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Abstract: The importance of biocatalysis for ecologically sustainable syntheses in the chemical
industry and for applications in everyday life is increasing. To design efficient applications, it is
important to know the related enzyme kinetics; however, the measurement is laborious and error-
prone. Flow reactors are suitable for rapid reaction parameter screening; here, a novel workflow is
proposed including digital image processing (DIP) for the quantification of product concentrations,
and the use of structured data acquisition with EnzymeML spreadsheets combined with ontology-
based semantic information, leading to rapid and smooth data integration into a simulation tool for
kinetics evaluation. One of the major findings is that a flexibly adaptive ontology is essential for
FAIR (findability, accessibility, interoperability, reusability) data handling. Further, Python interfaces
enable consistent data transfer.

Keywords: biocatalysis; ontology; process simulation; data integration; electronic laboratory note-
book

1. Introduction

Biocatalytic reactions have significant potential for novel industrial production
routes [1,2]. Developing new bioprocesses is an intricate task, particularly concerning the
specifics of reaction conditions. This has created a substantial demand for tools like process
simulators that make the process design and development phase more efficient, saving
both time and costs [3]. An open-source process simulator such as DWSIM [4] enables the
computation of process streams even before the establishment of the process in a laboratory
setting. However, process simulation needs input derived from real-world experiments in
order to model the reality properly.

Ensuring standardized conditions is crucial when handling enzymatic data in biore-
actors designed for enzymatic reactions within process simulators. Key parameters, such
as reaction rates and enzyme kinetics, can vary depending on specific reaction conditions.
Additionally, the experimenters recording enzyme-specific data in laboratories might differ
from those individuals conducting process simulations. Thus, research data needs to be
findable, accessible, interoperable, and reusable (FAIR) in order to mitigate loss of infor-
mation between different individuals, to reduce the workload, to minimize error sources,
and to enhance the effectiveness of workflows [5]. To tackle these challenges, ontologies
offer a solution by providing standardized vocabularies and semantic relationships among
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pertinent concepts in the research domains. This facilitates precise comparison and analysis
of enzymatic data [6,7].

In addition, structured data deposition helps experimenters to record their data in a
FAIR way, thereby generating machine-readable data storage. In this work, the standard-
ized, XML-based data exchange format EnzymeML was used to store the measured time
course of product concentration and the modelled enzyme kinetics [8,9]. EnzymeML uses
ontology classes from the Systems Biology Ontology (SBO) [10,11], rendering it a promising
tool for further FAIR research data integration.

This work presents a partially automated method for transforming information from
EnzymeML into a process simulation using standardized concepts defined by ontologies.
The overall workflow, facilitating the direct conversion of data into a process simulation
through ontologies, is depicted in Figure 1 [12]. Data and metadata on the enzyme-catalyzed
reaction is collected in an EnzymeML-compatible spreadsheet and is parsed to a Python-
based kinetic modelling platform for model selection and parameter estimation. With this,
data are extracted and organized within an ontology-based knowledge graph, increasing
data FAIRness. This includes details regarding the process flow diagram (PFD) and sup-
plementary information necessary for configuring the process simulation. Subsequently,
DWSIM and its Python application programming interface (API) are employed to import
the requisite data for the automated configuration of process simulation. Following the
simulation, the resulting data are also integrated into the knowledge graph, enabling the
automatic storage of research data in a format both machine- and humanreadable.
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Figure 1. Overall workflow presented in this work. Starting with laboratory data recorded in
EnzymeML on enzyme kinetics and reaction rates, data are read in with Python and stored in a
structured manner with the help of a tailored ontology as a knowledge graph. Then, the recorded
data are used to automatically generate process simulations, resulting in further insights and eased
workflow from laboratory to process simulation data [12].

With this, the data FAIRness of laboratory experiments is enhanced, making the
overall workflow usable even for experimenters who may not have extensive knowledge
in ontology engineering or process simulation. Besides being able to set up data models
more quickly, the ontologies and resulting knowledge graph also allow for better cross-
domain exchange of data by shared conceptualization of the knowledge. To develop this
workflow, a simple model reaction was used, namely the laccase-catalyzed oxidation of
ABTS. The biocatalysis experiments were performed in two capillary flow reactors and the
corresponding evaluation of the results were used as data input for the workflow.

