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Abstract: The increasing demand for efficient wastewater treatment technologies, driven by global
population growth and industrialisation, highlights the necessity for advanced, reliable solutions.
This study investigated the efficacy of a slurry photocatalytic membrane reactor (PMR) for the ad-
vanced removal of organic pollutants, quantified via chemical oxygen demand (COD), under natural
and simulated solar light irradiation. Employing two variants of iron-doped titania as photocatalysts
and a polysulfone-based polymeric membrane for the separation process, the investigation show-
cased COD removal efficiencies ranging from 66–85% under simulated solar light to 52–81% under
natural sunlight over a 7 h irradiation period. The overall PMR system demonstrated COD removal
efficiencies of 84–95%. The results confirmed the enhanced photocatalytic activity afforded by iron
doping and establish solar-powered slurry PMRs as an effective, low-energy, and environmentally
friendly alternative for the advanced treatment of municipal wastewater, with the research providing
valuable insights into sustainable water management practices.

Keywords: PMR; solar light; wastewater; advanced treatment; photocatalysis; membrane processes

1. Introduction

One of the present challenges in the field of water/wastewater treatment is represented
by the development of low-cost advanced treatment methods able to degrade/remove
hazardous, non-biodegradable pollutants.

Most conventional municipal wastewater treatment plants (MWWTPs) use activated
sludge treatment as a secondary treatment step to remove organics, suspensions, and nutri-
ents, but are inefficient at removing refractory contaminants such as pharmaceuticals and
personal care compounds, endocrine disruptors, pesticides, additives, and microplastics,
as well as their degradation intermediates [1,2]. Exposure to such organic compounds
has been proven to negatively affect both human and living organisms. Even if complex
organic compounds are difficult to degrade using conventional biological methods, ad-
vanced oxidation processes such as photocatalysis are capable of removing them relatively
easily. The photocatalytic process involves three main steps: (i) the photo generation of
charge carriers, (ii) the diffusion of charge carriers to the catalyst surface, and (iii) redox
reactions on the catalyst surface. Moreover, if compared with other conventional wastewa-
ter treatment methods, such as coagulation–flocculation, ion exchange, or adsorption, the
process presents the advantage of being environmentally friendly due to its mineralisation
capability.

On the other hand, the most advanced MWWTP uses membrane-based processes
as a tertiary treatment step to achieve outflow quality indicators suitable for reuse for
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various purposes [3], but faces problems related to membrane fouling and the associated
decrease in membrane operational life and increase in membrane cleaning operations and
costs related to its replacement. Since organic compounds are important contributors to
membrane fouling, advanced oxidation processes (including heterogeneous photocatalysis)
have been investigated to improve membrane separation performance and lifetime.

The coupling of membrane-based processes with heterogeneous photocatalysis (photo-
catalytic membrane reactors—PMRs) has proven to be an efficient and effective alternative
for municipal wastewater treatment. Among the two mains PMR configurations, the slurry
PMR system showed promising results compared with both the PMR design with an im-
mobilized catalyst and other tertiary treatment processes such as chlorination, constructed
wetlands, microalga cultivation, ozonation, and photo-Fenton methods [4].

Several authors have investigated the coupling of membrane filtration with photo-
catalysis to overcome issues related to membrane fouling and the need to remove some
pollutants from the permeate water [5,6]. The advantages of heterogeneous photocatalysis
among other advanced oxidation processes are represented mainly by the good reaction
rate and efficiencies. The most widely used photocatalyst is TiO2, which is chosen for its
chemical inertness, low cost, availability, non-toxicity, and recyclability. However, TiO2
photocatalyst is inactive under visible light due to its wide band gap (3.2 eV), rapid re-
combination of holes/electrons pairs, and limited adsorption range in visible light (only
about 4% of the solar spectrum). In this context, TiO2 doping with metals is one of the most
investigated and studied methods to improve the photocatalytic activity of TiO2 and to
ensure that its adsorption spectrum shifts towards the visible domain. This approach has
been proven to be a useful tool for improving the visible light response of the catalyst and
can be easily implemented by using the well-known sol–gel method.

The majority of investigated PMRs operate under UV irradiation [7,8], but there are
research studies aimed at testing PMRs under visible light and/or simulated solar light as a
sustainable method to solve environmental problems, of which the following are mentioned:
photocatalytic membrane fouling control in wastewater treatment [3]; the degradation of
various organic compounds using a visible-light-driven photocatalytic membrane [9–13];
the development of new visible light active photocatalysts for the advanced degradation of
refractory organic compounds from wastewater systems [14–22].

