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Abstract: This article delves into sensitivity analysis within simulation models of real systems, focus-
ing on the impact of variability in independent input factors (x) on dependent system outputs (y). It
discusses linear and nonlinear regression to analyse and represent relationships between input factors
and system responses. This study encompasses three sensitivity analysis areas: factor screening,
local sensitivity analysis, and global sensitivity analysis, highlighting their roles in understanding
the significance of factors in simulation models. The practical application of sensitivity analysis
becomes clear through a case study in a manufacturing system. The case study utilises the Simio
simulation system to investigate the impact of input factors on production lead time and work in
process (WIP). The analysis uses regression to quantify the impact of seven factors, showcasing the
most significant ones with tornado charts and emphasising the application of sensitivity analysis to
optimise system responses.

Keywords: sensitivity analysis; simulation models; regression analysis; system optimisation;
metamodelling; production system

1. Introduction

Sensitivity analysis (SA) in simulation models has emerged as an indispensable tool
for researchers and practitioners across various disciplines, from engineering to socioe-
conomics [1–4]. This analytical method aids in understanding how changes in model
inputs affect outputs, revealing the robustness and reliability of models under different
conditions [5]. SA plays a crucial role in enhancing the transparency model and guiding
decision-making processes by identifying critical factors that influence system behaviour.
Given the significance of sensitivity analysis in uncovering the dynamics between in-
put variables and their resultant effects on outputs, it stands as a fundamental tool for
enhancing model accuracy and predictive power [6,7]. The significance of SA extends
beyond enhancing model transparency; it is instrumental in the decision-making process
by identifying key factors that influence system behaviour. As a cornerstone for improv-
ing model accuracy and predictive capability, SA is crucial in areas demanding precise
model outcomes, such as climate change forecasting, financial risk assessment, and health-
care planning [8–10]. Integrating artificial intelligence (AI) and big data has markedly
advanced SA capabilities, enabling more comprehensive and dynamic analyses of complex
systems [11–14]. To provide a clearer understanding of the current state of the art and
to identify existing research gaps, we have undertaken a detailed categorisation of the
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literature based on the objectives of their research. This categorisation helps to highlight
the multifaceted applications of SA and its developing role in addressing the contemporary
challenges in the following paragraphs.

Manufacturing efficiency and quality improvement: A significant body of research,
including studies conducted within a Polish automotive manufacturing facility [15] and
investigations into ergonomic workplace design [16], underscores SA’s critical role in en-
hancing operational efficiency and product quality. These studies not only show SA’s utility
in optimising manufacturing processes but also its potential in strategic planning and re-
source allocation. The application of SA in evaluating lean production practices [17] further
illustrates its capacity to refine production strategies, presenting a relatively unexplored
avenue for enhancing efficiency and sustainability in manufacturing. The authors in [18]
addressed manufacturing documentation for high-variety products, showing a gap in the
literature regarding SA’s role in managing documentation and information flow in complex
manufacturing settings. Following the exploration of SA in various manufacturing contexts,
recent studies have further broadened the application of SA in the field.

Integration with Industry 4.0: The literature also highlights SA’s relevance in Industry
4.0, particularly in sustainable manufacturing practices and logistics optimisation [19–21].
Research in this area showcases SA’s capacity for assessing the sustainability implications
of various production methodologies and its applicability in optimising logistics and
supply chain operations. This focus on Industry 4.0 introduces novel application areas
for SA, emphasising its importance in the development of smart factories and positing
sustainability goals.

Advanced computational techniques: The integration of SA with advanced compu-
tational techniques, such as machine learning for environmental modelling [22] and the
application of Bayesian optimisation in manufacturing processes [23], represents a signifi-
cant advancement in the field. The development of a new protocol for conducting SA in
agent-based models (ABMs) [24] addresses the complexities of analysing models with both
parametric and non-parametric elements. A simulation-based analysis is demonstrated
in [25] that is focused on the availability of manufacturing equipment, offering insights
into optimising maintenance systems for better operational efficiency.

