopyranosyl residues with a single (1,6)-β-linked D-
glucopyranosyl unit at every three main chain sugar residues. The molecular weight of
scleroglucan is approximately 2–20 × 103 kDa [61] (Figure 3).
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Sclerotium glucanicum and Sclerotium rolfsii are filamentous fungi that produce it ex-
tracellularly [62] through liquid submerged culture, using various carbon sources, such as
sugarcane molasses or condensed corn soluble [63].

In general, culture media with a high ratio of carbon to limiting nutrients (often
nitrogen) are favorable for scleroglucan production. Among the carbon sources, usually
glucose and sucrose are used for biopolymer biosynthesis, although other substrates can
also be successfully used, as previously mentioned. A concentration of glucose or sucrose of
30–35 g/L in the culture medium can lead to a maximum yield of 8.5–10 g/L of scleroglucan.
Regarding the nitrogen source, it can be represented by a wide range of inorganic and
organic compounds, such as inorganic salts of NH4

+ and NO3
−, or natural products,

including yeast extract, corn steep liquor, soya or casein hydrolysate [62].
Scleroglucan provides significant advantages in terms of biocompatibility, pseudo-

plasticity, water solubility, resistance to hydrolysis, salt tolerance, moisture retention, and
viscosity stability due to its unique chemical structure and higher molecular weight [64].

The potential applications of scleroglucan present in a variety of industrial fields have
already been described: in cosmetics (skin and hair care products), together with xanthan,
but also together with other polysaccharides, as hydrogel and water immobilizer [62], in
drug delivery [65] as antitumor, antiviral against Herpes virus [66] and Rubella virus) [67],
and antimicrobial compound in biomedical fields and in the pharmaceutical industry
(tablet coatings, ophthalmic solutions, injectable antibiotic suspensions, calamine lotion),
even showing immunostimulatory effects compared to other polysaccharides, so its po-
tential contribution to the treatment of many diseases should be considered in therapeutic
regimens [68].

Scleroglucan and some of its derivatives can be used particularly for the formulation
of modified-release dosage forms, according to Coviello et al. [69]. It can be used in its
native form for the preparation of sustained release tablets and ocular formulations [70].

Moreover, scleroglucan can be used as a matrix for drug delivery from tablets or films
in the form of a carboxylated derivative.

Hydrogels made by crosslinking the polycarboxylated scleroglucan derivative with
alkane dihalides were tested for diffusion and water uptake for this purpose [71].

3.4. Botryosphaeran

Botryosphaeran is defined as a β-(1→3,1→6)-glucan (1→3 backbone, 1→6 branched
glucose, and gentiobiosis) and is produced by the fungus Botryosphaeria rhodina [72].
Botryosphaeran is an exopolysaccharide with a high molecular mass (>1 × 103 kDa), that is
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soluble in water, consists of a main chain of (1→3)-linked β-D-glucose units, with a degree
of branching of ~22% at carbon-6, with glucose and gentiobiose residues linked through
β-(1→6)-bonds, and presents a triple helix conformation [73]. The chemical structure of
botryosphaeran is shown in Figure 4.
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Giese et al. [74] reported the optimum botryosphaeran production at 88 h of growth,
using glucose as a carbon source and ammonium nitrate as a nitrogen source (C/N ratio of
30), at 28 ◦C under shaking conditions (180 rpm). Beside glucose, other carbon sources that
can be used in the liquid fermentation process are sucrose and fructose [75].

Dekker et al. [76], as well as Dekker and Barbosa-Dekker et al. [77], provided an
overview of the biological activities of botryosphaeran. It has been shown to have biological
effects, including high anticlastogenic activities in reticulocytes from peripheral blood and
erythrocytes from mouse bone marrow (in vitro) [78], as well as immunomodulatory
activity [79].

Miranda-Nantes et al. [80] showed that botryosphaeran has antidiabetic (ability to
reduce glycemia by 52%) and hypocholesterolemic (total and LDL cholesterol were reduced
by 27% in hyperlipidemic rats) properties. Moreover, Silva-Sena et al. [81] concluded that
botryosphaeran was effective in improving the lipidic profile and vascular lipid deposition
in an in vivo model of atherosclerosis. In vitro, sulfonylated botryosphaeran displayed
new biological functions, for example, anticoagulant [82] and antiviral activities [83].