2. Materials and Methods

This section starts with the description of the biochemical system, followed by the
experimental setup of the capillary reactors with connected digital image processing (DIP).
The experimental data are recorded by an EnzymeML-compatible spreadsheet. The section
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ends with an overview about ontology engineering enabling the smooth connection of
experimental results with process simulation performed by DWSIM.

2.1. Determination of Reaction Kinetics

The oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Merck
KGaA, Darmstadt, Germany) catalyzed by laccase (E.C. 1.10.3.2) from Trametes versicolor
(Merck KGaA, Darmstadt, Germany) was chosen as an easy to quantify model reaction.
The purity of the laccase was determined, which did not show any protein contamination.
For the determination of the enzyme activity, one unit was defined as the amount of the
laccase that oxidizes 1µmol of ABTS per min. The protein concentration was determined
by Bradford assay using BSA as standard.

For the two-substrate kinetics, the initial rates for the oxidation of ABTS were mon-
itored, while assuming a constant concentration of the second substrate (oxygen). The
apparent kinetics constants (vapp

max and Kapp
M ) have been determined indicating that their

values toward ABTS oxidation depend on the concentration of the second substrate, oxy-
gen. To determine the Kapp

M and kapp
cat of the laccase, enzyme assays with varying ABTS

concentrations were carried out in a multi-well plate reader (Tecan Safire2TM, Männedorf,
Germany). The reaction was performed with 21 U L−1 laccase in 200 µL 1% (v/v) sodium
acetate buffer (pH 5.3) containing 1% (v/v) Tween® 80, incubated for 15 min at 37 ◦C. ABTS
was added in different concentrations: 0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.0, 5, 10, 15, 20, 30, 40,
50, 60, 70, and 80 mM. The absorption at 420 nm was measured every 48 s. Experiments
were performed in triplicate. To convert the absorption into concentration, a correlation was
determined from the absorption of reacted ABTS dependent on the substrate concentration
used. It was assumed that the ABTS was fully converted, and that the product was stable
in solution.

Kinetics absorption data were processed in a Jupyter Notebook alongside calibration
data for concentration calculation. Therefore, the MTPHandler Python tool was used to read
in unprocessed absorption data from the plate reader. Subsequently, reaction conditions
and initial concentrations for substrate and enzyme were assigned to the individual wells
of the MTPHandler “Plate” object. Absorption data were obtained from wells containing
oxidized ABTS to prepare a standard curve for concentration calculation. Subsequently, the
absorption data of the enzyme reactions were converted to the data structure of EnzymeML.
In this process, the standard of oxidized ABTS was used, yielding concentration data.
After creation of EnzymeML data, the concentration data between 300 s and 900 s was
used to estimate the kinetic parameters kapp

cat and Kapp
M by fitting the integrated irreversible

Henri–Michaelis–Menten rate law to the data.

r =
kapp

cat · cLaccase · cABTSred

Kapp
M + cABTSred

The estimated kinetic parameters, kinetic model, reaction conditions, and measured
concentration data were serialized as an EnzymeML document in the form of an .omex archive.

2.2. Tube Reactor Experiments
2.2.1. Experimental Setup

The experimental capillary reactor setup consists of the components shown in Figure 2,
in which the setup for the straight capillary (SC) is shown as an example. To set the desired
oxygen content in the gas phase, a gas cylinder (1) each is used for synthetic air and
nitrogen. These gas flows are regulated by two mass flow controllers (Bronkhorst EL-Flow
select, Bronkhorst, The Netherlands) (2) and controlled by a computer (3). The gas flows
are then combined in a Y-mixer (4). The storage tank with the reaction solution is located
in a water bath (5), which is heated to operating temperature using a heating plate (MR
Hei-Tec, Heidolph, Germany). The inertization with pure nitrogen of the storage tank takes
place through a sintered filter (VitraPor®, Robu Glasfilter, Hattert, Germany). For slug
flow generation, a peristaltic pump (Ismatec ISM597, Ismatec Industry Solutions GmbH,



