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Abstract: In order to address the problem of the real-time scheduling and control of batch chemical
systems, this work proposes a model predictive control method based on Petri nets. First, a method
is presented to construct a batch chemical system’s timed Petri net model. Second, a control structure
is designed to augment the Petri net model to control the valves. This results in timed Petri nets that
formally represent the process specifications of a batch chemical system. Third, a model predictive
control method is developed to schedule and control timed Petri nets, where a proposed heuristic
function is utilized to perform the optimization computation. The model parameters are dynamically
adjusted using online data, and both scheduling and valve control instructions are calculated in real
time. Finally, a series of experiments is carried out in a beer canning plant to verify the proposed
method. According to the experimental results, the scheduling and control problem can be solved
in real time, where the online computations can be performed in milliseconds, and the resulting
scheduling strategies are optimal or near-optimal.

Keywords: timed Petri net; batch chemical system; model predictive control; heuristic function;
real-time scheduling

1. Introduction

Under the influence of the Internet of Things and intelligent manufacturing tech-
nologies, the resource units and task numbers in batch chemical systems are increasing.
The logical relationships among processes in competition for resource units are becoming in-
creasingly complex, leading to a combinatorial explosion of system states. Simultaneously,
the system must deal with unforeseen events such as urgent orders, process adjustments,
and equipment failures. This necessitates rapid real-time solutions for scheduling strategies
and control commands, posing highly complex scheduling and control problems.

Batch chemical systems are driven by events such as the opening or closing of valves
and the initiation and completion of operations, making them a typical group of discrete
event systems. Petri nets are an excellent tool for discrete event systems [1,2] and are widely
used in research on fault diagnosis, supervisory control, and optimization scheduling [3,4].

Batch chemical systems involve complex scheduling strategies and specific valve
control commands translated from scheduling strategies [5–14]. Since scheduling and
control commands require real-time computation and execution, responding quickly to
unforeseen events, such as emergency orders and equipment failures, becomes challenging.

Regarding real-time scheduling, modeling via Petri nets and the use of model pre-
dictive control (MPC) are possible [15–17]. However, they fail to address the mismatch
between the system model and the physical plant, and the repeated expansion of the
reachability tree leads to unnecessary computation.

To overcome these drawbacks, this work presents an MPC method using place-
timed Petri nets, which not only addresses the mismatch between the Petri net model
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and the actual plant but also fulfills the real-time scheduling requirement. It is summarized
as follows.

(1) For batch chemical systems, a systematic method is proposed to obtain its place-timed
Petri net model by analyzing the relationship between the process specifications and
logical operations.

(2) A heuristic function is designed based on the place-timed Petri net mode to estimate
states’ time costs, which can be used to smartly adjust the searching direction within
a reachability graph to reduce the computation required.

(3) A predictive control algorithm is designed to search for an optimal or near-optimal
control action (transition) under the guidance of a heuristic function within each
prediction time domain (time step). It has a model correction module that collects
data online about operational times and device failures, and we can dynamically
modify the Petri net model accordingly.

(4) We conduct experiments on a beer canning plant. The online computations of control
actions are completed within milliseconds, and the makespan is close to the optimal
one. The results show that the proposed method provides an efficient and practical
solution for the real-time scheduling of a batch chemical plant.

Compared to the approaches in [15–17], our approach addresses the issue of the
mismatch between the Petri net model and the actual plant. The model calibration is
performed in real-time according to abrupt events, such as rush orders and device failures.
Furthermore, we retain a portion of the reachability graph of the previous time step, and the
expanded part of the graph is saved in each predictive time domain. This enables us to
explore more states and thereby enhance the scheduling performance.

The rest of this paper consists of the following sections. Section 1 presents some related
works and describes contributions concerning the existing methods. Section 2 reviews basic
definitions and notions regarding Petri nets and MPC. Section 3 describes the optimization
issue of batch chemical systems. Section 4 proposes the method to model batch chemical
systems using place-timed Petri nets. Section 5 presents an MPC method to schedule a
batch chemical system based on Petri nets and the proposed heuristic function. Section 6
describes a series of experiments to verify the proposed method. Section 7 provides the
conclusions of the work.

2. Related Works

The control and scheduling problems of batch chemical systems have received
widespread attention, leading to valuable research efforts. Tittus and Lennartson et al. [5]
propose a hierarchical Petri net control method for batch chemical systems that can prevent
deadlock states, allocate material transport equipment and reactors reasonably, and execute
multiple process flows in parallel. Wang et al. [6,7] introduce a control approach based on
hierarchical Petri nets for batch chemical systems, capable of generating control instructions
for the production and transportation of multiple materials, thereby increasing the system’s
stability. Susumu et al. [8] develop a Petri net model for a batch chemical production
process and propose a method to design reliable operation instructions. Falkman et al. [9]
introduce a process algebra Petri net, which is helpful in accurately describing the complex
request relationships between operations and resources. Ghaeli et al. [10] establish a place-
timed Petri net model for batch factories and present a branching and bounding algorithm
to compute optimal scheduling strategies. Lai et al. [11] model a pipeline network of a
batch chemical plant as a Petri net and use integer programming to determine the shortest
material transfer paths. With max-plus algebra, Weyerman et al. [12] construct a scheduling
optimization model of batch flow shops to find optimal processing sequences. Given a
batch chemical system, Lin et al. [13] design a Petri-net-based A* algorithm to obtain the
optimal paths within a reachable graph and map the paths to valve operational instructions.
Given a place-timed Petri net, Zhou et al. [14] propose a state space approximation method
to reduce the computational complexity in searching for optimal or suboptimal scheduling
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strategies. These works show promising progress in scheduling batch chemical systems.
However, they fail to compute scheduling strategies real time.