It was demonstrated that botryosphaeran reduced significantly tumor development and
corrected macrocytic anemia in vivo (rats) [72]. In vitro studies showed that botryosphaeran
had a direct antiproliferative and pro-apoptotic action in MCF-7 breast cancer cells [84] and
regulated the cell cycle by repressing G1 phase-related genes in human tumor lymphocytes
(Jurkat cells) [85].

Kerche-Silva et al. [86] studied the cytotoxic, mutagenic, genotoxic, and protective
effects of this biopolymer in chinese hamster lung fibroblasts (V79) and rat hepatocarcinoma
cells (HTC) and reported that botryosphaeran was not genotoxic in either cell line, decreased
the clastogenic effects of doxorubicin, H2O2, and benzo[α]pyrene, concluding that it may
be a promising candidate for chemoprevention trials.

Fujiike et al. [87] investigated the in vitro anticancer effects of carboxymethylated
botryosphaeran (CM-BOT) on breast cancer MCF-7 cells cultivated in multicellular tu-
mor spheroids (MCTS). CM-was shown to inhibit cell proliferation in a concentration at
1000 µg/mL, which resulted in MCTSs with smaller diameters than controls, results that
are very important in the search for bioactive compounds for use in breast cancer therapy
or as adjuvants in reducing the adverse effects of mammary tumor chemotherapy.

Moreover, the effects of botryosphaeran on inflammation have been described. Ac-
cording to Silva et al. [88], this orally administered biopolymer has the property of reducing
inflammation by activating leukocytes, but also by modulating migration, in addition to
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minimizing cold nociception, concluding that this fungal β-glucan may be a new possibility
for complementary treatment of acute and chronic inflammation.

Therefore, botryosphaeran polysaccharide offers promising health applications in the
development of new products related to pharmaceuticals and biomedicine.

3.5. Lentinan

The basidiomycete fungus Lentinus edodes, often known as the shiitake mushroom,
was one of the first macrofungi cultivated at large scale in submerged culture [89].

Submerged culture of Lentinus edodes presents the advantage of a higher mycelia pro-
duction in a shorter time with a lower risk of contamination [90]. During the fermentation
process, the composition of the culture medium, cultivation temperature, and pH value are
important factors in the production of L. edodes mycelia [91].

According to Bisko et al. [92] it has been shown that glucose and peptone are the
most suitable sources of carbon and nitrogen for lentinan production. The modified
glucose-peptone liquid medium (C/N ratio of 18), pH value adjusted to 6.0 and cultivation
temperature of 25 ◦C resulted in increased biomass and lentinan polysaccharide yield in
submerged culture.

Lentinan is a high-molecular-weight homopolysaccharide, consisting of five linearly
linked 1-3-β-glucose residues and two 1-6-β-glucopyranoside branches [93], slightly soluble
in hot water and insoluble in cold water, with a molecular mass that varies between 300 and
1000 kDa ([94–97] (Figure 5).
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Lentinan is currently used in China and Japan in the treatment of various types of
cancer, being administered orally or intravenously (at a dose of 1–2 mg for intravenous
infusion). It is frequently combined with other conventional pharmaceutical drugs in the
treatment of bowel, liver, stomach, ovarian, and lung cancers. The effect of lentinan in the
treatment of gastric cancer was the most studied [98,99], followed by sarcoma, colon, and
lung cancers.

Furthermore, the results obtained in the study reported by Oba et al. [100] showed that
the addition of lentinan to the chemotherapy treatment produced a significant prolongation
of patient survival rates compared with those treated only with chemotherapy.

In Japan, during cancer chemotherapy on solid tumors, patients to whom it was ad-
ministered lentinan showed a considerably greater response rate (14.9%) than the patients
without a treatment with lentinan. Moreover, lentinan combined with other chemothera-
peutic drugs decreased the side effects of chemotherapy, including nausea, discomfort, hair
loss, and weakened immunity. Other clinical investigations with positive results, involving
359 patients with gastric cancer who received lentinan in addition to chemotherapy, have
been reported [101,102]. Therefore, chemotherapy plus lentinan showed promising results
in the treatment of cancer.