Processes 2024, 12, 597 4 of 13

Grevenbroich, Germany) pumps the reaction solution through a T-mixer (7), where it is
contacted with the gas phase in a co-current flow. In order to control the concentration of
ABTSox (Merck, Darmstadt, Germany) in the reaction solution before it enters the straight
capillary reactor, a photosensor (6) is positioned between the T-mixer and the peristaltic
pump. The gas–liquid flows (3 mL min−1 gas, 5 mL min−1 liquid) through the capillary
reactor (straight capillary or coiled capillary) with a reactor length of 4 m (fluoroethylene
propylene, inner diameter: 1.6 mm, Bohlender GmbH, Grünsfeld, Germany), which is
tempered in a water bath (8). To temper this reactor water bath, a 5 L laboratory bottle on a
hotplate with a feedback control (Witeg MSH-20D, Witeg Labortechnik GmbH, Wertheim,
Germany) (12) is used. The value of the feedback control is set to 39–40 ◦C. A single-lens
reflex camera (Nikon D5300, Nikon Europe BV, Amstelveen, The Netherlands) (10) is used
to take pictures of the reaction in the capillary reactor with a focal length of 85 mm, an
exposure time of 1/1000 s, and ISO number of 6400. Illumination is realized with an LED
panel (9) (Starcluster Kaiser, Kaiser Fototechnik, Buchen, Germany). The straight capillary
and the coiled setup differ only in terms of illumination and camera position. In the straight
capillary setup, the camera and one LED panel face each other. In contrast, the coiled
capillary is illuminated by two LED panels at an angle of approximately 45◦ from the
same direction as the camera. The reaction product at the outlet of the capillary reactor is
collected in a waste container (11).
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to [13] are data/image input, image pre-processing, segmentation, masking bubbles, cali-
bration, and analysis in MATLAB 2019. In the data/image, input step a camera acquires 
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Figure 2. Experimental setup of the reactor experiments consisting of (1) gas supply, (2) mass flow
controllers (MFC), (3) computer, (4) Y-mixer, (5) storage tank with the reaction solution in a water
bath, (6) photosensor, (7) T-mixer, (8) capillary reactor (straight capillary or coiled capillary) in a water
bath, (9) LED panel, (10) camera, (11) waste container, and (12) bottle on a hotplate with a feedback
control to adjust the water bath temperature. The black lines represent the gas and liquid flows, and
the dashed lines represent the data transfer.

2.2.2. Digital Image Processing (DIP)

For the investigation of biocatalytic gas–liquid reactions with a color change in straight
and coiled capillary reactors, a non-invasive evaluation method is needed to determine
the reaction progress. Digital image processing (DIP) is a suitable method for this purpose
as it evaluates without disturbing the flow. The applied DIP steps corresponding to [13]
are data/image input, image pre-processing, segmentation, masking bubbles, calibration,
and analysis in MATLAB 2019. In the data/image, input step a camera acquires the
images and saves them into a specific file format. The pre-processing contains image
enhancement algorithms to reduce noise, for example. Within the segmentation step,
a routine determines the region of interest (ROI). Masking bubbles is an optional step
that should only be performed if no near-interface phenomena are to be observed. The
DIP program uses a direct calibration. That means a calibration coefficient with a linear
regression is calculated pixel-wise. Images of a capillary filled with known concentrations
and background images (capillary filled with deionized water) are used as data input. The
DIP program generates mean images and backgrounds for various concentrations. The
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routine then subtracts the background from the concentration images. The result is an
image that shows the color intensity proportional to the absorbance of the medium. The
last step is the analysis in which a generalized linear equation system is formed. Here, the
information from any channel of an RGB image is stored.

With this evaluation method, it is possible to take images of the reactor at different
positions and, thus, determine the reaction progress depending on the reactor length.
However, this evaluation method requires the measuring points to be easily accessible and
that there is very good exposure in order to produce evaluable images. Furthermore, online
measurement is not possible, as the recorded images are first transferred to a computer and
then used for evaluation with the developed analysis program.

2.3. EnzymeML and MS Excel-Based ELNs

EnzymeML is a standard for the documentation and standardized exchange of data
on enzyme catalytic reactions addressing the FAIR principles for scientific data manage-
ment [5]. EnzymeML follows the Standards for Reporting Enzymology Data (STRENDA)
guidelines. These guidelines define the minimum information to be included with pub-
lished data on enzyme activity to ensure the reproducibility of results. Furthermore,
EnzymeML uses the SMBL (Systems Biology Markup Language) syntax, an XML-based
modelling language for systems biology. SMBL is used to represent biochemical models
such as metabolic or gene regulatory networks [8,14,15].