Model predictive control (MPC) is an important type of advanced control approach
that can utilize system information through well-developed models and real-time process
measurements to predict the future trajectories of processes. Cahyono et al. [18] propose
a model predictive allocation method that integrates berth and dockside crane models to
enhance the efficiency during the berthing process. However, in the rolling optimization
part, an exhaustive search algorithm is employed, resulting in time-consuming computation.
Lefebvre et al. [15] introduce a Petri-net-based model predictive control method that can
be used to calculate the shortest or approximate shortest transition firing sequences to
reach target states. Lefebvre et al. [16,17] extend the method in [15] to a timed Petri net
such that approximate shortest-duration scheduling strategies can be calculated even if
there exist uncontrollable transitions. These works have achieved good results in real-time
scheduling using MPC. However, they do not consider abrupt events, which may cause the
MPC methods to fail.

3. Preliminaries

An ordinary Petri net is N = (P, T, F, W), where P is a finite non-empty set of
places and T is a finite non-empty set of transitions, where P ∪ T ̸= ∅ ∧ P ∩ T = ∅.
F ⊆ (P× T) ∪ (T× P) is the set of directed arcs connecting the nodes, i.e., the directed arcs
from the place to the transition or from the transition to the place. W : F → N+ denotes the
weights mapped to the directed arcs. [N] denotes the |P| × |T| integer matrix such that

[N](p, t) =


W(t, p), if (t, p) ∈ F ∧ (p, t) /∈ F
−W(p, pt), if (t, p) /∈ F ∧ (p, t) ∈ F
W(t, p)−W(p, t), if (t, p) ∈ F ∧ (p, t) ∈ F
0, otherwise

(1)

Given that x ∈ P ∪ T is a node in a Petri net, define the x forward set as •x = {y ∈
P ∪ T|(y, x) ∈ F}; define the x backward set as x• = {y ∈ P ∪ T|(x, y) ∈ F}. This
representation can be extended to a set of nodes, i.e., given that X ⊆ P ∪ T, •X = ∪x∈X

•x
and X• = ∪x∈Xx•.

A marking m is a vector indicating a distribution of tokens among places. Given a
Petri net, a transition t is state-enabled at m, if m(p) ≥ W(p, t) ∧ ∀p ∈ •t, i.e., m[t⟩. If
transition t can fire, the net reaches a new marking m′ such that

∀p ∈ P, m′(p) = m(p) + [N](p, t), (2)

and this is denoted as m[t⟩m′. If there exists a transition sequence σ=e1e2...en and mark-
ing m1, m2, . . . , mn such that m0[e1⟩m1[e2⟩m2 . . . mn1 [en⟩mn holds, then the marking mm is
reachable from marking m0, denoted as m0[σ⟩mn.

A place-timed Petri net (P-TPN) is defined as Gt = (N, m0, d), where N is an ordinary
Petri net structure, m0 is the initial marking, and d : P→ {0} ∪ R+ is the function mapping
the set of places to the set R+ of non-negative real numbers, where d(p) denotes the delay
of the place. A place-timed Petri net is used for system modeling, and the delay of the place
corresponding to a time-consuming task is not zero. In this paper, the number of tokens in
the place is not greater than one.

The state of a place-timed Petri net is X = (m, w, g), where m is the marking of state X,
g is the cost function of the system, and w : P′ → {0} ∪ R+ is a function in which the set P′

of places has a token for the set R+, specifying the waiting time of the token in the place. If
there exists a transition sequence σ such that m0[σ⟩mn, where m0 and mn are the markings
of X0 and Xn, respectively, then the state Xn is reachable from marking X0, denoted as
X0[σ⟩Xn.
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Given the state XK = (mk, wk, gk) of a place-timed Petri net at the k-th moment, if the
transition ek is enabled, we update the marking mk+1, the waiting time wk+1, and the cost
time gk+1 according to Equations (2)–(4).

∀p ∈ P, wk+1 =

{
min(wk+1 + max(d(p), wk), d(p)), if mk+1(p) ̸= 0∧ p /∈ e•k
0, if mk+1(p) = 0∨ p ∈ e•k

(3)

gk+1 = gk + λk+1, (4)

where λk+1 is the time interval between Xk and Xk+1, i.e., λk+1 ≥ max(d(p)− wk(p)).
Dijkstra and A∗ algorithms are frequently used as tree and graph searching methods

to obtain an optimal solution. The former selects the node with the smallest cost to explore
a state graph and can guarantee that its solution is an optimal path. The latter utilizes the
sum of the cost and heuristic function to adjust the searching direction and outperforms
the former in terms of computational efficiency if its heuristic function is appropriate.