Regarding the immunomodulatory properties of lentinan, they include dendritic cell
(DC) activation by Dectin-1 binding, macrophage activation, an increase in cytotoxic T
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lymphocytes and natural killer (NK) activity, and enhancement of the Th1 versus Th2
response. Lentinan-functionalization of graphene oxide (GO) nanoparticles showed long-
term sustained immune effects, potentiating antigen uptake in macrophages in vitro and
decreasing the release rate of antigen (ovalbumin), resulting in higher levels of IgGs.
In conclusion, GO-lentinan could be a carrier, ensuring a long-term immune memory
response [103].

3.6. Grifolan

Over 37 biologically active polysaccharide fractions have been so far isolated as
products of the fungus Grifola frondosa, depending on the extraction and purification
procedures [104].

The D-fraction, containing so called GFP (G. frondosa polysaccharide) is the most
active and consists of β-glucans alone or protein-bound (proteoglucans). Submerged or
liquid fermentation is a preferable method for obtaining grifolan polysaccharide, as it
provides higher mycelial productivity and more effective product quality control in a
shorter time [105].

In the study of Shih et al. [106], the fermentation of Grifola frondosa was investigated in
shake flasks and also in a fermenter operating in batch and fed-batch modes. In the case of
shake-flasks, it was observed a high mycelial growth and exopolysaccharide production at
a low pH value, using maltose and glucose as carbon sources, and yeast extract in combina-
tion with corn steep powder as nitrogen sources (13 days). The amount of accumulated
mycelial biomass and exopolysaccharide was significantly increased through fed-batch
fermentation by glucose feeding, which was performed when the glucose concentration
of the medium was less than 0.5% (5 g/L). Before glucose feeding, these amounts were
3.97 g/L and 1.04 g/L, respectively, but after 13 days of cultivation, they had increased to
8.23 g/L and 3.88 g/L. The results reported in the case of batch fermentation showed that
mycelial biomass and exopolysaccharide were 6.7 g/L, respectively, 3.3 g/L, at the end of
13 days of cultivation.

The structure of glucan is a 1,3, -1,6-β-D-glucan, which contains either as a monomer
three β-1,6-glucose units present in the main chain and a branched β-1,3-glucose unit, or a
reverse β-1,3-glucose unit (three β-1,3- and one branched β-1,6)-glucan.

Grifolan has a molecular weight of approximately 1000 kDa and glucose has been
found as the major monosaccharide [104,107,108]. The chemical structure of grifolan is
presented in Figure 6.
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The pharmacological activities of G. frondosa glucans have been studied for more than
30 years. Anticancer effects are considered the most important in three directions: protection
of healthy cells, prevention of metastasis, and inhibition of tumor growth, whether acting
directly on tumors or through immunomodulatory mechanisms. The anticancer activity
of grifolan is considered superior to that of lentinan, not by direct inhibition, but through
higher immune-stimulating effects enhancing innate, and especially acquired immunity by
inducing the production of cytokines and chemokines [109].
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Antitumor effects have been demonstrated in vivo using mouse tumor models (mam-
mary carcinoma and colon adenocarcinoma) by intraperitoneal and oral administration.
Tumor inhibition by tumor-specific agents as well as systemic immunity stimulation were
noticed. It is worth mentioning that water soluble grifolan is the single fungal β-glucan
which could orally administered efficiently [110].

Another in vivo study on mice with implanted mammary carcinoma cells showed
increased antitumor activity and a reduced immuno-suppressive effect of mitomycin treat-
ment [111]. A sulfate derivative of a water-insoluble polysaccharide of the same origin
inhibited in vivo and in vitro (in mice) ascites cell line tumor growth, accelerated the anti-
tumor effect, and reduced immune damage when combined with cyclophosphamide [112].

Different studies showed that grifolan-reach extracts induced apoptosis in human
breast [113], gastric cancer cells [114], and prostate cancer [115]. Other health-beneficial
activities (liver and renal protection, antidiabetic, antilipidemic, antihypertensive, and
antiradiation), as well as antiviral activities have been noticed [116].

3.7. Lasiodiplodan

The filamentous fungus Lasiodiplodia theobromae has become of increasing interest as
producer of lasiodiplodan, an extracellular β-glucan polymer, with a high potential for
industrial production.

The use of soybean molasses, sugarcane straw, or sugarcane bagasse as a low-cost
carbon source, rice bran extract, and soybean bran extract as a nitrogen source, respec-
tively, has been reported as promising substrates for lasiodiplodan production through
submerged fermentation [117–119]. Furthermore, dextrose, glucose, mannitol, sucrose,
fructose, maltose, and lactose have been tested as carbon sources, followed by potassium
nitrate, ammonium sulfate, and ammonium chloride as nitrogen sources [120].