A spreadsheet is used to enter the experimental data as it allows for a more user-
centred usage. The spreadsheet is then parsed to the EnzymeML, and the resulting docu-
ment can then be used as a standardized exchange format to transfer data between different
applications. The spreadsheet records laboratory data regarding general information of the
experiment, used vessels, reactants, proteins, reactions, and kinetic models. Furthermore,
the measured absorption values are included in the file. Communication between the appli-
cations takes place via the Python framework PyEnzyme [11]. This enables the document
to be read and edited and at the same time ensures that it is checked for completeness and
consistency [9,14].

The experimental data reported by the EnzymeML spreadsheet contribute most of the
input data needed to successfully set up a process simulation. However, as it is primarily
designed for batch operations, some additional information needed for process simulation
is missing, such as volumetric flow rates or critical volumes of the substances. Furthermore,
information on the reactor specification like length, pressure loss, and diameter are missing.
Thus, an additional spreadsheet is created to consider information that is not considered by
EnzymeML, but necessary to carry out subsequent process simulations.

2.4. Ontology Engineering

Ontologies are a fundamental concept for describing the existence of and relation
between entities. They are necessary to store knowledge in a machine-readable and explicit
way [16]. An ontology is a structured network of logically connected attributes and entities
aiming to represent conceptual ideas (classes) within a specific knowledge domain. They
are expressed in description languages to articulate their content in classes and establish
logical relationships between their classes. With this, an ontology has classes and their
hierarchical structuring as its core. Real-world representations of these classes are usually
represented by individuals. Object properties are used to create connections between
classes and between individuals, as well as connections between classes and individuals.
Data, like a certain temperature, in turn can be asserted to individuals and classes by
data properties.

The Systems Biology Ontology (SBO) [10] contains 645 classes for the formal represen-
tation of systems biology-related topics. It was developed with the aim of ensuring uniform
terminology and standards for the description of models and experiments in systems
biology. Using a class hierarchy and key aspects, such as the role of the reaction participants
and quantitative parameters like the Michaelis–Menten constant, a classification of the
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mathematical expressions that describe the system and the modelling framework used
can be defined. SBO terms are used in data formats, such as SMBL, to classify concepts
within a model and, thus, contribute to the uniform description of models. EnzymeML
uses SBO terms to define an enzymatic catalyst or the reactants of a reaction, such as the
substrate [9,17].

Metadata4Ing is an ontology for the semantic description of research data in the
context of a scientific activity. It comprises entities that represent research processes and
management and contains classes that represent the object of investigation or the investiga-
tion method of an experiment or a simulation. Metadata4Ing draws on existing ontology
entities from, for example, the European Materials and Modeling Ontology (EMMO) [18] or
the Basic Formal Ontology (BFO) [19], which are refined with their own classes, properties,
relations, and axioms. At the heart of the Metadata4Ing ontology is the processing step class
for describing processing steps within a process model. Based on this class, investigation
objects or investigation variables of a process can be specified with the object property
investigated [20].

Both ontologies contain important concepts to describe the overall process of labo-
ratory experiments to process simulations. In a first step, a class hierarchy is taken up to
have a list of needed classes. The classes integrated here map all the information from
the EnzymeML spreadsheet and the additional spreadsheet to obtain a list of the classes
to be modelled in the ontology. In addition, further information required by DWSIM to
implement a biocatalytic reaction is investigated. These specific requirements are iden-
tified as separate classes and integrated into the class hierarchy. In the second step, the
Metadata4Ing ontology and the SBO are combined. The entities of the ontologies are first
compared with each other and then evaluated to what extent they are suitable for the
application of a process simulation. Those entities that do not fit the desired application are
removed from the ontology in a third step. In the fourth step, the combined ontology is
extended by adding the class hierarchy, whereby entities are not to be defined redundantly.
Finally, object properties are defined to refine the classes and data properties are formulated
to secure process-relevant data types.

Extending the tailored ontology with the data acquired from EnzymeML and data
created by the process simulation enables the construction of a knowledge graph. This
resulting knowledge graph can subsequently also be queried using SPARQL to retrieve the
stored information in an automated manner.

