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Abstract: Aiming at resolving the problem of low assembly accuracy and the difficulty of guarantee-
ing assembly quality of remanufactured parts, an optimization classification method for the assembly
sequence of remanufactured parts based on different accuracy levels is proposed. By studying the
characteristics of recycled parts, based on the requirement that the quality of remanufactured products
not be lower than that of the assembly quality of new products, the classification selection matching
constraints of remanufactured parts are determined, and the classification selection matching opti-
mization models of remanufactured parts with different precision levels is established. An algorithm
combining particle swarm optimization and a genetic algorithm is proposed to solve the model and
obtain the optimal assembly sequence. Taking the remanufacturing assembling of a 1.4 TGDI engine
crank and a connecting rod mechanism as an example, the comparison of quality data shows that
this method can effectively improve the qualified rate of assembly, reduce the cost of after-sale claims,
provide new theories and methods for remanufacturing enterprises that need hierarchical assembly,
and provide effective guidance for the development of the remanufacturing industry.

Keywords: remanufacturing; assembly sequence; selection matching; combinatorial algorithm;
engine

1. Introduction

Remanufacturing assembly is a critical step to ensure product quality. Compared with
the original new-part manufacturing and assembly, remanufacturing assembly has higher
uncertainty, low production efficiency, unstable product quality, frequent abnormal pro-
duction accidents, and high repair rates [1,2]. Therefore, ensuring the assembly quality of
remanufactured products, improving the success rate of product matching, and optimizing
the assembly sequence during the remanufacturing assembly process have become key
issues that remanufacturers need to solve urgently.

At present, a large quantity of research has been carried out on the optimization of
remanufacturing assembly sequences. Yang et al. [3] built a product assembly priority cor-
relation matrix for complex mechanical products and used an improved genetic algorithm
to obtain the optimal assembly sequence. Su et al. [4,5] proposed a matching-oriented
remanufacturing assembly sequence optimization method and established an assembly
sequence optimization model based on the lowest cost of mass loss. According to the
assembly characteristics of lithium battery modules, by analyzing the failure condition of
used parts, Jiang et al. [6] set up an optimization model of remanufacturing repair scheme
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of used parts based on failure characteristics with the objective of remanufacturing cost
and time. A genetic algorithm was used to optimize the model. Geda et al. [7] studied
the remanufacturing assembly combination matching method and established a matching
model aiming at minimizing quality loss in product assembly. Xiao et al. [8] studied the
remanufacturing assembly inventory cost, proposed an assembly sequence optimization
model based on the smallest assembly cost and the highest resource utilization, and used
the network flow graph and mathematical linear programming method to solve the model.
Zhu et al. [9] developed a remanufacturing cost prediction model based on an improved
BP neural network. This model can effectively and accurately predict the remanufacturing
cost. Marcin et al. [10,11] carried out assembly sequence planning using artificial neural
networks for mechanical parts based on given conditions.

In order to improve the quality of remanufactured products, these studies are mainly
conducted by introducing a new classification or calibration method. However, there
are few studies on the coupling law of remanufacturing product quality and the quality
control of remanufacturing product assembly process in the environment. The existing
research methods cannot meet the requirements for the assembly quality of remanufactured
products. Based on the above research, this paper proposes an optimization classification
method for the assembly sequence of remanufactured parts based on different precision
levels to raise assembly accuracy and guarantee assembly quality. By studying the charac-
teristics of recycled parts, and based on the requirement that the quality of remanufactured
products not be lower than the quality of newly assembled products, the constraints of
remanufactured part classification and selection are determined in the dimension chain
constraints and the optimization model of remanufactured parts classification selection
with different precision is established. Designing a combined algorithm to solve the target
model and obtain the optimal assembly sequence serves to improve the remanufacturing
assembly success rate and assembly accuracy.

2. Optimization Model of Remanufactured Part Grading Selection with Different
Precision Levels

The assembly error of remanufactured parts fluctuates widely. In order to ensure the
quality of remanufactured assembly, this paper establishes different precision standards for
remanufactured parts and creates an optimization model for the classification and selection
of remanufactured parts under different precision conditions.