Model predictive control (MPC) is an optimal control method that uses a dynamic
model to predict future behavior and solves for the optimal control action at each time
step to satisfy constraints and performance metrics [19]. It is commonly used in various
dynamic systems, including industrial process control, robot control, etc. MPC dynamically
adjusts the control strategy through real-time sensor feedback to match the system behavior
more accurately and achieve stability and performance optimization.

4. Problem Description

A batch chemical system carries out a series of operations, each requiring a certain
amount of time and a set of resources, such as valves, storage tanks, and filters. Addi-
tionally, it may encounter unexpected events such as process adjustments, urgent orders,
and equipment failures. Therefore, control instructions for valves need to be calculated in
real time to adjust the order of operations, ensuring the system’s productive efficiency.

To describe a batch chemical system, let D represent the set of resources and O the set
of all production operations. Specifically, D has two subsets V and U. Set V = {v1, . . . , vi}
is the set of valves, where each valve vi has two states, i.e., the open state vsi and the closed
state v̄si . Set U = {u1, . . . , uj, f1, . . . , fz} is the set of tanks and filters, where j, z ∈ N+.
u1, . . . , uj are buffer tanks, and f1, . . . , fz are filters. Note that, for each tank or filter, ūsj( f̄sz),
i.e., the tank is full, and the filter is used. Therefore, the set of resource states is denoted
as Ds = {vs1 , ..., vsi , v̄s1 , ..., v̄si , us1 , ..., usj , ūs1 , ..., ūsj , fs1 , ..., fsz , f̄s1 , ..., f̄sz}. For an operation
o ∈ O, its required set of resource states is represented as r(o) ⊆ Ds, and δ(o) : o → N+ is
the execution time of o.

As shown in Figure 1, a beer canning plant [20] is considered. The plant performs four
tasks: filling, filtering, bottling, and cleaning. us is the tank for raw beer; u1 and u2 are two
buffer tanks. f1, f2, and f3 are three filters. CIP stands for the supply and recovery module
for cleaning agents, while the bottling module is responsible for canning. v1, . . . , v20 are
double piston valves. Each one can be switched to either an “open“ or “closed“ position.
When a valve is open, beer flows through the horizontal pipeline under its control. When
a valve is closed, beer flows through the vertical pipeline under its control. There are
12 operations, denoted by o1, . . . , o12, as summarized in Table 1.

A filling operation seeks to transport raw beer from us through the pipeline to
the buffer tank u1. There are two types of filling operations, o1 and o2. Operation
o1 requires the opening of valves v2 and v3; the closing of valves v̄1, v̄8, v̄9, and v̄12;
and an execution time of five seconds. The set of resource states required by o1 is
r(o1) = {vs2 , vs3 , v̄s1 , v̄s8 , v̄s9 , v̄s12 , us1}, and the execution time of o2 is δ(o2) = 6 s.
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Figure 1. A beer canning plant.

Table 1. Operations of the beer canning plant.

Operations Open Valve States Closed Valve States Tank or Filter States Time

o1 vs2 , vs3 v̄s1 , v̄s8 , v̄s9 , v̄s12 us1 5 s
o2 vs12 , vs13 v̄s3 , v̄s8 , v̄s9 , v̄s11 us1 6 s
o3 vs3 , vs4 v̄s1 , v̄s2 , v̄s8 , v̄s9 , v̄s7 , v̄s10 ūs1 , us2 , fs1 11 s
o4 vs13 , vs14 v̄s3 , v̄s4 , v̄s8 , v̄s9 , v̄s7 , v̄s10 , v̄s11 , v̄s12 ūs1 , us2 , fs2 12 s
o5 vs18 , vs19 v̄s3 , v̄s4 , v̄s8 , v̄s9 , v̄s7 , v̄s10 , v̄s13 , v̄s14 , v̄s17 ūs1 , us2 , fs3 13 s
o6 vs4 , vs5 v̄s1 , v̄s6 , v̄s7 , v̄s10 ūs2 7 s
o7 vs14 , vs15 v̄s5 , v̄s4 , v̄s7 , v̄s10 , v̄s11 , v̄s16 ūs2 8 s
o8 vs8 , vs9 v̄s3 , v̄s7 , v̄s10 , v̄s13 , v̄s18 us1 2 min
o9 vs7 , vs10 v̄s4 , v̄s14 , v̄s19 us2 2 min
o10 vs1 , vs6 v̄s2 , v̄s3 , v̄s4 , v̄s5 , v̄s7 , v̄s8 , v̄s11 , v̄s17 f̄s1 2 min
o11 vs11 , vs16 v̄s7 , v̄s8 , v̄s12 , v̄s13 , v̄s14 , v̄s15 , v̄s17 f̄s2 2 min
o12 vs17 , vs20 v̄s7 , v̄s8 , v̄s18 , v̄s19 f̄s3 2 min