The use of solar-light-driven PMRs for the advanced removal of organic loadings may
offer the advantages of using visible light as a renewable irradiation source and having
an increased lifetime for the polymeric membrane, but there are relatively few studies
using real wastewater, the vast majority focused on the degradation of emerging organic
pollutants from synthetic solutions [3,4].

In this context, the present work attempts to investigate the performance potential of
a solar-driven PMR with a suspended catalyst, using an Fe-doped TiO2 photocatalyst and
a polysulfone-based membrane, for the advanced treatment of municipal wastewater.

2. Materials and Methods

Iron-doped catalysts were synthesised via the sol–gel method (alkoxide route) using
titanium isopropoxide (Sigma Aldrich Chemie GmbH, Steinheim, Germany) and FeCl3
(Sigma Aldrich). Ethanol (Chimreactiv, Bucharest, Romania) was used as a solvent. Ti-
tanium isopropoxide was dissolved in ethanol at room temperature under continuous
stirring, and then a mixture of ultrapure water and ethanol was added to perform the
hydrolysis step. Afterward, the solution of FeCl3 in ethanol was added dropwise (in small
portions under vigorous stirring). Resulted solutions were maintained under vigorous stir-
ring for 3 h at room temperature. The resulting sols were converted into gels by drying at
80 ◦C for 24 h [23,24], and then thermally treated at 300 ◦C (catalyst sample FT1) and 400 ◦C
(catalyst sample FT2) for 2 h. Titanium dioxide anatase form (Merck, Darmstadt, Germany)
was used as a reference for the assessment of prepared catalyst photocatalytic activity.

The polysulfone-based membrane was prepared via a phase inversion process, an
immersion precipitation technique using polysulfone (Psf) Mw = 35,000 g/mol (Sigma
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Aldrich) as the base polymer, and 1-methyl- 2-pyrrolidone (NMP), purity >99.5% (Merck),
as a solvent. Polyvinylpyrrolidone (PVP) K30 (40,000 g/mol) (Fluka, Paris, France) and
polyethylene glycol (PEG) 400, Mw = 3500–4000 g/mol (Scharlau, Hamburg, Germany)
were used as additives [25]. Ultrapure water was obtained using Milli—Q Integral 15
(Merck, Millipore, Darmstadt, Germany) equipment and was used as a non-solvent in the
coagulation bath. Then, 96% purity ethanol (Chimreactiv) and 99.5% glycerine (Chempur,
Karlsruhe, Germany) were selected for the post-treatment and conditioning of the mem-
branes. The membrane was obtained as follows: Psf and additives were dissolved in NMP
under continuous stirring (at room temperature, for 24 h); the polymeric solution was cast
onto a flat glass sheet using a “doctor blade” device with a 300 µm slot (speed 1 m/min);
the casted membrane was immersed in an ultrapure water coagulation bath (for 5 min);
the resulting membrane was repeatedly washed with ultrapure water and subjected to
conditioning (using a 10% ethanol solution); membranes were stored in 10% glycerine
solution and, prior to use, were immersed in 10% ethanol solutions for 2 h and repeatedly
washed with ultrapure water.

A scanning electron microscope, FEI Quanta FEG 250 (Thermo Fischer, Waltham,
MA, USA), was used for morphological characterisation and EDX (energy dispersive X-
ray spectroscopy) analyses. Dimensional analysis was performed using Mastersizer 2000
(Malvern, Malvern, UK) equipment, which provides a comprehensive report of sample
data on particle size distribution, specific surface area, surface-weighted mean, and volume-
weighted mean. X-ray Fluorescence analyses were conducted using an X-ray fluorescence
spectrometer Rigaku NEX CG EDXRF (Applied Rigaku Technologies Inc., Cedar Park,
TX, USA).

The X-ray diffraction (XRD) technique was applied for the microstructural analysis of
the catalyst samples. The samples studied were ground to powder form and then placed in
the standard quartz trays of the diffractometer. Data acquisition was performed with the
Ultima IV diffractometer (Rigaku, Tokyo, Japan) using monochromatic Cu Kα radiation
(λ = 1.54056 Å) from a fixed anode X-ray tube operated at a voltage of 40 kV and a current
of 30 mA. Diffractograms were recorded for the angular 2-theta range of 10–90 degrees, in
Bragg–Brentano geometry, in continuous scan mode, at a speed of 1 degree/minute, with a
step width of 0.02 degrees. The crystal microstructure analysis was performed using the
functionalities of PDXL software version 2.2. and ICDD database PDF4+ version 2022.