These advancements highlight the ongoing evolution of SA as a critical tool for research
and practice, leveraging new computational techniques and methodologies to provide
valuable insights into complex systems. Recent advancements in sensitivity analysis (SA)
and simulation models reflect the ongoing evolution of SA as a critical tool for research
and practice, leveraging new computational techniques and methodologies to provide
valuable insights into complex systems. Our article contributes to this developing field by
applying sensitivity analysis to assess the impact of input variability on system outputs,
employing both linear and nonlinear regression. To highlight the comparative advantages
and limitations inherent in each method (see Table 1), we juxtapose this approach with
state-of-the-art AI-driven algorithms.

Table 1. Comparison of linear and nonlinear regression with AI-driven algorithms.

Feature Linear Regression Nonlinear
Regression

AI-Driven
Algorithms

Complexity Low Medium High
Flexibility Low Medium High

Adaptability to
nonlinear patterns Low High High

Computational cost Low Medium Variable
Data requirements Low Medium High

Interpretability High Medium Low
Accuracy Moderate High Very high
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This comparison reveals that, while linear and nonlinear regression methods offer sim-
plicity and moderate accuracy with lower data requirements, they lack the flexibility and
adaptability of AI-driven algorithms. AI algorithms, although requiring more substantial
data and computational resources, excel in handling complex, nonlinear patterns, offering
significantly higher accuracy. This is clear in the works of [26,27], where AI-driven optimi-
sation leads to substantial improvements in engineering solutions and renewable energy
technologies. Similarly, refs. [28,29] illustrate the broad applicability and effectiveness of
AI in enhancing design, optimisation processes, and decision-making strategies in various
industrial contexts. Integrating AI technologies in sensitivity analysis not only enhances the
robustness and reliability of simulation models under different conditions but also supports
strategic planning and policymaking, advancing decision-making processes to additional
levels of effectiveness [30]. Through a practical case study in manufacturing, our research
showcases how SA can pinpoint areas for system enhancement, contributing both to SA’s
theoretical framework and its practical utility. The findings encourage further exploration
and application of AI-driven methods in sensitivity analysis, promising new insights and
advancements in various disciplines. Our article contributes to the field of sensitivity anal-
ysis (SA) within simulation models by addressing a notable gap in the current literature:
the application and interpretation of SA, specifically within production systems. While
researchers widely recognise sensitivity analysis as a critical tool for enhancing model
accuracy and facilitating decision making in various domains, they have given limited
attention to applying it to the nuanced dynamics of production systems and interpreting
simulation results in these contexts. We advance the understanding of SA by focusing on
both linear and nonlinear regression to explore the impact of input variability on system
outputs. This methodological approach is not novel per se, but our work stands out by
applying these techniques to a detailed case study in a manufacturing system. Here, the
practical application of SA—using the Simio simulation software—demonstrates how it can
effectively identify key areas for improvement in production processes, a domain that has
been overlooked in existing studies. Our research distinguishes itself by elucidating how
to interpret the outcomes of sensitivity analyses in the realm of manufacturing simulations.
This aspect is critical, as understanding the implications of SA results directly impacts
the ability to make informed decisions for system enhancement. Through a methodical
examination of the factors influencing system outputs, our study sheds light on the sig-
nificance of each variable, guiding the optimisation of production processes based on
empirical evidence. In summary, our article stands out for its focus on the under-explored
area of production systems within the domain of sensitivity analysis in simulation models.
By providing a clear methodology for applying and interpreting SA in this context, our
research offers valuable contributions to the theoretical framework of SA and its practical
utility in improving manufacturing system performance.