A filtering operation serves to transfer liquid from buffer tank u1, through fil-
ters ( f1, f2, f3), to buffer tank u2. There are three types of filtering operations,
o3, o4, and o5. Operation o3 requires the opening of valves v3 and v4; the clos-
ing of valves v̄s1 , v̄s2 , v̄s8 , v̄s9 , v̄s7 , and v̄s10 ; and the execution time 11 s. Hence,
r(o3) = {vs3 , vs4 , v̄s1 , v̄s2 , v̄s8 , v̄s7 , v̄s10 , ūs1 , us2 , fs1}, and δ(o3) = 11 s. Similarly,
r(o4) = {vs13 , vs14 , v̄s3 , v̄s4 , v̄s7 , v̄s8 , v̄s9 , v̄s10 , v̄s11 , v̄s12 , ūs1 , us2 , fs2}, δ(o4) = 12 s,
r(o5) = {vs18 , vs19 , v̄s3 , v̄s4 , v̄s7 , v̄s8 , v̄s9 , v̄s10 , v̄s13 , v̄s14 , v̄s17 , ūs1 , us2 , fs3}, and δ(o5) = 13 s.

A bottling operation transfers liquid from buffer tank u2 to the bottling module for
beer bottling. There are two types of bottling operations, o6 and o7. In detail, r(o6) =
{vs4 , vs5 , v̄s1 , v̄s6 , v̄s7 , v̄s10 , ūs2}, δ(o6) = 7 s, r(o7) = {vs14 , vs15 , v̄s5 , v̄s4 , v̄s7 , v̄s10 , v̄s11 , v̄s16 , ūs2},
and δ(o7) = 8 s.

A cleaning operation cleans the resources in U, and there are five cleaning operations:

(1) Operation o8 (cleaning buffer tank u1): It is required that the cleaning liquid
flows from CIP into buffer tank u1 for 120 s. The set of required resources is
r(o8) = {vs8 , vs9 , v̄s3 , v̄s7 , v̄s7 , v̄s10 , v̄s13 , v̄s18 , us1}, and the cleaning time is δ(o8) = 120 s.
The buffer tank u1 must be cleaned after every two uses.

(2) Operation o9 (cleaning buffer tank u2): It is required that the cleaning liquid
flows from CIP into buffer tank u2 for 120 s. The set of required resources is
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r(o9) = {vs7 , vs10 , v̄s4 , v̄s14 , v̄s19 , ūs2}, and the cleaning time is δ(o9) = 120 s. The buffer
tank u2 must be cleaned after every two uses.

(3) Operation o10 (cleaning filter f1): It is required that the cleaning liquid
flows from CIP into filter f1 for 120 s. The set of required resources is
r(o10) = {vs1 , vs6 , v̄s2 , v̄s3 , v̄s4 , v̄s5 , v̄s7 , v̄s8 , v̄s11 , v̄s17 , f̄s1}, and the cleaning time is
δ(o10) = 120 s. The filter f1 must be cleaned after every use.

(4) Operation o11 (cleaning filter f2): It is required that the cleaning liquid
flows from CIP into filter f2 for 120 s. The set of required resources is
r(o11) = {vs11 , vs16 , v̄s7 , v̄s8 , v̄s12 , v̄s13 , v̄s14 , v̄s15 , v̄s17 , f̄s2}, and the cleaning time is
δ(o11) = 120 s. The filter f2 must be cleaned after every two uses.

(5) Operation o12 (cleaning filter f3): It is required that the cleaning liquid
flows from CIP into filter f3 for 120 s. The set of required resources is
r(o12) = {vs17 , vs20 , v̄s7 , v̄s8 , v̄s18 , v̄s19 , f̄s3}, and the cleaning time is δ(o12) = 120 s.
The filter f3 must be cleaned after every three uses.

Evidently, an operation cannot be performed simultaneously with another one once
there are resource conflicts. For example, o1 and o2 cannot be simultaneously performed
since o1 requires the opening of v3 while operation o2 requires the closing of v3. However,
some operations can run in parallel. For instance, o1 and o6 can be simultaneously executed
since they are not in conflict. Therefore, there are both sequential and parallel relations
between operations, and different sequences of executed operations may lead to different
makespans. In addition, when scheduling a plant, unexpected events need to be considered.
For example, an urgent order may suddenly arrive when the plant is running at a given
schedule, the duration of an operation may change due to worn devices, or a filter or tank
device may be suddenly damaged. Thus, it is essential to quickly modify the original
schedule and to respond promptly to abrupt events. The key lies in quickly determining
the scheduling strategies and controlling the commands to minimize the processing time.

5. Petri Net Model of a Batch Chemical System

In order to develop a model predictive control method, we need to model a given batch
chemical system as a place-timed Petri net. To this end, several notations are introduced.

Definition 1. A logical operation ρ is a binary tuple (γ, k) that satisfies

∑
o∈Oρ

γ(o) = k, (5)

where Oρ is the set of productive operations, γ(o) represents the number of times to execute o, and k
is a non-negative integer.