Complementary techniques of Fourier transform infrared spectroscopy (FTIR) and
Raman spectroscopy were used to evaluate the changes in the molecular structures of the
studied TiO2-based as-synthesised catalysts, and these were compared with the control
sample of TiO2 anatase. Infrared spectra were recorded on a Vertex 80 infrared spectrometer
(Bruker, Ettlingen, Germany) in the wave number range from 4000 cm−1 to 400 cm−1,
with 32 scans per sample and a resolution of 4 cm−1. Measurements were performed
in reflectance mode, using the automated total reflectance (ATR) instrumentation of the
spectrometer, and powder samples were scanned without further preparation. Raman
spectra were recorded at 1064 nm on a Xantus 2 spectrometer (Rigaku, Tokyo, Japan) in
the wavelength range of 200–2000 cm−1 with a spectral resolution of 7–10 cm−1. The total
exposure time to collect the Raman spectra was 2500 milliseconds, and the applied laser
power was 50 mW. The instrument was calibrated with pure benzonitrile before each set of
measurements. Triplicate powder samples were scanned, and the average Raman spectra
were taken as the result for further comparisons.

An LED lamp with 35 W power consumption, a wavelength of 380–800 nm, and a
luminous flow of 1000 lumens was used to simulate solar radiation. Provided light irradi-
ance (µmol/m2/s) was measured with a full-spectrum meter, Apogee MQ 500 (Apogee
Instruments, Logan, UT, USA). The tests were performed during the winter period, with a
mean daylight irradiance below 500 µmol/m2/s. In the case of photo degradation tests
carried out under simulated solar light, the light irradiance was adjusted to match the
intensity of natural daylight.
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A custom-made installation was operated for the photocatalytic degradation tests. A
CPC (component parabolic collector) reactor configuration was chosen due to its advantages
in terms of good degradation efficiencies and lower energy losses [3,4,10]. The installation
(presented in Figure 1) consists of the following main elements:

• Four transparent PETG (polyethylene terephthalate glycol) tubes with an outer diame-
ter of 16 mm, an inner diameter of 12 mm, and a length of 1 m. The dimensions of the
tubes were chosen to give the CPC reactor a total capacity of 2 litres.

• A submerged feed/recirculation pump (with the possibility to adjust the flow). A
constant recirculation flow of approximately 1 L/min was used during the degra-
dation tests. Recirculation flow was chosen to ensure a turbulent regime within the
reactor tubes.

• A portable aeration pump with a flow of 1 L/min. Aeration was operated using a
30 min ON/30 min OFF algorithm.

• A feed/recirculation vessel with a capacity of 2 L.
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The membrane separation step was performed using a KMS Laboratory Cell—CF2
system (Koch Membranen GmbH, Rimsting, Germany) operating in tangential flow at a
working pressure of 2.5 bar. The membrane module presents the following main character-
istics: maximum operating volume: 600 mL; minimum operating volume: 50 mL; effective
membrane surface: 28 cm2; maximum operation pressure (without nitrogen pressurisation):
6 bar.

3. Results and Discussion
3.1. Photocatalyst Synthesis and Characterisation

Fe-doped TiO2 catalysts were synthesised using a well-known sol–gel method [23,24,26,27],
following the steps presented in Figure 2.
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3.1.1. Scanning Electron Microscopy (SEM)

Morphological analysis of the catalyst powders revealed that the FT1 catalyst presents
dimensions varying between 130 and 200 nm and that the FT2 particles have dimensions in
the range of 80–135 nm (Figure 3). These results agree with the outcomes of other studies,
which have shown that increasing the thermal treatment temperature results in smaller
particle dimensions [23,26,27].
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3.1.2. Dimensional Analyses of Fe–TiO2 Catalysts

Dimensional analysis of the prepared catalyst showed that FT1 and FT2 have sim-
ilar particle size distributions (Figure 4) with the following values: d(0.1) = 177 nm,
d(0.5) = 332 nm, and d(0.9) = 640 nm for FT1, and d(0.1) = 177 nm, d(0.5) = 332 nm,
and d(0.9) = 633 nm for FT2. On the other hand, the specific surface area is slightly higher
for FT1 compared with that of FT2.
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3.1.3. Energy-Dispersive X-ray Spectroscopy (EDX)

EDX analysis confirmed the presence of Fe within the catalyst structure (Figure 5)
with a weight percentage of about 1% compared with that of TiO2 (see Table 1). The atomic
percentages also confirm the Ti/O ratio of about 1 to 2 (Table 1).

Table 1. Prepared photocatalyst composition resulting from EDX analysis.