Its structure was identified as linear, water soluble β-(1→6)-D-glucan, containing
glucose monomer units, presenting spherical structures such as granules with an ovoid
shape (3.33 µm average diameter) (Figure 7). Depending mostly on the producing strain
and fermentation conditions, the molecular weight of lasiodiplodan was found between
7 kDa and 2000 kDa [119].
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Given its wide range of biological functions, including protective activity against
induced DNA damage by doxorubicin, anticoagulant, and hypoglycemic activities, and a
decrease of transaminase activity in rats without any hematologic or histologic changes that
indicate toxicity in the vital organs [121,122], lasiodiplodan exopolysaccharide presents a
significant commercial potential [123].

It inhibited cell proliferation in MCF-7 breast cancer cells, whereas its sulfonated
derivative had anticoagulant and antithrombotic properties similar to heparin [124]. Chem-
ical derivatization (acetylation, carboxymethylation, phosphorylation, and sulphonylation)
proved to improve and extend the biological properties and pharmaceutical applications of
lasiodiplodan (e.g., antimicrobial, antioxidant, antiproliferation of cancer cells) [125–127].

The results obtained in the study of Malfatti et al. [128] showed that lasiodiplodan
can prevent the signals of neurotoxicity induced by D-penicillamine, reducing lipid peroxi-
dation in the brain cortex and the typical automatism of convulsions. According to these
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findings, lasiodiplodan may be useful for both preventing neurotoxicity, as well as attenu-
ating the damage produced by the convulsive episodes related to the GABAergic system.

Moreover, another study investigated the importance of this polysaccharide in wound
healing. Nissola et al. [129] have developed a hydrogel based on lasiodiplodan as a bioactive
ingredient, and it was observed that the formulation stimulated re-epithelialization, cell
proliferation, and collagen production, suggesting its potential use in products for the
topical treatment of skin wounds and burns.

4. Extraction and Analytical Methods of Fungal Exopolysaccharides

Exopolysaccharides can be separated from the fermentation broth using several tech-
niques and procedures. Before the isolation and quantification of exopolysaccharides,
the biomass from the fermentation broth must be removed through centrifugation. Ex-
opolysaccharides are often separated from cell-free systems by precipitation with organic
solvents (ethanol [130], acetone or isopropyl alcohol [131]) and subsequent cold storage [89].
For example, lentinan produced by the Lentinus edodes fungus can be extracted by ethanol
precipitation [10]. Furthermore, lasiodiplodan secreted into the culture medium during sub-
merged fermentation can be easily collected by ethanol precipitation; thus, their isolation is
easier and cheaper compared to extractive processes for glucans from fungal fruiting bodies
or yeast cell walls [132]. The precipitate (“crude EPS”) obtained by centrifugation may
contain certain amounts of other substances, such as proteins, minerals, or low molecular
mass carbohydrates, leading to the polysaccharide purification step [89]. Ion exchange chro-
matography (IEC) and gel permeation chromatography (GPC) are methods that can be used
for the purification of exopolysaccharides [133]. Regarding the composition and structure of
fungal exopolysaccharides, they can usually be analyzed by high-performance liquid chro-
matography (HPLC), gas-liquid chromatography (GLC), gas-liquid chromatography-mass
spectrometry (GLC-MS), and 1D and 2D NMR spectroscopy [5].

5. Discussions

Fungal polysaccharides are important candidates for different therapies, including
cancer, due to their bioactive properties [3]. Various fungal polysaccharides with dif-
ferent molecular chain lengths and chemical compositions are synthesized by differ-
ent strains of microorganisms and have promising applications in medicine and the
pharmaceutical industry.

It has been proven that these biopolymers possess immunomodulatory activity, as
their use has led to a prolongation of survival time, renewal of immune parameters and
improvement of quality of life in patients with different types of cancers compared to
patients who received only chemotherapy (Table 1).

Table 1. Some fungal polysaccharides with pharmaceutical applications.