In a real-life plant, a logical operation means a specific working procedure on a
part. As shown in Figure 1, a filling operation can be realized by o1 or o2, and, conse-
quently, it can be represented as the logical operation ρ1 = (γ1, 1) satisfying ∑

o∈Oρ

γ1(o) = 1,

i.e., γ1(o1) + γ1(o2) = 1.
Given a batch chemical system J, the batch size, i.e., the number of times to execute

the system J, is denoted by Ω(J).

Definition 2. An ordered pair of logical operations (ρi, ρj) is called a process relation, ρi is a
pre-operation of ρj, and ρj is a post-operation of ρi.

As shown in Figure 1, ρ1 is the logical operation of the filling operation, ρ2 is the logical
operation of the filtering operation, and the processing flow is filling and then filtering, so
ρ1 is a pre-operation of ρ2 and ρ2 is a post-operation of ρ1.
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Definition 3. Operations o and o′ are in conflict if o requires a valve to open and o′ requires
a valve to be closed, or they require different states of the same device, such as a tank or filter,
i.e., [∃v ∈ V, v ∈ r(o) ∧ v̄ ∈ r(o′)] ∨ [∃x ∈ U, x ∈ r(o) ∧ x ∈ r(o′)].

Definition 4. A set of operations is in conflict if each operation in it is in conflict with all others.

Definition 5. A set of operations is maximally in conflict, denoted by Omax, if it is conflict and
any superset of it is not in conflict, and the set of maximally conflicting sets is represented as Omax.

Definition 6. A process graph is a binary tuple (ζ, ψ), where ζ is the set of all logical operations
and ψ is the set of all process relations.

Given a batch chemical system J, its place-timed Petri net model is Gts = (PJ ∪ P J̄ ∪
PO ∪ Pb ∪ Pm, T, F, W, d, m0), where PJ is the finite non-empty set of start places, P J̄ is the
finite non-empty set of end places, PO is the finite non-empty set of operation places, Pb is
the finite non-empty set of buffer operation places, and Pm is the finite non-empty set of
monitor places. It can be obtained by manipulating data on the device resources, process
recipes, and so on.

Furthermore, the Petri net modeling algorithm for batch chemical systems plays a
crucial role in the model adjustment module of our MPC method, which can be used to
reconstruct the Petri net model automatically when abrupt events occur.

For a batch chemical system, Algorithm 1 provides a modeling method to automati-
cally generate the place-timed Petri net from a given group of data about resources such
as valves, tanks and filters, batch sizes, operations, and recipes. Step 1 is to initialize the
elements of the place-timed Petri net. Steps 2–14 make up a loop where the logical opera-
tion variable is the cyclic variable and, for the logical operation of process relations, they
design the places, transitions, and arcs. Steps 20–26 make up the loop, where the maximally
conflicting set of operations Omax is the cyclic variable, and they design a monitor place
for each Omax ∈ Omax. By means of the monitor places, the number of marked places,
which represent the operations in a maximally conflicting set of operations, is, at most, one;
consequently, two operations cannot be simultaneously executed if they are in conflict.

By Algorithm 1, we obtain the place-timed Petri net model of the beer canning plant,
as shown in Figure 2. Here, we show the procedures to generate the Petri net. Through the
production operations in Definition 1 and Table 1, we refine 15 logical operations and store
them in ζ. According to Definition 2, we have 12 pairs of process relations and store them
in ψ. According to Definition 6, we group ζ and ψ into the process graph (ζ, ψ). According
to Definitions 3–5 and Table 1, we obtain nine maximally conflicting sets. As a result, we
obtain the inputs of Algorithm 1, which are the set of operations O, the operation time δ,
the set of maximally conflicting sets Omax, the process graph (ζ, ψ), and batch size Ω(J).
According to Steps 1–14, the operation places, buffer places, transitions, arcs, arc weights,
and initial markings of places are designed. Steps 14–17 aim to obtain the batch-head places
of jobs and to design transitions connecting these batch starting places with the operation
places. Similarly, Steps 17–20 aim to design the batch ending places of jobs. Finally, Steps
20–26 aim to design the monitor places for the maximally conflicting sets such that no
operation competes for resources with any other operation.
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Algorithm 1: Petri net modeling of a batch chemical system

Input: The batch size Ω(J), the set of operations O, the process graph (ζ, ψ),
the set of maximally conflicting sets Omax, and the set of operation times δ

Output: A place-timed Petri net Gts
1 Initialization P = ∅, T = ∅, F = ∅, W = ∅;;
2 for ρi = (γi, ki) ∈ ζ do
3 for ρj = (γj, k j) ∈ ζ ∧ ρj ̸= ρi do
4 if (ρi, ρj) ∈ ψ then
5 Design a buffer place pi,j for the process relation (ρi, ρj),

i.e., Pb ← Pb ∪ {pi,j};
6 for ox ∈ Oρi do
7 Po ← Po ∪ {pox}, T ← T ∪ {tōx}, F ←

F ∪ {(pox , tōx ), (tōx , poi,j)}, d(pox ) = δ(ox) and m0(pox ) = 0;