Element Weight % Atomic %

FT1
O K 43.91 70.16
Ti K 54.90 29.30
Fe K 1.19 0.54

FT2
O K 37.45 64.24
Ti K 61.68 35.34
Fe K 0.87 0.43
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3.1.4. X-ray Fluorescence Analyses (XRF)

X-ray fluorescence analysis also confirmed the presence of the Fe dopant in the struc-
ture of the FT1 and FT2 catalysts (see Figure 6).
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Figure 6. XRF peaks: (a) FT1; (b) FT2.

3.1.5. X-ray Diffraction (XRD)

The raw data from the XRD scans were transferred to PDXL software for Rietveld
analysis. This method refines the crystal structure parameters by fitting a calculated
pattern obtained from lattice parameters, crystal system, atomic coordinates, etc. to a
measured diffraction pattern using the least squares method. Crystal models were built
using information from ICDD, 00-064-0863 (TiO2—anatase), and 01-079-6031 (TiO2—rutile).

According to the shape of the X-ray patterns recorded for the catalyst (illustrated
in Figure 7), it can be observed that the sample thermally treated at 300 ◦C seemed to
develop an amorphous XRD structure. Samples with the same composition but annealed
at 400 ◦C show a clear crystalline structure with the characteristic peaks of TiO2 anatase
at two theta values around 25, 38, 48, 54, 63, 69, 75, and 82 degrees [23,24]. Increasing the
annealing temperature from 300 to 400 ◦C promotes crystallisation, which is reflected in the
appearance of sharper and well-defined diffraction peaks. For example, the characteristic
peaks (1 0 3), (0 0 4), and (1 1 2) for the anatase phase, located close to 38 degrees, can only
be observed for the catalyst treated at 400 ◦C (FT2).

Table 2 presents the microstructural data recorded as a result of the XRD analysis of
the prepared catalysts. The XRD analysis showed that the recorded diffraction peaks were
assigned to the tetragonal anatase phase of titanium dioxide with the space group indicated
in Table 2. This can be considered, on the one hand, as a confirmation of the TiO2 anatase
crystalline phase in all the synthesised samples, and, on the other hand, as a confirmation
that, despite some microstructural changes (i.e., D spacings), the structure of the anatase
titanium dioxide in the catalysts studied is maintained at both temperatures. Experiments
showed a decrease in FWHM values with increasing synthesis temperature for all three
peaks analysed. For instance, the FWHM value decreases from 7.41 degrees at 300 ◦C to
1.401 at 400 ◦C for the (2 0 0) peak (at 2θ of 48◦), or from 5.23 degrees at 300 ◦C to 1.78 at
400 ◦C for the (0 0 4) peak. The peaks broadening correlate with crystallite dimensions
below than 1000 Å.
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Table 2. Microstructural data for prepared catalysts.

Sample Temp
(◦C)

D Spacing
(Å)

Lattice Parameters
V

(unit cell
vol.)

FWHM
(Degrees)

Crystallite
Size,

Williams–Hall
Method

(1 0 1) (2 0 0) (0 0 4) a (Å) c (Å)
Ratio

c/a (Å3) (1 0 1) (2 0 0) (0 0 4) (nm)

TiO2
anatase (PDF
00-064-0863)

235 3.51616 1.89268 2.37339 3.78536 (24) 9.4936 (7) 2.508 136.03 n/a n/a n/a <100 nm

FT1 300 3.510 (4) 1.887 (4) 2.842 (6) 3.60 (8) 11.1 (3) 3.083 145 (6) 2.68 (4) 7.41 (12) 5.23 (12) 17 (4)

FT2 400 3.4833 (6) 1.8934 (3) 2.3751 (5) 3.767 (14) 9.42 (4) 2.501 133.7 (9) 0.912 (9) 1.401 (6) 1.780 (7) 69 (15)

Depending on the desired properties of the synthesised materials (i.e., catalytic activity,
efficiency, etc.), this experimental finding may lead to the conclusion that the choice of
thermal treatment temperature is essential to achieve the aimed functionalities. Thus, higher
temperatures may result in better-organised microstructures, while lower temperatures may
lead to materials with various defects (dislocations, vacancies, interstitials, substitutional, or
others). It is worth mentioning that for crystallites smaller than 30 Å, the X-ray diffraction
peaks become so broad and low that they are indistinguishable. However, from the
perspective of ensuring the good contact of the catalyst with the reaction environment,
smaller particle dimensions offer a higher contact surface, and thus synthesis at lower
temperatures may be advantageous for the doped TiO2 compositions studied in the present
research. Implicitly, the synthesis procedures may be closer to green chemistry principles.