2.5. Process Simulation with DWSIM

DWSIM [4] is an open-source chemical process simulator with a graphical user inter-
face for visualizing flowcharts and an application programming interface (API) that enables
automated creation and execution of flowcharts. Its goal is to create an open platform for
exchanging information between different process modeling tools and facilitating collabora-
tion between various software applications. DWSIM’s application programming interface
(API) supports the Python programming language, allowing access to all simulation el-
ements, including flowsheets, thermodynamic models, and substance databases. This
enables the direct application of changed parameters to the simulation. DWSIM performs
calculations and returns results to the Python environment, allowing for flowchart creation,
process modeling, and insight without opening the graphical user interface.

Process modeling involves the automated creation of an empty flowsheet that is filled
consecutively with the needed data by an automation manager. Thus, reactants and the
process flow are modeled, as well as reactor specifications, and property packages defined.

For modeling input streams, corresponding substance quantities and volume flows
are specified.

To define the customized reaction kinetics, a Python script is generated and passed
via the API to DWSIM. This allows for tailored reaction kinetics like the realization of the
Michaelis–Menten kinetics equation in contrast to the program’s default Arrhenius kinetics.
The script is then stored and transferred to DWSIM for execution of the process simulation.
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The process concludes with requesting the calculation of the flowsheet and saving the
simulation file.

To automate the process simulation, the DWSIM automation manager can be called
via an API. This enables date to be imported from the knowledge graph automatically.
Thus, information on reactants, setup of the flow diagram, material streams, and process
parameters can be added in an automated way. Furthermore, the Python script for the
dynamic calculation of reaction rates can be inserted into the process simulator, enabling
the simulation of reactors with custom reaction rates. Finally, the process simulation is
executed by the API and the resulting data is read out and re-integrated into the knowledge
graph. The overall workflow described for the execution of process simulations in DWSIM
is depicted in Figure 3.
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Figure 3. General procedure for automated data integration and execution of the process simulation
in DWSIM.

3. Results and Discussion

This section contains the results of the experiments of the capillary reactors with regard
to the oxidation of ABTS. The recorded experimental data are then used to execute the data
integration into a knowledge graph allowing for process simulations. Finally, the results of
process simulation are compared to the laboratory experiments.

3.1. Experimental Results of Reactor Experiments

The measured data sets were stored in an EnzymeML spreadsheet according to the
described workflow. The apparent enzyme kinetics for the substrate ABTS were calculated
using Michealis–Menten kinetics. Apparent kinetics means that the influence of varying
ABTS concentrations on reaction rates was determined at a constant oxygen concentration.
The determined kinetics, a Kapp

M of 1.2 mM and a kapp
cat of 2.0 s−1, are therefore specific for

the oxygen concentration used for the experiments. The Kapp
M is higher and the kapp

cat is lower
than previously reported values in the literature [21–25]. As only apparent kinetics were
recorded here and the influence of oxygen was not investigated independently, oxygen
availability may have influenced the data. In addition, the influence of Tween® 80 that
is required to ensure a stable gas–liquid flow in the flow reactor cannot be excluded.
Furthermore, the reaction conditions were different regarding temperature, pH, and buffer
in comparison to literature values. However, as only reference data was required rather
than the optimal catalytic performance, the study was continued under these conditions.

In addition to the enzyme kinetics, experimental reference data were required. Mi-
croreactors are characterized by their large specific surface area, controlled flow conditions,
and improved heat and mass transfer. Due to good mixing, short residence time, and
narrow residence time distribution, they offer high selectivity, which makes them interest-
ing for the chemical and biochemical process industry [3]. Microreactors are often used
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to obtain early-stage process data, which is beneficial in bioprocess development as they
allow control over variables and reduce time and cost [26,27]. For these reasons, as well
as the extensive experience of the research group, this reactor type was used to collect
reference data for the subsequent simulation. Two different designs for flow reactors were
selected for this purpose. A flow reactor consisting of a straight capillary was used in order
to minimize the formation of Dean vortices. In this reactor, mixing in the liquid phase
takes place mainly through Taylor vortices. To enhance mixing, a helically coiled capillary
reactor was also used, in which the capillary was wound in a spiral shape. The fact that
the reactor geometry has an influence on mixing has already been demonstrated in the
past with various reaction systems [28]. The reaction progress of both reactors is shown in
Figure 4.
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Figure 4. Resulting concentrations of ABTSox against reaction time for laboratory experiments of
helically coiled capillary (HCC) and straight capillary (SC); 11.6 µmol L−1 laccase, ABTSred = 0.97 mM.
Volumetric flow rates: 3 mL min−1 gas (7 v/v-% oxygen), 5 mL min−1 liquid.