2. Materials and Methods

Simulation models of real systems usually represent complex, nonlinear, and inter-
dependent processes. To perform an in-depth analysis of the relationship of independent
input factor (x) to dependent outputs—system responses (y)—we need to investigate the
influence of variability x on the variance of response values y. Sensitivity analysis is a
procedure that makes it possible to analyse the relationship between the variance of in-
dependent input variables (x) and the variance of dependent output variables (y). Linear
or nonlinear regression can analyse and represent dependencies between input factors
and output responses (parameters). When using them, it is advisable to select a minimum
number of replications higher than the number of investigated factors. Thus, sensitivity
analysis helps to determine how an input factor affects the output response, using linear
regression methods most often. A graph that allows the dependence of individual factors
and their response to be represented is also called a tornado chart.

According to [31], in principle, three different areas of sensitivity analysis can be
distinguished:
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• Factor screening (i.e., sorting and arranging factors according to their significance):
Factor screening allows the qualitative impact of input variables (factors) on one
output parameter (one output variable) to be investigated. Thus, it does not examine
quantitative characteristics. It is mainly used to “sift” factors, meaning to exclude
those factors that do not have a significant impact on the parameter under study. For
screening, it is possible to use, for example, the well-known Ishikawa diagram.

• Local sensitivity analysis: this analysis allows the influence of selected factors for
a certain functional value of an output variable (local optimum) to be investigated.
Using local sensitivity analysis, we investigated what effects small changes in factor
values have on the output parameters. It is mainly used to test the stability (robustness)
of the system for a selected combination of factors.

• Global sensitivity analysis: This analysis studies the influence of factor level variation
on output parameters across the entire factor definition. Global sensitivity analysis
enables researchers to better understand the significance and importance of the factors
used in a simulation model and how they compare with each other.

Sensitivity analysis plays a crucial role in systematically searching for simulation
response responses to extreme values of model input factors or radical changes in the
structure of the model used. In detail, the paper discusses sensitivity analysis [31].

Figure 1 shows the principle of global sensitivity analysis.
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For example, in a typical sensitivity analysis task, we determine what happens if a
customer increases their orders by 100% or reduces their orders to 30%. What impact will
the change in management rules have on performing the system, etc.?

For this type of analysis, regression analysis, also known as Analysis of Variance
(ANOVA), is used in the planning of experiments. This type of analysis is based on the
application of the metamodel, which we created as a model from the responses of the
simulation model. Thus, a metamodel is an approximation of a simulation model (more
precisely, its input/output transformation relationships) and is sometimes referred to as a
response surface. Such a metamodel usually takes the following form:

• Grade one polynomial—includes only major effects around the mean.
• Polynomial of the first degree extended by interactions between pairs of factors (inter-

actions of two factors).
• A polynomial of the second degree, which also includes quadratic effects.

The metamodel uses the simulation model as a black box, and what it represents are
its inputs and outputs and the relationship between them (transformation function).

The output of planning experiments is to determine the order of factors and their
levels, based on significance. By identifying the most significant factors, we can create a
metamodel from them that more easily explains how the simulation transforms a group
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of input factors into the output response of the modelled system. Such a metamodel is
then used to predict the responses of other combinations and levels of investigated factors,
which is very convenient (simulation experiments are costly). Combinations of factors
and their levels represent variants of the solution of the modelled system. The metamodel
can also find a combination of factor levels that optimises the response of the system
(minimum, maximum).

Scatter plots are often used as a graphical comparison of the effect of simulation
responses, in which values of one factor are plotted on the x-axis (for example, the intensity
of input x) and the simulation response is plotted on the y-axis (for example, the average
throughput time y). Such a graph shows the I/O transformation of the simulation model
(black box), i.e., it represents the statistical dependence between the factor and the output
parameter. Figure 2 shows an example of a scatter diagram.
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The scattering diagram clearly shows whether a factor has no effect on response
(Figure 2a), has a negative effect (Figure 2b) on response, or has a positive effect (Figure 2c)
on response. Figure 2b shows a weak negative dependence between a factor and the
corresponding response. Figure 2c shows a strong dependence between a factor and the
observed response.