On the other hand, when looking at the crystallite size evaluated via the Williams–Hall
method (full XRD patterns) in Table 2, it can be observed that the average crystallite size
values for samples synthesised at 400 ◦C are higher than those for the same situation at
300 ◦C. This is evidence that a higher annealing temperature is responsible for the crystallite
size increase, suggesting an increase in lattice order [23].

It is important to note that the crystallite sizes of the Fe-doped TiO2 treated at both
300 ◦C and 400 ◦C were found to be lower than those of the commercial TiO2 catalysts
used as reference material. However, these results contradict those obtained via scanning
electron microscopy.

3.1.6. Raman Spectra

The Raman spectroscopy of TiO2 in its anatase form is a well-studied area given
its significance in various applications, ranging from photocatalysis to solar cells [28].
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Anatase TiO2 is known for its distinct Raman active modes, mainly due to its tetragonal
crystal structure. In pristine anatase TiO2, the Raman spectrum typically exhibits several
prominent peaks. The main peaks observed are at 399 cm−1 (B1g mode), 519 cm−1 (A1g
mode), and 639 cm−1 (Eg mode) (Figure 8). These modes are characteristic of the anatase
phase and are related to the vibrations of the Ti–O bonds in the crystal lattice. Some changes
in the Raman spectra of heated TiO2, particularly the splitting of bands in the 200–600 cm−1

region, may indicate changes in the crystal structure or the presence of defects induced by
the heating process. Heating can introduce oxygen vacancies and other defect sites into
the crystal lattice, changing the local symmetry and potentially leading to the splitting
or shifting of Raman bands. The splitting of bands could indicate changes in the local
environment around the Ti atoms, possibly due to oxygen vacancies or interstitial defects.
The Raman spectra of TiO2 can also be affected by particle size, especially as the particles
approach nanoscale dimensions [28,29].
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Figure 8. Raman spectra for prepared Fe-doped TiO2 catalysts (FT)’ control sample-synthesised TiO2

(CS), for the two temperatures studied: (a) 300 ◦C and (b) 400 ◦C.

In addition to the vibrations highlighted in Table 3, another peak at 488 cm−1 was
noted in Figure 8b, which is only observed in the Raman spectrum of the control sample
TiO2 heated to 400 ◦C, CS2. Moreover, the FT1 catalyst showed a distinct band at 588 cm−1,
which is not present in the Raman spectra of the other materials studied. This band may
be related to structural defects in the material, probably caused by the presence of Fe, a
phenomenon that was not recorded in the FT2 catalyst.

Table 3. Vibrational modes present in the Raman spectra of prepared Fe-doped TiO2 catalysts (FT),
and the corresponding control sample (CS), synthesised TiO2, for the two temperatures studied,
300 ◦C and 400 ◦C (green squares confirm the band in the Raman spectra shown in Figure 8 at the
indicated wavenumber).

Wavenumber
(cm−1)

Sample
Vibration Modes

CS1 CS2 FT1 FT2

399 Anatase—B1g mode
(symmetric bending vibration of O-Ti-O)

440 Rutile—Eg mode
(symmetric stretching vibration of O-Ti-O)

515 Anatase Ti–O A1g mode
(anti-symmetric bending vibration of O-Ti-O)

637 Anatase Ti–O Eg mode
(symmetric stretching vibration of O-Ti-O)
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3.1.7. Fourier Transform Infrared Spectroscopy

Figure 9a,b present the infrared spectra of the Fe-doped TiO2 catalysts, FT1 and FT2,
and compare them with control samples CS1 and CS2, represented by TiO2 nano-catalysts
synthesised at temperatures of 300 ◦C and 400 ◦C, respectively. In addition, the comparison
includes a reference sample of TiO2 anatase.
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Figure 9. Infrared spectra for Fe-doped TiO2 catalysts (FT), TiO2 control samples (CS), and reference
TiO2 anatase recorded at temperatures of 300 ◦C (a) and 400 ◦C (b); (c) absorbance ratios calculated
at 405 cm−1 for each sample compared with those for the reference TiO2 anatase; (d) the ratio of
absorbance at the peak of the O–H stretching band to that at the O–H bending band.

In these spectra, including details in the insets, characteristic peaks corresponding to
the vibration of the Ti–O bond can be observed at 405 cm−1, 430 cm−1, and 642 cm−1 [30].
Significant changes can also be seen in the spectra of samples FT1 and FT2. To facilitate
an objective analysis of these changes, particularly for the characteristic peak at 405 cm−1,
absorbance values were calculated for each sample. These values were then divided against
the absorbance value of the same peak in the TiO2 anatase reference sample, resulting in the
absorbance ratios, which are compared and presented in Figure 9c. The resulting outcomes
indicate a significant decrease in the intensity of the vibrational arms of the Ti–O bond
when Fe was added to the TiO2 catalyst, in both cases at annealing temperatures of 300 ◦C
and 400 ◦C.