2.1. Remanufactured Part Grading Matching Constraints

Assuming that the critical dimension of the original part is (xα
−α, σ2), which satisfies

the normal distribution, the ideal value is x, the tolerance distribution is [−α, α], and the
variance is δ2. Then, the critical dimension of the remanufactured part is (xβ

−β, δ2), which
also satisfies the normal distribution. The ideal value is x, the tolerance distribution is
[−β, β], and the variance is δ2. In the actual remanufacturing process, α ≤ β, σ ≤ δ,
assuming that a certain dimension chain consists of N part sizes, the calculation formula of
the dimension chain accuracy of the assembly of new parts can be obtained, as shown in
Formula (1):

f m = −
N

∑
j=1

σj
2 (1)

In the formula, σj represents the dimensional variance of the j remanufactured part in the
dimension chain.

The formula for calculating the accuracy of the assembly dimension chain of remanu-
factured parts is shown in Formula (2):

f r = −
N

∑
j=1

δj
2 (2)

In the formula, δj represents the dimension variance of the j remanufactured part in the
dimension chain. Obviously, f m > f r. According to this model assumption, the parts are
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divided into two levels in order to ensure that the assembly accuracy of remanufactured
parts is not lower than that of new products. That is, it is necessary to meet the tolerances
of the two δ2

i ≤ σ2
i ; that is, β ≤

√
2α, σi represents the dimensional variance of the i

remanufactured part in the dimension chain, and δi represents the dimension variance
of the i remanufactured part in the dimension chain. When the remanufactured part
X of the first type is assembled in combination with the remanufactured part Y of the
second type, the tolerance of the remanufactured part X of the first type can be relaxed, the
selection range is enlarged, and the relaxation ratio is 1.41. According to the above formula,
reasoning, and the literature [12], different accuracy standards are established, as shown in
Table 1.

Table 1. Classification criteria for different grades.

Classification Variance Wide Scaling Coefficient Tolerance Width Casting Coefficient

2 1.8 1.3
3 2.1 1.4
4 2.4 1.5

Mechanical products are assembled using a finite size chain, which is the basis for
product assembly accuracy. Assuming that there are multiple size chains in the assembly
process, in order to ensure that the quality of remanufactured products is not lower than
the assembly quality of newly manufactured products, the product size chain constraints
are as follows [13–15]:

ES(At) =
m

∑
i=1

ES(
→
Ai)−

n−1

∑
i=m+1

EI(
←
Ai) (3)

EI(At) =
m

∑
i=1

EI(
→
Ai)−

n−1

∑
i=m+1

ES(
←
Ai) (4)

T(At) =
n

∑
i=1

T(
→
Ai) +

n−1

∑
i=m+1

T(
←
Ai) (5)

In the formula,
→
Ai is the subtraction loop, m is the number of added loops, n is the total loop

number, ES(At) is the upper deviation of the closed loop, EI(At) is the lower deviation of
the closed loop, and T(At) is the tolerance of the closed loop.

2.2. Comprehensive Model of Remanufactured Part Classification and Selection

Assuming that the remanufactured parts have t dimension chains, that the error coeffi-
cient of different precision classifications of the remanufactured parts is p(t)ij = δ(t)ij

2/σ(t)i
2,

and that the cost of mass loss is c(t)ij = f (p(t)ij), the remanufacturing assembly cost under
different precisions is shown in Formula (6):

minF =
T

∑
t=1

n

∑
i=1

c(t)ijx(t)ij (6)

With the restriction that the product quality of the remanufacturing assembly process
of mechanical products not be lower than the assembly quality of newly manufactured
products, and the goal of optimizing the remanufacturing assembly cost, a comprehen-
sive selection model of the remanufacturing assembly process under different precision
conditions is established, as shown in Formula (7):
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minF =
T
∑

t=1

n
∑

i=1
c(t)ijx(t)ij

s.t



ES(At) =
m
∑

i=1
ES(

→
Ai)−

n−1
∑

i=m+1
EI(

←
Ai)