8 for oy ∈ Oρj do
9 Po ← Po ∪ {poy}, T ← T ∪ {tōy}, F ←

F ∪ {(poi,j , toy), (toy , poy)}, d(poy) = δ(oy) and m0(poy) = 0;

10 if ki
kj
≥ 1, and ρi = (γi, ki) ∧ ρj = (γj, k j) then

11 W(poi,j , toj) =
ki
kj

, W(poi , tōi ) = W(tōi , poi,j) = W(tōj , poj) =

1, m0(poi,j) = 0 and ox ∈ Oρi ∧ oy ∈ Oρj ;;
12 else

13 m0(poi,j) = W(tōi , poi,j) =
kj
ki

, W(poi , tōi ) = W(poi,j , toj) = W(toj , poj) =

1, m0(poi,j) = 0 and ox ∈ Oρi ∧ oy ∈ Oρj ;

14 PJ ← PJ ∪ {pJ}, d(pJ) = 0 and m0(pJ) = Ω(J);;
15 for oj ∈ Oρs where ρs is the first logical operation from J do
16 T ← T ∪ {toj} and F ← F ∪ {(pJ , toj), (toj , poj)};

17 P J̄ ← P J̄ ∪ {p J̄}, d(p J̄) = 0, m0(p J̄) = 0;;
18 for ρe ∈ ζ where ρe is the last logical operation from J do
19 T ← T ∪ {tōe}, F ← F ∪ {(poe , tōe), (tōe , p J̄)};
20 for Omax ∈ Omax do
21 Design the monitor places pc with m0(pc) = 1, i.e., Pm ← Pm ∪ {pc};
22 for oi, oj ∈ Omax ∧ oj ̸= oi do
23 if (ρx, ρy) ∈ ψ, oi ∈ Oρx and oj ∈ Oρy then
24 The arcs (pc, toi ) and (tōj , pc) are designed;
25 else
26 The arcs (pc, toi ), (tōi , pc), (pc, toj), and (tōj , pc) are designed;

27 return A place-timed Petri net Gts;
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Figure 2. The place-timed Petri net model of the beer canning plant.

6. Petri-Net-Based Predictive Control for Batch Chemical Systems

On the basis of the place-timed Petri net, a model predictive control method is
presented to schedule and control a batch chemical plant in real time. It consists of
three parts: the prediction model, rolling optimization, and feedback correction.

The model prediction is responsible for determining an appropriate event (transition)
to be executed at each current time. This involves evaluating all candidate transitions by
means of the evolving trajectories within the given prediction time domain. To do so, we
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need to construct a heuristic function to evaluate the execution time from any state to a
goal one.

In a Petri net, an elementary path is an ordered sequence of nodes, i.e., π = x1x2...xK,
where xk+1 is an output node of xk for k = 1, ..., K− 1. The beginning and terminal nodes
of π are denoted by •π and π•, respectively. The delay cost of an elementary path π is
τ(π) = ∑

p∈Pπ

d(p), where Pπ denotes the places occurring in π and d(p) is the delay of

place p.

Definition 7. For an operation place p ∈ Po, an elementary path is called its downstream path if
•π = p and π• = p J̄ , where p J̄ is a place representing the complete logical operation of a system,
and the set of its downstream paths is denoted by Πp.

Since the completion of jobs is described as the flow of tokens into certain places, we
can define the time cost that tokens require by means of the downstream path. Consequently,
we obtain a method to evaluate a Petri net’s states and search for them within or near the
transition trajectories that require minimal time.

The path cost function is defined as follows:

hk(mk) = max
p∈Po

( min
π∈Πp

τ(π) ·mk(p)), (6)

where mk is the marking in a state Xk.
According to Equation (6), the path cost can be used to estimate the time taken to

complete all jobs and, consequently, to provide an approach to the optimization problem in
the proposed Petri-net-based MPC.

A place-timed Petri net plays the role of the prediction model and is used to explore
a sub-reachability graph, where a current state Xk = (mk, wk, gk) is taken as the root
node, within a given prediction time domain H, where H → N+. By evaluating the leaf
nodes of the sub-reachability graph with gk(mk) + hk(mk), the leaf node with the minimal
value is chosen since it is most possible in the optimal trajectory. By backtracking the
sub-reachability graph from the leaf node, we can find the transition ek+1 that can be fired
at the current state Xk and consequently take it as the control action at the current state.

Sensors that detect the aging of the equipment can lead to variations in operating
process times, and devices occasionally break down in practice. The mismatch between
an original Petri net model and a real plant is inevitable and leads to a decrease in the
MPC’s reliability. To tackle this issue, we introduce a feedback correction mechanism in the
proposed Petri-net-based MPC method.

Definition 8. Given the k-th firing transition ek, its workspace is the set of operations whose ending
events are modeled by ek in the Petri net model, which is denoted by O(ek).

Definition 9. Given the k-th firing transition ek, the feedback time αk is the function mapping from
its workspace to the real number set, where ∀o ∈ O(ek), αk(o) is the difference in the actual ending
and beginning times of o.

As a plant runs, events are executed one by one and are modeled by transitions in its
Petri net model. Once a transition fires, we can calculate the real processing times of the
operations that have been completed. According to Definitions 8 and 9, the real processing
times are represented by αk and are fed back into the MPC such that the delays of the
corresponding places can be corrected.