Also, in Figure 9a,b, the specific peaks of the O–H stretching vibration and O–H
bending vibrations can be observed at the wavenumbers indicated in the insets. Comparing
the IR spectra of the CS1 and CS2 samples with those of the reference TiO2 anatase, it can
be observed that the heating of the TiO2 catalyst samples, at both annealing temperatures
studied, leads to a slight shift in the absorption maxima for the O–H characteristic peaks,
together with a broadening of the band. These changes may indicate a reorganisation of the
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molecular structures of the materials upon heating, with effects on the atomic arrangements
and, consequently, on the number and organisation of the hydrogen bonds formed in the
catalyst structures. For Fe-doped TiO2 catalyst samples FT1 and FT2, the same effect (even
stronger) of peak shifts and peak broadening can be observed for the O–H characteristic
infrared peaks.

Figure 9d shows a comparison of the absorbance ratios calculated for the studied
samples, reference TiO2 anatase, control samples with TiO2 synthesised at 300 ◦C and
400 ◦C (CS1 and CS2), and Fe-doped TiO2 (FT1 and FT2), by dividing the O–H stretching
peak wavenumber by the O–H bending vibration peak. The recorded results highlight
that the absorbance ratio decreased significantly for the Fe-doped TiO2 catalysts. This
experimental observation is correlated with a visible broadening of the O–H stretching and
O–H bending bands in these samples compared with the TiO2 anatase reference.

3.2. Experimental Photodegradation Tests

The photocatalytic activity of the prepared photocatalysts was evaluated using both
natural and simulated solar light and is expressed as COD removal efficiency, with organic
loading analysed in accordance with the standard SR ISO 6060:1996 [31]. The presence of
an iron dopant increases the photocatalytic activity of titanium dioxide.

Experimental tests were performed using real wastewater sampled from a municipal
wastewater treatment plant and stored at 4 ± 1 ◦C until use. The initial COD of the influent
wastewater was in the range of 167.2–193.6 mgO2/L. For all tests, the irradiation period
was kept constant at 7 h (from 9 a.m. to 4 p.m.). The irradiated wastewater samples were
analysed for COD determination over 1 h (seven samples per degradation test). The initial
photocatalyst concentration was kept constant at 100 mg/L for all degradation experiments.

Since the photocatalytic degradation of organic compounds was shown to follow a
pseudo-first-order kinetic [26,27], COD degradation can be described by a first-order kinetic
(Equation (1)), which can be linearised according to Equation (2):

[COD] = [COD]0 × e−kt (1)

ln
(
[COD]0
[COD]

)
= kt (2)

where [COD]0 = initial COD of the wastewater sample; [COD] = COD of the wastewater
sample at a given time; k = apparent kinetic rate constant of the first order reaction model;
t = reaction (irradiation) time.

The following formula was used to calculate the ultrapure water and separation flows
for the membrane process:

J =
V

S × T
(3)

where J = ultrapure water flow or separation flow; V = volume of ultrapure water or
wastewater sample passing through the membrane; S = effective membrane area (in this
particular case = 28 cm2); T = time in which V, volume, was collected.

3.2.1. Experimental Photodegradation Tests Using Simulated Solar Light

Experiments were carried out over a period of 7 h. Samples were analysed in 1 h inter-
vals, and the COD value of the outflow was recorded. Experiments were also performed
with a commercial TiO2 anatase form as a reference for comparison with iron-doped cata-
lysts. The initial catalyst concentration was kept constant at 100 mg/L for all degradation
tests. PPFD (photosynthetic photon flux density) was monitored in half-hour intervals (pre-
sented in Figure 10). The initial COD concentration varied between 176 and 184.8 mg O2/L.

The iron-doped catalyst thermally treated at 400 ◦C—FT2—proved to achieve the
highest COD removal efficiency (85.71%) after 7 h of irradiation compared with the FT1
sample (annealed at 300 ◦C), which achieved a COD removal efficiency of 66.67% (see
Table 4). Both synthesised doped catalysts exhibit higher efficiencies compared with
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commercial TiO2, for which a COD removal efficiency of only 25.00% was reached after 7 h
of irradiation. The results are in good correlation with previous research on the degradation
of organic compounds using Fe-doped TiO2 catalysts [25].
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Figure 10. PPFD recorded for degradation experiments using simulated solar light.

