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Abstract: There are many natural fractures in shale reservoirs, changes in hydraulic fracture extension
patterns. In the paper, a multi-fracture extension finite element model for horizontal wells in shale
reservoirs under the disturbance of natural fractures is established by combining the actual geological
parameters and construction parameters of a horizontal well multi-fracturing operation in X oilfield
to analyze the effects of the difference in geostress, elastic modulus, angle of natural fractures, and
the number of natural fracture groups on the hydraulic fracture extension. The results show that
with the increase in ground stress difference and natural fracture angle, hydraulic fractures are more
likely to penetrate the natural fractures; with the increase in elastic modulus, the fracture stress and
tip stress increase, the volume of rupture unit, the fracture extension width and the pore pressure
concentration area decrease, and it is easy to form a long and narrow fracture; with the increase in the
number of fracture groups, the connectivity of reservoir fractures increases, the extension of fractures
is stronger, and it is easier to form a complex fracture network.

Keywords: shale reservoirs; horizontal well; natural fracture; fracture networks; multi-fractures

1. Introduction

China has abundant shale gas resources, accounting for approximately 20% of the
global reserves. However, the low porosity and permeability characteristics of shale for-
mations often require the use of hydraulic fracturing techniques for their development.
Hydraulic fracturing has been widely used in the oil extraction industry, with hundreds of
fracturing operations performed every year under different geological conditions, and is
known as a very routine measure to increase production. By creating a network of hydraulic
fractures through horizontal well hydraulic fracturing, the fractures and pores within the
shale gas reservoir are effectively connected, ultimately enhancing gas production rates.
Due to the complex underground conditions and varying mechanisms of natural fractures
and hydraulic fractures in different shale formations, further research is needed to under-
stand the impact mechanisms of natural fractures and hydraulic fractures [1]. Clarifying
the fracture expansion mechanism of hydraulic fracturing under different circumstances
can guide the fracturing construction operation of horizontal wells and better control the
formation state of a fracture network, thus improving the fracturing effect.
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Shale reservoirs are characterized by complex natural fracture structures, which have
a significant impact on hydraulic fractures and have attracted the attention of scholars both
domestically and internationally. Warpinski [2,3] proposed that under the influence of nat-
ural fractures, hydraulic fractures tend to propagate along the direction of natural fractures,
resulting in the formation of multiple fractures. Additionally, the opening of micro-fractures
can cause fluid losses to exceed the rate of fracture development. Jin Yan [4] presented three
initiation modes of hydraulic fractures under the influence of natural fractures and estab-
lished corresponding models for calculating initiation pressures. Zeng Qingdong et al. [5]
analyzed the effects of elastic modulus, Poisson’s ratio, and hydraulic fracture angle on
fracture propagation. Arash [6] conducted a systematic study on the impact of natural
fracture shapes on hydraulic fractures, analyzing the deformation patterns of natural frac-
tures in three stages: pre-crossing, crossing, and post-crossing. Fu et al. [7] investigated
the stress interference between natural fractures and hydraulic fractures, validated the
expansion of individual hydraulic fractures, and conducted laboratory simulations using a
natural fracture network to simulate hydraulic fracture propagation. Hou Bing et al. [8]
analyzed the effects of the angle between natural fractures and hydraulic fractures, as well
as the differential horizontal stress, on fracture propagation. Guan Bing [9] examined the
influence of perturbations in random natural fractures on hydraulic fractures. Liu Jing [10]
analyzed the effects of fracture spacing, differential horizontal stress, and fracture length
on the morphology of fractures during simultaneous multi-cluster expansion.

This article establishes a finite element model of multi-fracture propagation in hori-
zontal wells in shale reservoirs under the disturbance of natural fractures, based on the
finite element method. It investigates the effects of differential stress, elastic modulus,
natural fracture angle, and the number of natural fracture groups on fracture develop-
ment. Through quantitative analysis of the degree of hydraulic fracture development,
natural fracture development, fracture propagation morphology, and stress field distribu-
tion, the model reveals the interaction mechanisms between natural fractures and hydraulic
fractures, as well as the different mechanisms of natural fractures in the formation of
fracture networks.