EI(At) =
m
∑

i=1
EI(

→
Ai)−

n−1
∑

i=m+1
ES(

←
Ai)

T(At) =
n
∑

i=1
T(
→
Ai) +

n−1
∑

i=m+1
T(
←
Ai)

m
∑

j=1
x(t)ij = 1

x(t)ij = 0, 1
i ∈ {1, 2, . . . , n}
j ∈ {1, 2, . . . , m}
t ∈ {1, 2, . . . , T}

(7)

In the formula, x(t)ij represents the j level of the i attribute of the x(t) component, c(t)ij
represents the quality loss cost of the i remanufactured component j level of the t dimension
chain, δ(t)ij

2 is the variance of the j dimension chain of the i remanufactured component,
and σ(t)i

2 is the variance of the t dimension chain of the i original part.

3. Model Solution

Particle swarm optimization is inspired by the behavior of bird species and is used
to optimize the balance of production and assembly lines. In an n-dimensional search
range, each particle can be regarded as a search individual. The position of each particle
is a candidate solution of the optimal value, and the motion of the particle is the process
of searching for the individual. The optimal historical location of individual particles and
populations can dynamically adjust the flight speed of particles. Velocity and position
are two attributes in particle search, where velocity represents the speed of motion and
position represents the direction of motion. The optimal solution found by each particle in
motion is called the individual extreme value, and the optimal individual extreme value in
the whole particle swarm is regarded as the global optimal solution. Speed and position
are updated iteratively. Finally, the optimal solution must meet the termination condition.

The assembly line studied in this paper is a discrete problem. The particle swarm
optimization algorithm is used to analyze the assembly line problem, and the following
formula is established:

Xid(t + 1) = Vid(t + 1) + Xid(t) (8)

Vid(t + 1) = ωVid(t) + c1r1(pid(t)− Xid(t)) + c2r2(ggd(t)− Xid(t)) (9)

Here, X is the position of the particle in the global learning process, representing a
feasible solution; V is the particle running speed, representing the global or local optimal
learning process of particles; p is the historical optimal location of the current local; g is
the historical optimal position of all particles in the global learning process; i is the serial
number of the particle, i = 1,2 . . . n; d is the global dimension of the particle’s position or
velocity; t is the evolutionary algebra of particles; w is the inertia weight; r1 and r2 are any
number between [0, 1]; c1 and c2 are acceleration factors.

The particle swarm optimization algorithm transforms the optimal search process into
the solution of the regular motion of particles in space, in which the motion of particles is
affected by three main aspects: the first one is the inertia of particle motion (the first item of
Formula (9)); the second is the judgment of the current particle position (i.e., the second
term of Formula (9)) and the selection of the historical optimal solution of the particle.
c1 ∗ r1 represents the degree to which the particle judges the historical optimal solution.
The third is the cognition of the particle to the global particle and the search for the global
optimal solution (the third term of Formula (9)). c2 ∗ r2 represents the degree to which
particles design the current global optimal solution.



Processes 2023, 11, 383 5 of 13

Considering that the hierarchical matching model has high requirements for the opti-
mization accuracy of the global search, if a single intelligent optimization algorithm is used,
it is easy to fall into the local optimal situation [16–21]. Based on this, this paper proposes
an optimization algorithm that combines particle swarm optimization and a genetic algo-
rithm, and integrates the crossover and mutation operators in the genetic algorithm into
the particle swarm optimization algorithm to improve the global optimization ability [22].

(a) Crossover operation
Assuming that the two individuals, xm

k , xn
k (m 6= n) at a certain time k are inherited

and crossed, the new individuals generated at the time n + 1 after the crossover can be
expressed as follows [23,24]:

xm
k+1 = axm

k + (1− a)xn
k (10)

xn
k+1 = axn

k + (1− a)xm
k (11)

(b) Mutation operation
Mutation operation is a process of simulating gene mutation in the biological world.