In a real plant, there are devices that are prone to breakdown. If a device is damaged
suddenly, the operations relying on it cannot be performed. Hence, we need to re-model
the plant.
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Definition 10. At the k-th moment, the fault-event ηk : D → {0, 1} is the function mapping
from a resource set to True(1) or False(0), and ∀ϖ ∈ D, if ϖ breaks down, ηk(ϖ) = 1; otherwise,
ηk(ϖ) = 0.

According to Definition 10, we can identify the damaged devices by the fault event,
determine the operations that cannot be performed, and correspondingly revise the process
graph (ζ, ψ). Then, we can correct the Petri net model via Algorithm 1.

For a state Xk, its leaf nodes are obtained by firing k transitions from the initial state,
and the leaf nodes are stored in the leaf node set Φk.

In order to calculate the scheduling strategy and control instructions, we proposed
the Petri-net-based MPC method for a batch chemical system, which is summarized in
Algorithm 2.

Algorithm 2: Petri-net-based MPC for batch chemical plants
Input: The place-timed Petri net Gts, the initial state X0, the prediction time domain H, the target Xg,

the fault event ηk , the feedback time αk , and urgent order event εk , the leaf node set Φk
Output: The control action (transition) ek

1 Parameter initialization:Xk = X0, Φk = ∅;
2 while state Xk is equal to target state Xg do
3 Calculate the control action (transition) ek by the function Rolling Optimization(Xk , H, Φk),

i.e., ek ← Rolling Optimization(Xk , H, Φk);
4 Calculate next state Xk+1 after firing transition ek according to Equation (2)–(4);
5 if (αk ̸= d) ∨ (ηk = 1) ∨ (εk ̸= 0) then
6 Correct the delay of d for the Petri net model Gts by the function Place Delay Model

Correction(αk , d, ek), i.e., d← Place Delay Model Correction(αk , d, ek);
7 Correct the state Xk+1 and the Petri net model Gts by the function Fault Event Model

Correction(ηk , Xk+1), i.e., Xk+1, Gts ← Fault Event Model Correction(ηk , Xk+1);
8 Correct the state Xk+1 and goal state Xg by the function Urgent Order Model

Correction(Xk+1, Xg, εk), i.e., Xk+1, Xg ← Urgent Order Model Correction(Xk+1, Xg, εk);

9 Function: Rolling Optimization(Xk , H, Φk) return the control action (transition) ek ;
10 if Φk = ∅ then
11 Expand the sub-reachability graph whose root and depth are the state Xk and the prediction

domain H and place the leaf nodes into Φk ;
12 else
13 Expand the sub-reachability graph whose root and depth are the state Xk and the prediction

domain one and place the leaf nodes into Φk ;

14 Select the leaf state Xs in the reachability graph with the minimum value of gs(ms) + hs(ms), where
hs(ms) is calculated from Equation (6);

15 Backtrack the state Xs to the root state to obtain the optimal transition ek ;
16 return the control action (transition) ek ;
17 Function: Place Delay Model Correction(αk , d, ek) return d;
18 if operation real time αk in the operation set O(ek) is not equal to d then
19 for o ∈ O(ek) do
20 d(po) = αk(o);

21 return d;
22 Function: Fault Event Model Correction(ηk , Xk+1) return place-timed Petri net Gts and state Xk+1;
23 if ηk = 1 then
24 Based on the faulty resources in ηk , the parameters of Xk+1 are corrected, the process graph (ζ, ψ)

is updated, and the place-timed Petri net model Gts is regenerated by Algorithm 1;

25 return the state Xk+1 and the place-timed Petri net model Gts;
26 Function: Urgent Order Model Correction(Xk+1, Xg, εk) return Xk+1, Xg;
27 if εk ̸= 0 then
28 mk+1(pJ) = mg(p J̄) = εk , where mk+1 ∈ Xk+1 and mg ∈ Xg;

29 return Xk+1, Xg;

Algorithm 2 consists of four functions: rolling optimization, place delay model cor-
rection, fault event model correction, and rush order model correction. The first one is to
calculate a control action in each time step, and the others are responsible for correcting the
Petri net model according to the feedback data.
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Step 1 is to initialize the elements. Steps 2–9 make up a loop, where the state Xk
variable is the cyclic variable. In every iteration, the rolling optimization function, place
delay model correction, fault event model correction, and urgent order model correction
are respectively called according to the state feedback. The loop stops, and the algorithm
exits until the target state is reached. In Steps 9–16, the rolling optimization function
seeks to generate the reachability graph with the limited depth defined by the prediction
domain H, to evaluate each leaf node by the heuristic function, and to identify the most
promising transition ek. After firing ek, the next marking mk+1 is obtained and can be
used to determine all marked operation places. We can in turn obtain all the operations
being carried out in mk+1 and the valve instructions according to the resource requirement
function. In Steps 17–21, the place delay model correction function updates the delays of
places if the operation time in the operation set αk is not equal to d. In Steps 22–25, the fault
event model correction function computes the new process graph (ζ, ψ) and regenerates
the place-timed Petri net model by using Algorithm 1. In Steps 26–29, the urgent order
model correction updates the markings of the batch-head places when an urgent order
suddenly arrives.