Sources Polymer Monosaccharide
Constituents

Types of
Glycosidic
Linkages

Pharmaceutical Applications References

Aureobasidium
pullulans pullulan D-Glucose α (1,6), α (1,4)

targeted drug delivery, tissue
engineering, wound healing,

anticancer activity
[30–35]

Schizophyllum
commune schizophyllan D-Glucose β (1,3), β (1,6)

anti-head, neck and
mammary cancers,

antibacterial, antiparasitic,
hypoglycemic properties,

immunobiological activities

[51–57]

Sclerotium rolfsii scleroglucan D-Glucose β (1,3), β (1,6)

antitumor, antiviral,
antimicrobial activities, drug

delivery systems,
immunomodulatory effects

[65–71]
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Table 1. Cont.

Sources Polymer Monosaccharide
Constituents

Types of
Glycosidic
Linkages

Pharmaceutical Applications References

Botryosphaeria
rhodina botryosphaeran D-Glucose β (1,3), β (1,6)

antiproliferative and
immunomodulatory activities,

anti-diabetic and
hypocholesterolemic

properties

[78–81,84]
[85–87]

Lentinus edodes lentinan D-Glucose β (1,3), β (1,6)

immunomodulatory and
anti-cancer properties, such as

sarcoma, lung, colon, and
gastric cancers, K36 murine

lymphoma

[98–103]

Grifola frondosa grifolan D-Glucose β (1,3), β (1,6)

breast, stomach, and colon
cancer activity,

immunomodulatory effect,
anti-diabetic, antilipidemic,

antiviral and
anti-hypertensive properties

[109–116]

Lasiodiplodia
theobromae lasiodiplodan D-Glucose β (1,6)

antiproliferative activity in
breast cancer MCF-7 cells,

anticoagulant, hypoglycemic,
antimicrobial, antioxidant,
and wound healing effects

[122,124–
127,129]

The antitumor property of polysaccharides is immunologically mediated via T and B
cells on cancer cells, but also by stimulating innate immunity. Even though they are slower
acting compared to conventional therapies (radiotherapy, chemotherapy), they show the
ability to be more adaptable, durable, and specific [27], playing a crucial role in improving
the human immune system. Such biopolymers as chemically modified derivatives proved
to be valuable drug delivery agents, achieving rate and important target-controlled release.

As a first comment, the specific difference between an α-glucan (pullulan) and β-
glucans consists in the fact that pullulan and its derivatives showed almost only very
suitable properties as classical formulation ingredients and drug carriers, but not as specific
bioactive products, as β-glucans.

Though pullulan has monographs in the United States [134], Europe [135], Japan [136],
and Britain [137], its presence is only as a classical ingredient, far from the targeted drug
delivery properties of derivatives, as numerous published studies showed. In this regard,
they face the generally existing challenges for medicines containing nanoparticles of non-
familiar origin to the human body. To become medicines, regulatory issues, essentially
imposed on innovative medicines must be met. Therefore, new preclinical studies in vitro
and in vivo, in accordance with those issues, especially regarding pharmacology, pharma-
cokinetics, and toxicology aspects, are necessary. Obviously, such formulations as medical
devices for local therapy (e.g., wound healing) have a greater chance of being approved.

Regarding the bioactive β-glucans, despite the recognition of their efficacy as adjuvants
in cancer therapy in Asia, they are not present in any worldwide known pharmacopoeias
as individual drugs, but only included among dietary supplements, as products of comple-
mentary therapy.

6. Conclusions

The pharmaceutical importance of fungal polysaccharides appears obvious, especially
regarding their proven great potential therapeutic effects in a major disease field, namely
cancer. There are two main directions: direct cancer immunotherapy and antitumor activity,
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mostly associated with existing chemotherapeutics, and target selective drug delivery of
chemotherapeutics.

There are obvious challenges that cannot be avoided but could be overcome. As
innovative pharmaceuticals, the fungal polysaccharide biopolymers as active drug sub-
stances and their nanoparticle formulations should be reliable, reproducible, and comply
with specific regulatory requirements, whose efficacy and safety must be proven in pre-
clinical and clinical trials. Apart from the reliability and reproducibility depending on
appropriate technological solutions, the challenges refer especially to in vivo required phar-
macokinetic characterization (mostly metabolism and excretion), which generally hinders
non-physiological biopolymers as nanoparticles to become authorized drugs or pharma-
ceutical ingredients. The enormous volume of studies that are going on, based on their
great potential applications in major therapeutic domains, justifies the confidence in the
outlook for highly effective medicines containing fungal exopolysaccharide biopolymers.
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