By quantitatively analyzing the degree of hydraulic fracture development, natural
fracture development, fracture propagation morphology, and stress distribution, the model
aims to reveal the mechanisms underlying the interaction between natural fractures and hy-
draulic fractures. Additionally, the model provides insights into the different mechanisms
involved in the formation of fracture networks in the presence of natural fractures.

2. Analysis and Calculation Model for Multi-Fracture Propagation in Horizontal Wells

When conducting fracturing operations in reservoirs with natural fractures, hydraulic
fractures intersect with natural fractures, resulting in the formation of complex fracture
networks. After intersecting with natural fractures, several scenarios may occur: Hydraulic
fractures directly penetrate through natural fractures and continue to propagate in the
original direction; Hydraulic fractures propagate along natural fractures and continue to
expand along the ends of the natural fractures; Hydraulic fractures intersect with natural
fractures and initially propagate along the direction of the natural fractures, then extend
from a weak plane within the natural fractures; Shear sliding occurs after the intersection
of natural fractures, and hydraulic fractures propagate from the fracture plane [11].

2.1. Mechanism of Multi-Fracture Disturbance

When multiple fractures exist in a fracture network, the disturbance stress field in the
formation is formed by the superposition of the individual disturbance stresses caused
by each fracture. The disturbance stress caused by the nth fracture is specified in the
footnote [12].

σyn1 = pn
rn sin θn sin

[ 3
2 (θn1 + θn2)

]
hn

(
hn2

rn1 + rn2

) 3
2

(1)
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In the equation, σxn, σyn, σzn represent the disturbance normal stresses generated by the
nth hydraulic fracture, MPa; τyzn represents the shear stress generated by the nth hydraulic
fracture, MPa; rn represents the distance to the nth fracture, in meters; pn represents the
net pressure within the nth fracture, MPa; hn represents the half-height of the nth fracture,
in meters.

Wherein: 
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2.2. Finite Element Fracture Propagation Mechanism

In the study of hydraulic fracturing processes, the fracture initiation and propagation
are simulated using cohesive elastic-plastic elements based on the principles of fracture
mechanics. Figure 1 shows the criteria for damage assessment in cohesive elastic-plastic
elements [13].

Criterion for cohesive element fracture initiation:{
⟨tn⟩
t0
n

}2
+

{
ts

t0
s

}2
+

{
tt

t0
t

}2
= 1 (9)

In the equation, tn, ts, and tt correspond to the stresses along three loading directions
(tn represents normal stress, while ts and tt represent the first and second shear stresses),
measured in MPa; t0

n, t0
s , and t0

t are the tensile, first shear, and second shear strengths of
intact cohesive elements, respectively, measured in MPa; <> denotes the Macaulay brackets,
which indicate that pure compression deformation or stress conditions do not result in
damage to the cohesive element.
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Figure 1. Criterion for Fracture Initiation of Cohesive Elements.

Evolution of damage in cohesive elements:

tn = (1 − D)tn (damage initiation in cohesive elements)
tn = tn (no damage in cohesive elements)

(10)

ts = (1 − D)ts (11)

tt = (1 − D)tt (12)

In the equation, tn, ts, and tt represent the stresses in three loading directions when
assuming that the model undergoes no evolution and remains in a linear elastic deformation
process, MPa; tn, ts, and tt represent the actual stresses in three loading directions, MPa;
D represents the dimensionless damage coefficient (D = 0 indicates no damage in the
material; D = 1 indicates complete material failure).

Considering the composite fracture behavior, the Benzeggagh–Kenane fracture crite-
rion is chosen. When the critical energy for deformation along the first and second shear
directions of the cohesive element is equal, the Benzeggagh–Kenane fracture criterion can
accurately describe the evolution of damage during fracture propagation.