Such a diagram allows for further analyses; for example, an adjustment curve can be
found for the obtained data and mathematically represents the dependence. In further anal-
ysis, it is possible to combine several such diagrams and look for dependencies of several
factors (combinations). Based on the above, we can utilise the regression metamodel to
approximate the input/output (I/O) transformation of the simulation model. We generate
outputs to which we apply regression analysis. The issue of metamodels has been dealt
with, for example, in works [32–34].

Sensitivity analysis of the response measures how the system’s responses change as a
result of variations in the levels of input factors. This analysis uses linear regression, which
analyses the relationship between each factor and each response. Here, the requirement is
that the minimum number of replications in this case must be higher than the number of
input factors.

Among the frequently used graphs to show the sensitivity of responses to input factors,
researchers use well-known pie or bar charts. Their disadvantage is that they allow you
to display only the percentage response sensitivity for input factors and their levels in the
respective experiment. They do not provide information about the strength of dependence
and do not support the creation of descriptive models (estimation of model regression
coefficient values).

Sensitivity analysis helps to identify how changes in input variables can significantly
affect the outputs of a simulation model. This is particularly valuable in industrial engi-
neering, where optimising system performance and making informed decisions based on
model predictions is essential. The following algorithm (Figure 3) provides a step-by-step
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guide to performing sensitivity analysis, enabling us to explore and understand the impact
of various factors on model outcomes.
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1. The critical initial step is to define the goal and scope of the simulation model, which
dictates the processes and interactions to be modelled and the decisions the model’s
outcomes aim to support. In this article, the goal is to use sensitivity analysis to
assess how variability in independent input factors affects dependent output values in
simulation models of real systems, specifically focusing on production systems. The
scope includes a triple area of sensitivity analysis—factor screening, local sensitivity
analysis, and global sensitivity analysis—aimed at optimising system response, such
as production lead times and work in process (WIP).

2. To identify input and output variables, one must determine which factors (inputs) to
examine and which output variables (system responses) are applicable to the model’s
objectives. In this article, input variables include arrival times and processing times
for various types of semi-finished products and workstations (e.g., Processing_Time1,
Arrival1). Output variables represent key performance indicators of the system, such
as throughput time and work in process (WIP).

3. Selecting an appropriate sensitivity analysis method depends on the model charac-
teristics and available data. Methods vary in their ability to handle different types of
models and analysis objectives. In this article, linear and nonlinear regression are used
to analyse the relationships between inputs and outputs, complemented by global
sensitivity analysis for a comprehensive assessment of factor impacts across their
entire definition range.

4. This article outlines the use of a comprehensive simulation model to study the impact
of varying input factors on significant system outputs. It emphasises the importance
of systematically exploring the input space by selecting a robust experimental design,
such as factorial designs or Design of Experiments (DoE). This involves defining
specific scenarios or sets of input variables to simulate, ensuring a broad and repre-
sentative sample of the model’s operational range. For each experimental setup, we
performed multiple simulation runs to account for the stochastic variability inherent
in the system. This article suggests a higher number of replications than the num-
ber of investigated factors to ensure statistical significance. This thorough approach
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helps in accurately capturing the system’s behaviour under various conditions. We
collected data from simulation runs and used selected statistical methods, such as
linear or nonlinear regression analysis and Analysis of Variance (ANOVA), to subject
them to sensitivity analysis. This article highlights the creation of metamodels or
surrogate models as an efficient way to approximate the relationship between input
variables and system outputs, facilitating the identification of significant factors with
no exhaustive simulation.

5. After conducting the sensitivity analysis, a thorough analysis and interpretation of the
data follows. This step entails quantifying the impact of individual input variables on
output values, identifying the most influential factors, and using graphical representa-
tions (e.g., tornado charts, scatter plots) for intuitive understanding. The interpretation
should focus on the practical implications of the findings for system optimisation and
decision making. This phase is crucial for improving transparency in model-based
decision making and providing guidance for future research by highlighting areas
that need additional data collection or model refinement.