Its main function is to increase the local search ability of the new algorithm, which can
converge to the optimal solution more quickly. Finally, the position/speed update formula
of the mutation operator is introduced as follows:

∆vk+1
id = ∆vk

id + c1ξ(∆pk
id − ∆xk

id) + c2η(∆pk
gd − ∆xk

id) (12)

xk+1
id = xk

id + ∆vk+1
id (13)

In the formulas, c1 and c2 are the weight of the particle tracking itself and the group
optimal value, usually set to 2; ξ and η are the [0, 1] random number with uniform interval
distribution; γ is the constraint factor [25,26] on the speed, which is the solution step of the
algorithm as shown in Figure 1.Processes 2023, 11, 383 7 of 14 
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100 waste engine recycling centers across the country. The recycling time and recycling 
location of each recycling point are different and the quality of different recycled engines 
is also different. A total of 80% of the remanufactured parts are used in a remanufactured 
engine, but the assembly success rate is only 84.41% and customer complaints are fre-
quent. Compensation expenses were as high as CNY 9.57 million in 2019, accounting for 
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The genetic algorithm (GA) is a typical swarm intelligence algorithm. It obtains
the good properties of chromosomes through selection, crossover, and variation, and
finally finds the optimal solution through convergence. The genetic algorithm has the
advantages of good convergence performance and strong global search ability. Particle
swarm optimization and the genetic algorithm are integrated to improve the global search
ability of particles to solve some specific problems and obtain better results. This paper
adopts the idea of bringing the excellent solutions selected by the genetic algorithm into
the next generation. The method involves selecting the best individuals in each generation
of particle population and replacing the individuals with weak adaptability in the next
iteration process, so as to improve the ability of the algorithm in searching for the best
individuals. The specific process is as follows:

(1) Initialize. Set the initial velocity and initial position of the particle, and set cross
factor ko and variation factor Tst.

(2) Calculate the fitness index of each particle using the fitness function. pbest is the
best position of individual particle, and gbest is the best position within the whole world.

(3) Constantly update the velocity and position of particles in the global according to
the above crossover and mutation operations.

(4) Calculate the particle adaptation value f (xi) according to the respective positions
of particles in the global xi, and replace the individual optimal position and the global
optimal position in a timely manner.

(5) According to the global order of particle fitness values, particles with good fit-
ness values replace particles with bad fitness values, leaving particles with good speed
and position.

(6) If the search results meet the set conditions, stop the search and output the best
global value at this time; if the stop condition is not met, the next update iteration continues.

4. Example Verification

We applied the optimization model of remanufactured parts classification and selec-
tion to a domestic automobile engine remanufacturing enterprise, which has more than
100 waste engine recycling centers across the country. The recycling time and recycling
location of each recycling point are different and the quality of different recycled engines
is also different. A total of 80% of the remanufactured parts are used in a remanufac-
tured engine, but the assembly success rate is only 84.41% and customer complaints are
frequent. Compensation expenses were as high as CNY 9.57 million in 2019, account-
ing for 7.81% of sales [27–32]. Figure 2 shows the process flow chart of the company’s
remanufactured engine.

4.1. Method Implementation

Remanufactured engine companies recycle engines from recycling stations with differ-
ent quality levels. In this case, a 1.4 TGDI gasoline engine crank-connecting rod mechanism
is used as an example. Figure 3 is a three-dimensional solid model of the crank-connecting
rod mechanism, wherein 1, 2, 36, and 37 are pistons; 3, 6, 33, and 35 are bushings; 4, 5, 32,
and 34 are piston pins; 7, 8, 30, and 31 are connecting rod bodies; 9, 10, 28, and 29 are upper
half bearings; 11 are crankshafts; 12, 16, 23, and 27 are lower half bearings; 13, 19, 22, and
26 are connecting rod covers; 14, 15, 17, 18, 20, 21, 24, and 15 are connecting rod bolts; 38,
39, 40, and 41 are cylinders.