Gc = Gc
n + (Gc

s − Gc
n)

{
GS + Gt

Gn + Gs + Gt

}η

(13)

In the equation, Gc represents the total critical energy release rate of the cohesive
element under mixed mode, Pa·m; Gc

n represents the critical energy release rate in the
normal direction of the cohesive element, Pa·m; Gc

s represents the critical energy release
rate in the tangential direction of the cohesive element, Pa·m; Gn, Gs, and Gt represent the
energy release rates in the normal, first tangential, and second tangential directions of the
cohesive element, respectively, Pa·m; η is a constant related to the material itself, typically
taken as 2.284 [13].

In addition, the actual total energy release rate, GT = Gn + Gs + Gt. When GT = Gc,
fracture propagation occurs.

3. Model Establishment

X oilfield adopts the horizontal multi-stage hydraulic fracturing for exploitation and
implements multi-cluster fracturing in horizontal wells. During the fracturing operation,
it is observed that the fracture propagation is influenced by both natural fractures and
multiple induced fractures. Based on the actual geological and construction parameters
of the well, a numerical calculation model for the hydraulic fracturing of two clusters is
established. Shown in the Figure 2, the spacing between the fractures is 5 m. The solid
portion is discretized using porous fluid (CPE4P) elements, while the fractures are modeled
using cohesive elements with consideration of filtration (COH2D4P). The region of the
pre-existing hydraulic fractures is locally refined. A 2D artificial fracture propagation model
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is constructed within a 60 m × 60 m rectangular area, using mesh commands embedded
with global zero-thickness cohesive permeable elements, shown in the Figure 3. Additional
permeable nodes are added to form a discrete body grid model. The initial damage stress
values and shear strength elements of the natural fractures are appropriately modified to
introduce diversity. The hydraulic fractures are set to be 1 m in length, and the resulting
vertical fractures are assumed to be ideal symmetric wing fractures. Some parameters of
the model are shown in Table 1.
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Table 1. Basic parameters of finite element simulation.

Input Parameters Value Input Parameters Value

Maximum horizontal stress 5 × 106 MPa Displacement at failure 0.001

Minimum horizontal stress 2 × 106 MPa Specific weight of wetting liquid 9800

Young’s modulus
of

reservoir
2.2 × 1010 MPa Geometric nominal Stress normal-only mode 2 × 106 MPa

Reservoir Poisson’s ratio 0.25 Geometric nominal stress first direction 10 × 106 MPa

Reservoir permeability
coefficient 1 × 10−7 m2/s

Non-geometric nominal stress
normal-only mode 6 × 106 MPa

Hydraulic fracture leak-off
coefficient 1 × 10−14 m/Pas Non-geometric nominal stress first direction 20 × 106 MPa
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The hydraulic fracture radius is relatively small compared to the overall size of the
model, so it is possible to simplify the hydraulic fracture accordingly. Different boundary
conditions and initial conditions can be applied to the finite element model for the flow
field and deformation field. The pictures are from parts of the model that are not affected
by the boundary conditions, so the effect of the boundary conditions on this experiment
can be disregarded.

In order to study the variability of fracturing patterns between the homogeneous
model and the model with the presence of natural fractures, the natural fractures were set
as the independent variable with the same other values, and the differences in the fracture
extension patterns were observed. The process of fracture propagation in both the mean
model and the model with natural fractures is shown in the following figure:

As can be seen in Figure 4. The hydraulic fracturing of the homogeneous model exhibits
bidirectional symmetric expansion, and the morphology of the hydraulic fractures remains
relatively consistent. The fractures generally have a shape with wide middle and narrower
ends, with the lateral propagation of the fractures occurring mainly towards the outer sides
of the fractures. There is almost no displacement in the inter-fracture region. The injection
pressure and fracture width of the hydraulic fractures exhibit symmetric consistency.
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Figure 4. Fracture propagation process in a homogeneous model.