This fact is also supported by the linearised pseudo-first-order kinetic equations
concerning COD removal (presented in Figure 11). The pseudo-first-order rate constants
for the simulated sunlight experiments were calculated from the slope of the linear plots
(under Equations (1) and (2)) and varied in the following order: kFT2 = 7.50 × 10−5 s−1 >
kFT1 = 4.17 × 10−5 s−1 > kTiO2 = 1.17 × 10−5 s−1.
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Figure 11. Pseudo-first-order kinetics of COD removal using simulated solar light.
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Table 4. COD removal efficiency using simulated solar light.

Time (h)
COD Removal Efficiency (%)

FT1 FT2

1 14.29 23.81
2 23.81 38.10
3 33.33 57.14
4 42.86 66.67
5 52.38 71.43
6 57.14 80.95
7 66.67 85.71

It can be observed that both the apparent rate constant and the degradation efficiency
increase with the increase in annealing temperature from 300 to 400 ◦C. This behaviour can
be explained by the increase in crystallite size with temperature, resulting in more active
sites available for degradation.

3.2.2. Experimental Photodegradation Tests Using Natural Solar Light

The experimental degradation tests were carried out under the same conditions as for
simulated sunlight (samples analysed for COD at 1 h intervals, with an initial photocatalyst
dose of 100 mg/L). As the experiments were performed in winter, the recorded PPFD
varied considerably during the 7 h test period (Figure 12). However, the profile of PPFD
versus time of day presented a similar pattern for all degradation tests. The initial COD
concentration varied in the range 167.2–193.6 mg O2/L.
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Figure 12. PPFD recorded for degradation experiments using natural solar light.

The best COD removal efficiency was also achieved by the FT2 catalyst with a value
of 81.82% after 7 h of irradiation (close to that obtained using simulated solar light). The
FT1 catalyst led to a COD removal efficiency of up to 52.63% (Table 5), while the use of
commercial TiO2 resulted in a COD removal efficiency of only 21.05%. Linearised pseudo-
first-order kinetic equations (following Equations (1) and (2)) also supported the fact that
FT2 proved to be more efficient for COD removal compared with FT1 and TiO2 (presented
in Figure 13).
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Table 5. COD removal efficiency using natural solar light.

Time (h)
COD Removal Efficiency (%)

FT1 FT2

1 15.79 18.18
2 21.05 36.36
3 31.58 50.00
4 36.84 54.55
5 36.84 63.64
6 47.37 77.27
7 52.63 81.82
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Figure 13. Pseudo-first-order kinetic of COD removal using natural solar light.

The pseudo-first-order rate constants for the natural solar light experiments were
calculated from the slope of the linear plots and were found to vary in the following order:
kFT2 = 6.33 × 10−5 s−1 > kFT1 = 3.00 × 10−5 s−1 > kTiO2 = 1.00 × 10−5 s−1. Similar to what
was observed in the simulated solar light experiments, both the apparent rate constant and
the degradation efficiency increased as the annealing temperature increased from 300 ◦C to
400 ◦C.

3.3. Overall COD Removal Efficiency of Solar PMR

The polymeric membrane used in all separation experiments was obtained from a 10%
polysulfone (Psf) solution (see Figure 14).

The working pressure was maintained at 2.5 bar. All outflow volumes resulting from
the photocatalytic step were subject to a membrane separation process at a concentration
ratio of 1 to 2. Experimental results from the membrane separation step revealed that the
membrane also acted as a barrier to organic compounds, with the overall COD removal
efficiency reaching 95.24% (for the simulated solar light PMR) and 95.45% (for the solar-
driven PMR), compared with 85.71% and 81.82%, respectively, when only the photocatalytic
step was used. As expected, the best results were obtained for wastewater treated with the
FT2 catalyst (residual COD = 8.8 mg O2/L). The FT1 catalyst also exhibited good results
in terms of COD removal, reaching efficiencies of 90.48% (for simulated solar light) and
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84.21% (for the solar-driven PMR) (see Table 6). The use of commercial TiO2 resulted in
overall PMR COD removal efficiencies situated in the range of 60–64% (see Figure 15).
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Table 6. COD removal efficiency.

Catalyst
COD Removal Efficiency (%)

After Photocatalytic Step PMR Overall

Simulated solar light

TiO2 25.00 60.00
FT1 66.67 90.48
FT2 85.71 95.24

Natural solar light

TiO2 21.05 63.16
FT1 52.63 84.21
FT2 81.82 95.45
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Figure 15. Total COD removal (PR—after photocatalytic step; PMR—after membrane step).