No substantial difference in the reaction progress was observed between the straight
capillary reactor and the helically coiled capillary reactor. The mean catalytic activities of
0.77 U mg−1 ± 0.03 for the straight capillary reactor and 0.78 U mg−1 ± 0.02 for the helically
coiled capillary reactor demonstrate that the chosen reactor designs have no influence on
the reaction rate in these experiments. The concave shape in the experimental data could
be explained by the presence of inhibitory or limiting factors such as oxygen availability,
but these are not considered further here.

3.2. Automated Integration of Laboratory Data in Process Simulations

After recording the laboratory data within EnzymeML and the MS Excel-based ELN,
population of the tailored ontology with the data takes place. The data are then transferred
into DWSIM, and the process simulation is executed. The Python codes produced for
this, the EnzymeML spreadsheet, and the MS Excel-based ELN are available in a GitHub
Repository as noted in the Supplementary Materials section of this work.

3.2.1. Integration of Experimental Data in the Ontology

With help of the Python frameworks PyEnzyme and Pandas, the data are extracted
and included in the tailored ontology. For this, the Python framework owlready2 [29] is
utilized to facilitate automated data integration into the ontology.

To illustrate the method of integrating new classes and data into the ontology, the
modelling of the substance laccase inside the ontology is described in detail here. Within
the ontology, the substance laccase is modelled as a subclass of the already existing SBO-
contained class of polypeptide chain (OBO ID SBO:0000252). The laccase used in the
laboratory experiments is described in the ontology as individual of the class Laccase



Processes 2024, 12, 597 9 of 13

and called “Sub_Laccase_p2”. This in turn allows for the individual to have specific
data properties regarding its Kapp

M and kapp
cat values for the Michaelis–Menten rate law.

The individual “indv_Michaelis-Menten-kinetics” describes the Michaelis–Menten rate
law for this specific reaction and is an individual from the SBO-contained class “Henri-
Michaelis-Menten rate law” (ontology class SBO:0000029). The classes “kcat_r0” and
“Km_r0” are connected to the class “Henri-Michaelis-Menten rate law” via the relation “has
model” (ontology class RO:0002615) [30], thus, implying the same relation to the respective
individuals. Furthermore, the inlet-flow of the reactor is modelled in the ontology as
individual “Indv_Reactant_1”, consisting of three subordinated material flows related by
the “has part” (ontology class BFO:0000051) relation. With this, the liquid inlet-flow can be
distinguished in its mass flows of substances, allowing connection of the process flows with
the enzyme kinetics. The mass flow individual “Reactant_1_Laccase” in turn relates to the
previously mentioned Laccase individual with the object property “composed primarily
of” (ontology class RO:0002473) [30]. The relation “has output” (RO:0002234) connects the
individuals of the respective processing module class with the labels “indv_Reactant_1”,
“indv_Reactant_2”, “indv_Mixer”, “indv_Mixture”, “indv_Reactor”, “indv_Heat”, and
“indv_Product”. To avoid confusion of the individuals with newly created flow diagram
objects in future runs, the unique resource identifiers (URIs) of the individuals are generated
with the help of universally unique identifiers (UUIDs), consisting of a randomly generated
32-bit string. This not only allows the process flow diagram to be set up within the
knowledge graph, but also allows inclusion of data from EnzymeML, the MS Excel-based
ELN, and the process simulation in one knowledge graph.

These relationships and new individuals are created in an automated way in Python
by the data contained in EnzymeML and the MS Excel-based ELN, enabling a dynamic
creation of this knowledge graph. This excerpt of the overall knowledge graph is depicted
in Figure 5 using the ontology editor software Protégé v. 5.5.0 [31]. The reactant oxygen is
modelled as part of the individual indv_Reactant_2 and is omitted from this visualization
for reasons of clarity.