As can be seen in Figure 5. In the presence of natural fractures, hydraulic fractures
induced by two injection points initially expand symmetrically toward both sides. Once
the left hydraulic fracture connects with a natural fracture, it starts propagating along
the direction of the natural fracture, and the vertical fractures gradually close. The right
hydraulic fracture mainly expands in the opposite direction, exhibiting a shape with wider
middle and narrower ends. The lateral propagation of the fractures occurs primarily
towards the outer layers of the fractures, with some areas in the inter-fracture region
displaying no displacement [14]. Compared with the homogeneous model, the hydraulic
fractures of the mean value model will expand in the direction of the maximum stress, but
the model with the presence of natural fractures will have some steering effects due to the
presence of natural fractures. The hydraulic fracture that intersects the natural fracture
will expand upward along the natural fracture, and the other hydraulic fracture that
does not touch the natural crack will expand mainly downward, while the two hydraulic
fractures of the homogeneous model expand symmetrically. Hydraulic fracture extension
in the presence of natural fractures is more likely to form a fracture network and increase
the connection between fractures, and the fracturing effect will be better. The model
containing natural fractures is therefore used to study the effect on multi-fracture extension
in horizontal wells.
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4. Analysis of Results

When conducting hydraulic fracturing operations in horizontal wells, reservoir param-
eters are uncontrollable. Therefore, when studying hydraulic fracturing in horizontal wells,
it is necessary to consider the influence of reservoir parameters on local stresses during
the fracturing process. Factors such as stress difference, elastic modulus, fracture angle,
and number of fractures all have significant impacts on the local stress field. Analyzing the
disturbance patterns of these factors on the local stress field is of the utmost importance [15].

4.1. Impact of Stress Difference

The stress difference has a significant impact on fracture propagation. To investigate
the influence of stress difference on fracture propagation, numerical simulations of hy-
draulic fracturing were conducted with a natural fracture angle of 90◦ and stress differences
of 3 MPa, 5 MPa, and 7 MPa. The stress field distributions for different stress differences
were plotted. As shown in Figure 6.
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When the natural fractures are parallel to the maximum horizontal principal stress,
the natural fractures have a weaker control over hydraulic fracture propagation. Under a
stress difference of 3 MPa, the left hydraulic fracture extends upward through the natural
fractures, while the right hydraulic fracture extends downward. The top of the right
hydraulic fracture extends to the natural fracture and begins to extend in the direction of
the natural fracture. The natural fracture tends to open and divert fracturing fluid.
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Under a stress difference of 5 MPa, the left hydraulic fracture directly intersects the
natural fractures, while the right hydraulic fracture extends to the location of the natural
fractures and then propagates along the direction of the natural fractures. The lateral
unfolding of the fractures mainly proceeds to the strata outside the fractures, and the
displacement of the strata in the area connected to the tips of the two fractures in the
non-primary expansion direction is small.

Under a stress difference of 7 MPa, the hydraulic fractures induced by two injection
points exhibit a similar expansion morphology, but in opposite directions. Both hydraulic
fractures penetrate the natural fractures. The fractures are all wide in the center and narrow
at the ends. The right hydraulic fracture crosses and opens the natural fracture, extends
in the direction of the natural fracture and transfers the fracturing fluid, increasing the
correlation and complexity between the fractures.

As shown in Figure 7, with an increase in stress difference, the volume of fractured
elements increases, while the fracture propagation rate decreases linearly [16]. The increase
in geostress difference from 1 MPa to 2 MPa increases the volume of rupture unit and
the fracture extension rate, which indicates that the geostress difference can promote the
tangential and normal flow of fluids within a certain range, which in turn promotes the
extension of the fracture tip as well as the two sides of the fracture [17]. However, when
2 MPa increases to 3 MPa, the fracture expansion rate increases, but the volume of fracture
unit decreases sharply, and the fracture channel, which plays the role of inflow, turns into
the pore channel, which plays the role of seepage [18]. With the stress difference from
5 MPa to 10 MPa, then to 15 MPa, 20 MPa, and 25 MPa, the fracture extension rate is
decreasing, but the rupture unit volume is increasing, and the rupture unit volume growth
rate is decreasing.
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4.2. Effect of Elastic Modulus

By using the same hydraulic fracturing modeling approach, with the exception of
changing the elastic modulus, the other parameters remain constant. The changes in
fracture propagation are observed and analyzed by measuring elastic moduli of 14 GPa,
17 GPa, 20 GPa, and 23 GPa. The factors influencing fracture propagation under different
elastic moduli are calculated and analyzed. As shown in Figure 8.