The remanufactured parts are classified according to the quality grade standards set
in Table 1 above. The size standard of the main bearing hole diameter of the new part of
the 1.4 TGDI engine is L1 = 48+0.015

0 mm; the diameter of the new crankshaft main shaft
is L2 = 440

−0.016mm. Five sets of crank assembly parts were randomly selected, which
included the dimensions of five remanufactured crankshafts and five remanufactured
cylinder block parts. Tables 2 and 3 show the main bearing hole diameter and crankshaft
main journal diameter of some remanufactured cylinder blocks.
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Table 2. Main bearing bore diameter of cylinder block (mm).

Cylinder Code 1 Neck 2 Neck 3 Neck 4 Neck 5 Neck

1-01 48.013 48.005 48.009 48.012 48.006
1-02 48.014 48.012 48.012 48.013 48.013
1-03 48.019 48.014 48.013 48.012 48.002
1-04 48.012 48.012 48.005 48.013 48.005
1-05 48.007 48.011 48.004 48.002 48.013

Table 3. Crankshaft main journal diameter (mm).

Crankshaft Code 1 Neck 2 Neck 3 Neck 4 Neck 5 Neck

2-01 43.987 43.992 43.995 43.986 43.992
2-02 43.982 43.904 43.994 43.987 43.996
2-03 43.986 43.981 43.984 43.985 43.997
2-04 43.988 43.992 43.988 43.986 43.988
2-05 43.996 43.996 43.992 43.989 43.986

Coding the engine block and crankshaft, it can be seen in Tables 2 and 3 that the
cylinder block code 1-03 first neck, the crankshaft code 2-02 first neck, and the crankshaft
code 2-03 s neck size do not meet the standard of the new part size. This can result in
scrap or rework during assembly. The 1.4 TGDI remanufactured engine crank assembly
closed-ring constraints are the same as new assembly constraints. The cylinder block of the
engine is matched with the crankshaft during assembly; through the calculation results of
arrangement and combination, a total of 120 combination schemes can be obtained. The
cylinder block and the crankshaft are regarded as a whole. When selecting the upper and
lower bearing shells, the commonly used greedy algorithm is used [33–36]. The bearing
bush, the lower bearing bush, and 120 kinds of combinations are optimized one by one,
so as to complete the optimization of an assembly scheme. The structure diagram of the
matching process after optimization is shown in Figure 4.
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Through the above analysis, the crankshaft matching scheme is preliminarily gener-
ated. Based on this, the assembly sequence of the crankshaft connecting rod mechanism
of the remanufactured engine is optimized. The assembly attributes of the crankshaft
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connecting rod mechanism are shown in Table 4. The serial number, installation direction,
and assembly tools used for the parts are described.

Table 4. Assembly properties of the crank linkage.

Serial Number Part Name Installation Direction Assembling Tool

1,2,36,37 plunger −Z handwork
3,6,33,35 bush +X −X handwork
4,5,32,34 gudgeon pin +X −X hacksaw, chassis, heavy hammer
7,8,30,31 shank of connecting rod −Z handwork

9,10,28,29 upper half bearing −Z handwork
11 bent axle — —

12,16,23,27 lower half bearing +Z handwork
13,19,22,26 connecting rod cap +Z handwork

14,15,17,18,20,21,24,15 screw bolt +Z screwdriver, wrench
38,39,40,41 Air cylinder −Z workbench, pistol, pliers

Based on the above optimized crank assembly selection scheme, the relevant programs
of the remanufactured engine crank-connecting rod mechanism classification selection
model are written in Matlab. The reused parts, re-repaired parts, and new parts of each
assembly part were coded, and the types of parts in the assembly process were coded
according to the assembly sequence. According to the assembly constraints and the classifi-
cation scheme selection, the particle swarm genetic combination algorithm proposed in
this study was used to optimize the model. The specific combination algorithm parameters
were set as follows: the initial population size was 50; the maximum number of iterations
was 1000; the cross factor ko was set to 0.9; the variation factor Tst was set to 0.4; the learning
factor was c1 = c2 = 2; and Matlab was used to optimize the simulation. The operation
results are shown in Figure 5.
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The optimized assembly sequence was optimized by Matlab. The top two optimal
assembly sequences are shown in Table 5.
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Table 5. Optimal assembly sequence.