Algorithm 2 combines the model predictive control method and the heuristic searching
algorithm. It is able to flexibly adjust the depth of the reachability graph via the prediction
time domain and quickly correct the system model according to the feedback.

7. Experiments

In order to verify the Petri-net-based MPC method, a series of numerical experiments
are carried out on the batch chemical plant, as shown in Figure 1. We develop the Petri-net-
based MPC Visual Studio 2017 simulation program in C++, and it is run on a computer
with an i7-11700K 3.6 GHZ CPU and 32.0 GB RAM.

To evaluate the performance of the rolling optimization function in the proposed
MPC algorithm, we conduct six experiments without an abrupt event, and the results are
summarized in Table 2.

Table 2. Experiments on the Petri-net-based MPC algorithm without an abrupt event.

Experiments Dijkstra
Petri-Net-Based MPC

Predication Domain H = 10 Predication Domain H = 30

No. Batch size Makespan (min) Makespan (min) Search time (ms) Makespan (min) Search time (ms)
1 10 19.96 20.23 4.9 19.96 9.1
2 20 44.30 44.60 18.6 44.35 25.6
3 30 69.60 70.10 24.1 69.70 44.1
4 40 96.63 97.21 53.2 96.86 56.8
5 50 121.75 122.25 81.8 121.90 84.6
6 60 147.10 147.45 88.9 147.10 89.4

As shown in Table 2, the Dijkstra algorithm is used to obtain the optimal solutions, and
two Petri-net-based MPC algorithms are applied, where the prediction times are, respec-
tively, 10 and 30. In the Petri-net-based MPC experiments, the mean search times per step
are no more than 90 ms. Hence, we can conclude that the MPC method can schedule the
plant in real time.

The average makespan in the six experiments using the MPC method is within 0.5%
of the average makespan of the Dijkstra method. Hence, our MPC method can obtain a
near-optimal solution to the scheduling issue of the plant.

Furthermore, the makespans of the MPC with the predication time of 30 are closer
to the optimal ones than those with the predication time of 10. This means that we can
approach the optimal solutions by increasing the prediction time domain if we obtain
enough computational resources.

To evaluate the MPC methods with different prediction time domains, we draw
Gantt graphs of Experiment 1, as shown in Figure 3. It is evident that there are major
differences between the scheduling schemes. This implies that it may be worth paying
greater computational costs.
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Figure 3. Gantt graphs of the MPC results in Experiment 1.

To evaluate our MPC method with model correction, we conducted three experiments,
which adopted the process adjustment event, urgent order event, and equipment damage
event, respectively. The results are summarized in Table 3.

Table 3. Experiments on the Petri-net-based MPC with abrupt events.

Experiments No Model Correction Predication Domain H = 10 Model Correction Predication Domain H = 10

No. Batch size Makespan (min) Makespan (min)
7 10 20.23 19.17
8 10 N/A 23.65
9 10 N/A 25.43

In Experiment 7, there are five abrupt events, in which the durations of o8, o9, o10, o11,
and o12 change to 90 s, 100 s, 110 s, and 130 s, respectively. Once such an abrupt event
occurs, the place delay model correction function is called to correct the delays of the
places, and the rolling optimization function computes control actions with the new Petri
net model. The executive process of the plant is shown in the Gantt graph, as shown in
Figure 4. The makespan without model correction is 20.23 min, while that with model
correction is 19.17 min. This means that the model correction function is useful to improve
the scheduling solution.

In Experiment 8, two urgent orders occur at 154 s and 172 s, respectively. The MPC
algorithm is able to immediately adjust the schedule so that all orders are completed in
23.65 min.

In Experiment 9, the filters f1 and f2 are damaged at 465 s and 849 s, respectively.
The MPC algorithm is able to regenerate the Petri net model immediately and recompute
the scheduling strategy. As a result, the makespan is 25.43 min, which reflects the strong
robustness of our MPC method.

From the above-mentioned results, our MPC method is able to compute the schedule
scheme in real time and is robust enough to adapt to abrupt events. Further, its solution is
very close to the optimal one.
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Figure 4. Gantt graphs of the MPC results in Experiment 7.

8. Conclusions

The Petri-net-based MPC method is presented to schedule a batch chemical plant in
real time. It consists of two algorithms. The first one aims to design the Petri net model
automatically for a given batch chemical system. The second is made up of the rolling
optimization function and three model correction functions. The proposed method allows
the system to continuously optimize resource allocation while performing tasks, thereby
achieving an efficient and intelligent production process.

The heuristic function and the predictive time domain are two important issues that
affect the performance of the proposed method. However, the fixed prediction time domain
limits the search area in the state space and this leads to a sacrifice in the quality of the
scheduling strategy. In the future, we aim to improve the heuristic function via deep
learning and to explore a method to dynamically adjust the prediction domain time such
that the makespan can be shortened.
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