When the elastic modulus is 14 GPa, the two hydraulic fractures propagate in opposite
directions. The left hydraulic fracture extends to the natural fracture without being influ-
enced by it, while it extends upward through the natural fractures. But the right fracture
starts to propagate along the direction of the natural fracture after reaching it [19].
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When the elastic modulus is 17 GPa, the two hydraulic fractures propagate in oppo-
site directions; both penetrate the natural fracture but do not extend in the direction of
natural fracture. The fractures are wide in the middle and narrow at both ends; the lateral
expansion of the fractures is mainly carried out to the stratum outside the fractures, and
the displacement of the stratum in the area connected to the tips of the two fractures in the
non-primary expansion direction is small [20].

When the elastic modulus is 20 GPa, the two hydraulic fractures propagate in opposite
directions. The left fracture has some portions that propagate along the direction of the
natural fracture when crossing the area of the natural fracture, while the right fracture
primarily propagates along the direction of the natural fracture upon reaching it [21].

From the above Figure 9, it can be observed that with an increase in elastic modulus,
the planar extension pattern of the fracture as well as the pressure has a significant effect.
There is a consequent increase in fracture stress, but a consequent decrease in rupture unit
volume, and it can be seen in the above figure that there is an inverse relationship between
fracture stress and rupture unit volume. As can be seen in Figure 10, the total length of
fractures produced by hydraulic fracture extension increases as the modulus of elasticity
increases, and the greater the modulus of elasticity, the shorter the time required to produce
the maximum total length of fractures. Additionally, an increase in elastic modulus leads to
a reduction in the concentration of pore pressure in the area, resulting in a gradual decrease
in the width of the fracture during propagation. Therefore, reservoirs with higher elastic
moduli tend to form long and narrow fractures [22–24].
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4.3. Effect of Fracture Angle

We analyzed the interference of multiple fractures when a single fracture exists in
the reservoir, establishing a multiple fracture propagation model with fracture angles of
15◦, 30◦, 45◦, 60◦, 75◦, and 90◦, and analyzed the impact of natural fracture angles on the
propagation of multiple fractures in horizontal wells. As shown in Figure 11.
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When the angle of the fracture is low, the natural fractures are close to 90◦ to the
maximum horizontal principal stress direction, and they have a strong controllability over
hydraulic fractures. In the initial stage, hydraulic fractures expand symmetrically to both
sides. After encountering the natural fracture on the left side, they are captured by the
natural fracture and expand upwards along the direction of the natural fracture, with
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longitudinal fractures gradually closing [23]. The right hydraulic fracture extends in the
opposite direction. Small areas of undisplaced stratigraphy exist between seams.

When the angle of the fracture is moderate, the angle between the natural fractures
and the direction of the maximum horizontal principal stress gradually decreases, resulting
in a gradual decrease in the controllability of natural fractures over hydraulic fractures.
The propagation patterns of hydraulic fractures on both sides are essentially the same but
in opposite directions. At 45◦, the hydraulic fracture on the right side is captured by the
natural fracture and propagates upwards along the direction of the natural fracture. After
the left hydraulic fracture intersects the natural fracture, the natural fracture is opened first,
with some of the fracturing fluid turning toward the natural fracture, but expanding mainly
downward. However, at 60◦, the hydraulic fracture on the right side completely intersects
the natural fracture. With the increase in angle, the opening degree of natural fractures
decreases, and the ability to divert the fracturing fluid weakens, resulting in a reduction in
stress concentration areas near the natural fractures.