To assess membrane fouling, the ultrapure water flow rate was determined initially
and after each separation flow (using Equation (3)), and the results obtained (presented
in Figure 16) proved that the membrane could be used for at least six catalyst separation
cycles, although membrane fouling was emphasised by the SEM images (Figure 17).
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Figure 17. SEM image of 10% Psf membrane after six separation cycles.

All the ultrapure water flows determined after the separations are in the range of
115–135 L/m2 h, with an overall difference of less than 16% and an average value of
124.43 L/m2 h.

On the other hand, all the separation flows were determined to be between 90 and
120 L/m2 h (with a total difference less than 25%; average value: 101.89 L/m2 h), proving
that the photocatalytic step prolongs the membrane lifetime and avoids the issues related
to membrane fouling.

It should be stressed that the overall COD removal efficiency is comparable to similar
results obtained for solar-driven advanced oxidation, membrane-based, or hybrid processes
that can be found in the literature [3,4,31–34] (see Table 7).

Therefore, the proposed hybrid PMR system using a visible active photocatalyst in
A suspension-coupled and polymeric membrane process seems to be a viable alternative
for the tertiary treatment of municipal wastewater, especially when the treated effluent is
intended to be reused for various purposes.
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Table 7. Comparison with other studies.

Process Results Conditions References

Solar photocatalysis reactor by UV,
UV/H2O2 and UV/TiO2

UV: TOC = 20%
UV/H2O2: TOC = 30%
UV/TiO2: TOC = 50%

Reaction time = 6 h [3]

UV-VIS photocatalytic reactor with
suspended TiO2 for clofibric acid

degradation
k = 0.00326 min−1 0.5 g/L TiO2

20 mg/L clofibric acid [4,34]

Photocatalytic ZnO foams for
carbamazepine degradation k = 0.0033 min−1 0.5 g/L ZnO

10 mg/L carbamazepine [4,35]

Solar nanophotocatalytic
pretreatment of seawater

TOC: 76.5%
COD: 63.9%

2.94–3.89 mg/L TOC
4.9–5.78 mgO2/L COD [32]

Solar photo Fenton treatment
of municipal wastewater COD: 99% Reaction time = 1.5 h

255 mg/L COD [33]

Solar PMR for wastewater treatment

Simulated solar light:
COD = 85.71%, k = 0.0045 min−1

after photocatalytic step
COD = 95.24% PMR
Natural solar light:

COD = 81.82%, k = 0.0038 min−1

after photocatalytic step
COD = 95.45% PMR

Reaction time = 7 h
100 mg/L Fe-doped TiO2
167.2–193.6 mgO2/L COD

This
study

4. Conclusions

A solar-driven slurry PMR using Fe-doped TiO2 photocatalysts and a 10% Psf mem-
brane was tested for COD removal using real wastewater under both simulated and natural
solar light.

Iron-doped titania catalysts were synthesised via the well-known sol–gel method and
characterised via SEM, dimensional analysis, EDX, XRF, XRD, Raman spectroscopy, and
FTIR. The Fe–TiO2 photocatalyst annealed at 400 ◦C was found to be more efficient than
the one annealed at 300 ◦C. Both synthesised iron-doped titania photocatalysts exhibited
improved photocatalytic performance compared with that of TiO2 for the degradation of
organic compounds from real wastewater. The iron acceptance by the anatase lattice in the
prepared catalysts was demonstrated by the catalyst characterisation analyses. Photodegra-
dation experiments using real wastewater showed that the iron doping of TiO2 resulted in
a higher efficiency and rate of degradation of organic compounds compared with those for
commercial TiO2 (anatase form). A polymeric membrane was prepared using the phase
inversion method, an immersion precipitation technique starting from a 10% Psf solution,
and used in all separation experiments.

COD removal efficiencies reached values up to more than 95% under both simulated
and natural solar light (for iron-doped titania catalyst annealed at 400 ◦C). The small
difference between the COD removal efficiencies obtained under natural sunlight after the
photocatalytic step (81.82%) compared with the COD removal efficiency obtained under
simulated sunlight (85.71%) proved that solar PMRs represent a suitable alternative for
the advanced removal of organic loads, especially in areas with longer daylight hours.
On the other hand, the combination of solar photocatalysis with photovoltaics represents
an attractive alternative to reduce process energy requirements. The photocatalytic step
prevented membrane fouling after six catalyst separation cycles and also acted as a barrier
to some organic compounds.

The experimental results proved that the slurry-type solar-driven PMR should be a
suitable alternative for the tertiary treatment of municipal wastewater, but further tests
on pilot PMR are needed to obtain data related to its sustainability compared with other
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processes already used in the tertiary step of wastewater treatment (especially for visible
light-driven PMRs).
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