3.2.2. Automated Process Simulation

The process simulation in DWSIM (v. 8.4.6) is executed with experimentally deter-
mined kinetic parameters with a Kapp

M of 1.2 mM and a kapp
cat of 2.4 s −1. As DWSIM does

not provide the investigated reactor classes, a plug flow reactor (PFR) is used to model the
two-phase flow reactors. With the detailed information on the process from the knowl-
edge graph, the PFD is set up in the process simulator in an automated way. Figure 6
shows the resulting PFD from the DWSIM user interface, with defined entering mass-flows
(indv_Reactant_1 and indv_Reactant_2), a mixer (indv_Mixer) creating the gas–liquid
flow (indv_Mixture) that flows into the reactor (indv_Reactor) and finally exits the reactor
(indv_Product_1). Additionally, an energy stream (indv_Heat) enters the reactor. However,
since the reaction is calculated as isothermal, the energy stream gets calculated as 0 by the
simulator. The flow rates of the gas and liquid streams in the experiments, for example,
are used to set the corresponding mass flows in the process simulation (indv_Reactant_1
and indv_Reactant_2). Furthermore, the details on the substance parameters, like molar
weight, from the knowledge graph, are used to set up the corresponding substances in
the process simulator. In addition, the reaction equation and rate are defined based on
the previously recorded data, such that the reaction in the reactor follows the Michaelis–
Menten rate and utilizes the aforementioned Kapp

M and kapp
cat . Upon execution, DWSIM then

calculates, among others, the outgoing flow rate of the liquid and the gas phase and the
respective concentrations of the substances in stream indv_Product_1. This in turn allows
for direct comparison of the resulting product concentrations in the simulated case with
the experimental product concentrations.
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Figure 6. Resulting process flow diagram in DWSIM for the process simulation of the bioprocess of
ABTS oxidation with laccase.

The results of the process simulations are shown in Figure 7, along with corresponding
laboratory experiments as an example of the investigated parameters. At the reactor inlet,
the parameters were set to a concentration of laccase of 11.6 µM, a concentration of ABTS
in the liquid phase of 0.97 mM, and a concentration of oxygen in the gas phase of 1.34 mM,
with overall volumetric flow rates of 3 mL min−1 of gas and 5 mL min−1 of liquid phase.
Using the data as denoted for the start conditions of the reactor within the ELNs, the
reaction time of the liquid within the reactor is calculated to be 59 s. The deviation observed
in Figure 7 between the simulation results and the experimental data beyond 40 s can
be attributed to the fact that the data was modeled using a Michaelis–Menten model,
which did not account for inhibition by the product or oxygen limitations. In addition,
hydrodynamics and internal mixing might have an influence on the enzymatic reaction.
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Figure 7. Resulting concentrations of ABTSox against reaction time for laboratory experiments and
process simulations; 11.6 µM laccase, ABTSred = 0.97 mM. Volumetric flow rates: 3 mL min−1 gas
(7 v/v-% oxygen), 5 mL min−1 liquid.

4. Conclusions

In this study, a workflow was developed that automates the transfer of data from
EnzymeML for recording biocatalysis data in the laboratory accompanied by a self-designed
spreadsheet to capture process data coupled to process simulation software. The transfer
and structuring of data with a tailored ontology allow for efficient data transfer with
minimal user input. This ontology was set up using primarily concepts of the SBO, extended
by concepts from other existing ontologies such as the OBO Relations Ontology. The
resulting tailored ontology was then extended to a knowledge graph with regards to
laboratory and process simulation data. This enables the automated transfer of laboratory
data into the process simulator, thus facilitating faster and more efficient execution of
process simulation based on laboratory data. Additionally, the knowledge graph can serve
as object-relational data storage also fit for further querying with, for example, SPARQL-
queries, enhancing the data FAIRness.

With regards to the process simulation in DWSIM, an automated fill in of experimental
data into the process simulator was facilitated via its API. While this workflow might still be
domain dependent, it also enables researchers to more rapidly incorporate their laboratory
data into the process simulation software, advancing the overall process development and
scale-up investigations. However, the simulation results still deviate from the laboratory
experiments due to still-existing modeling shortcomings. The hydrodynamics as well as
internal mixing will be considered in future studies.

Supplementary Materials: EnzymeML spreadsheets, Excel-based ELNs, code produced for the
execution of DWSIM simulations, and the knowledge graph extension can be found in the GitHub
Repository https://github.com/TUDoAD/DWSIM-EnzymeML-KG (accessed on 3 February 2024).
The version of the repository that was created for this publication is permanently accessible at
https://zenodo.org/records/10613474 (accessed on 3 February 2024).
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