When the angle of the fracture is high, the angle between the natural fractures and
the direction of the maximum horizontal principal stress decreases, resulting in a weaker
controllability of natural fractures over hydraulic fractures. After encountering the natural
fracture, the hydraulic fracture will penetrate through the natural fracture and propagate
along the direction of the maximum horizontal principal stress. The hydraulic fracture on
the left side will continue to propagate upwards along the direction of the maximum stress,
while the hydraulic fracture on the right side will propagate downwards.

Based on Figure 12, it can be seen that as the angle decreases, both the number of
fractured elements and the maximum width of fractures increase. A larger angle makes
it easier for hydraulic fractures to penetrate through natural fractures, and most of the
fracturing fluid is used to continue the propagation of hydraulic fractures. When the
angle decreases, some steering influence on the fracturing fluid moves the injection of
the fracturing fluid into the natural fracture; at this point, the normal pressure of the
fracturing fluid increases and the tangential pressure decreases. The injection of fracturing
fluid increases the pressure within the fractures and applies it to the surface of the crack;
stress is more concentrated on both sides of the fracture, leading to an increase in fracture
width [24].
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4.4. Impact of the Number of Fracture Sets

We analyzed the impact of natural fractures with different numbers of fracture sets in
the reservoir, studying the influence of natural fractures on the propagation of multiple frac-
tures in horizontal wells under different angles and overlaying conditions by establishing
three different sets of natural fractures at 90◦, 0◦, and 45◦. As shown in Figure 13.
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When there is only one set of natural fractures with a 90◦ angle, the two hydraulic
fractures primarily propagate in opposite directions. In the initial stage of hydraulic
fracture propagation, the fractures mainly expand symmetrically along the direction of
the maximum principal stress. As the fractures continue to propagate, when the hydraulic
fractures encounter the natural fractures, both hydraulic fractures partially propagate along
the direction of the natural fractures [25].

When there is one set of natural fractures with a 90◦ angle and one set of natural
fractures with a 0◦ angle, the hydraulic fractures primarily propagate along the direction
of the maximum stress in the initial stage of expansion. When they intersect with the
natural fractures, they are captured by the natural fractures. The hydraulic fractures mainly
propagate along the direction of the natural fractures at 0◦, and the complexity of fracture
development is higher compared to a single set of natural fractures.

When there is one set of natural fractures with a 90◦ angle, one set with a 0◦ angle,
and one set with a 45◦ angle, during the initial stage of hydraulic fracture propagation,
the fractures primarily expand along the direction of the maximum horizontal principal
stress. When the hydraulic fractures intersect with the natural fractures, they propagate in
different directions, forming multiple fracture branches.

5. Conclusions

In the homogeneous model, the direction of the maximum principal stress and the
maximum stress value are the main factors affecting the direction and length of fracture
extension, and hydraulic fractures tend to extend along the direction of the maximum
principal stress. In the model with natural cracks, there are several interaction mechanisms
between natural cracks and hydraulic fractures, and they change with the influence of
ground stress, elastic modulus, natural fracture angle and the number of fracture groups.

(1) When the stress contrast is low, natural fractures are more likely to capture hydraulic
fractures, causing the fracturing fluid to divert and transfer some of the pore pressure.
As the stress contrast gradually increases, hydraulic fractures are more likely to
penetrate through natural fractures.

(2) As the elastic modulus increases, the stress on the fractures also increases, but the vol-
ume of fractured elements and the concentration zone of pore pressure decrease. The
stress at the tip of the fracture increases, resulting in a gradual decrease in the width
of the fracture propagation, making it more likely to form long and narrow fractures.

(3) When the angle between natural fractures and hydraulic fractures is small, natural
fractures have a stronger control over hydraulic fractures. Hydraulic fractures are
more easily captured by natural fractures and propagate along their direction. As
the angle increases, the controllability of natural fractures over hydraulic fractures
decreases, and hydraulic fractures tend to propagate along the direction of maximum
stress after penetrating through natural fractures.
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(4) With an increase in the number of fracture sets, the connectivity of reservoir fractures
improves, and the fractures exhibit stronger expansion characteristics. This leads to the
formation of a more complex fracture network, resulting in better fracturing efficiency.
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