Rank Crank Linkage Assembly Sequence

1 11→9→8→3→2→4→10→7→6→1→5→28→31→35→37→34→29→30→33→36→32→12→16→23→27→13→14→15
19→17→18→22→20→21→26→24→25→38→39→40→41

2 11→10→7→6→1→5→28→31→35→37→34→9→8→3→2→4→29→30→33→36→32→16→19→17→18→23→22→20
21→12→13→14→15→27→26→24→25→38→39→40→41

4.2. Results Comparison

The company began to use the remanufactured part grading and matching method in
January 2020, and compared the data for 2019 with those for 2020. According to statistics,
the success rate of remanufacturing assembly increased from 84.41% to 90.17%, with an
average increase of 5.76%. The company’s compensation expenses decreased by CNY
3.21 million, a decrease of 33.5% compared with 2019. The specific comparison is shown in
Table 6.

Table 6. Comparison of success rate and compensation cost data for 2019 and 2020.

Project January February March April May June July August September October November December

Success rate
in 2019/% 83.27 83.67 84.56 85.23 83.49 84.53 86.19 85.27 84.13 82.94 84.52 85.17

Success rate
in 2020/% 89.52 90.34 90.73 88.78 90.36 89.95 88.57 92.31 90.47 90.28 90.32 90.46

Compensation
expenses in

2019 (10,000)
84.21 83.46 84.53 78.46 78.42 80.31 9.85 98.34 97.18 88.43 89.56 84.59

Compensation
expenses in

2020 (10,000)
62.34 48.57 46.82 47.32 59.15 52.34 58.29 48.73 58.49 46.54 59.48 48.23

4.3. Comparison with the Previous Literature

In the introduction, references [3–11] provide many ideas and methods for remanufac-
turing and assembly, effectively achieving the goal. In reference [4], an assembly sequence
optimization model based on the lowest quality loss cost was established and solved by
an ant colony algorithm. A single intelligent optimization algorithm easily falls into the
local optimal situation. In reference [6], an assembly sequence optimization model based
on the failure feature was established and solved by an ant genetic algorithm. However,
few consider the different precision levels of remanufactured parts. The assembly error of
remanufactured parts fluctuates widely, so this paper sets up different precision standards
for remanufactured parts and establishes the optimization model of classification and
selection of remanufactured parts under different precision conditions. In addition, the
combination of the particle swarm optimization algorithm and genetic algorithm, which
has a wider range and better accuracy, is used to solve the problem.

5. Conclusions

Because the assembly accuracy of remanufactured parts is low and it is difficult to
guarantee assembly quality, an optimization classification method of the assembly sequence
of remanufactured parts based on different precisions is proposed. The main conclusions
are as follows:

1. Remanufactured assembly control is difficult to standardize. Under the condition
that the assembly accuracy of remanufactured parts not be lower than that of new
products, the classification accuracy standard of remanufactured parts was calculated
through mathematical formulas, the optimization model of classification selection
under different accuracy conditions was established, and a combinatorial optimization
algorithm to solve the model was proposed;

2. This article took the remanufacturing assembly of an engine crank-connecting rod
mechanism as an example. The data comparison showed that the optimal assembly
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sequence obtained by the hierarchical matching model proposed in this study can
effectively ensure different remanufacturing assembly accuracy requirements and
improve remanufacturing. The success rate guarantees an improvement in assembly
quality and a reduction in after-sale claim costs. The best assembly sequence provides
the best assembly quality and the lowest claim cost. The concept of optimality refers to
the best assembly time and quality of remanufactured parts with different precisions.
The success rate of assembly and the reduction in after-sale claim costs provided
new theories and methods for remanufacturing enterprises, which should adopt
hierarchical assembly.
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