3. Results

This section presents a practical example of applying sensitivity analysis (SA) in a
simulated manufacturing environment. Using the Simio simulation system, this part of
the paper will illustrate how SA can identify key leverage points for system improvement,
particularly focusing on production lead time and work in process (WIP). We will quantify
the influence of various input factors and showcase their relative importance through
tornado charts and other statistical methods. This real-world application underscores the
value of SA in making informed decisions for optimising manufacturing systems. Figure 4
depicts the simulation model of the production system.
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As seen in Figure 3, the production system uses two types of products (P1 and P2) that
enter the input buffers in front of the first workplace. The workplaces of the production
system subsequently process semi-finished products based on production processes. After
completion of processing, the products leave the production system. Thus, we have seven
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factors (two inputs and five workplaces). As a response, we chose throughput time (y1)
and work-in-progress WIP (y2).

The mean time between arrivals of type 1 semi-finished products P1 of the first type
(Arrival1) has an exponential distribution with the parameter Exponential (10), and the
mean time between arrivals of P2 blanks of the second type (Arrival2) also has exponential
distributions with the parameter Exponential (12) (see Table 2).

Table 2. Mean time between arrivals of semi-finished products in the system.

Input Processing Time (min) Random Number Stream

Source1 Exponential (10) 1
Source2 Exponential (12) 2

Each generated random variable has a defined, independent stream of random num-
bers (seven streams of random numbers) of its own.

Figure 5a (Arrival1) and Figure 5b (Arrival2) display histograms of random variables.
A selection of 10 thousand values formed each histogram.
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Table 3 provides the parameters for individual workstations, which determine the operat-
ing (machining) times. These times are random quantities that follow a triangular distribution.

Table 3. Parameters of workplace service times.

Workplace Variable Processing Time (min)

M 1 Processing_Time1 Triangular (8, 10, 12)
M 2 Processing_Time2 Triangular (7, 9, 13)
M 3 Processing_Time3 Triangular (7, 10, 14)
M 4 Processing_Time4 Triangular (8, 10.5, 12.4)
M 5 Processing_Time5 Triangular (7.7, 9.6, 14.2)

Figure 6 displays histograms of random quantities of machining times at individual
workplaces. Each histogram comprises a selection of 10,000 values.

Given the aim of this study, we will not consider equipment failures in the production
system, nor will we consider handling and transport times.

Figure 7 shows a schematic simulation model of the production system created in
the Simio simulation system, where seven input factors define the following: Arrival1:
mean time between arrivals of semi-finished P1; Arrival2: mean time between arrivals of
semi-finished P2; Processing_Time: machine working time for 1 to 5. Within the experiment,
we define two responses, throughput time and WIP, and investigate their sensitivity to the
input factor.
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Figure 7. Schematic representation of the simulation model of the production system.

We chose the simulation time to be 24 h. We defined 100 replications (simulation runs)
in the simulation scenario.

Figure 8 shows the results of the analysis of the sensitivity of the examined factors to
the throughput time. The tornado chart displays all factors, and it becomes clear from the
graph that three factors, namely Processing_Time1, Arrival1, and Arrival2, have a decisive
influence. The tornado chart shows that the throughput time (y 1) is most sensitive to the
Processing_Time1 factor, followed by the Arrival1 factor and finally the Arrival2 factor.

We can express the dependence of the output response and seven input factors using
a simple additive linear regression model.

y1 = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 (1)



Processes 2024, 12, 716 10 of 17

Processes 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

Throughput time

Processing_Time1

Processing_Time2

Processing_Time4

Processing_Time3

Arrival1

Arrival2

Processing_Time5

In
pu

t f
ac

to
rs

Sensitivity coefficient = 47.879

Sensitivity coefficient 
= −22.873

Sensitivity coefficient 
= −12.417

Sensitivity coefficient 
= 0.766

Sensitivity coefficient 
= 0.273

Sensitivity coefficient 
=−0.051

Sensitivity coefficient 
= 0.041

 
Figure 8. Tornado sensitivity analysis graph for throughput time. 

We can express the dependence of the output response and seven input factors using 
a simple additive linear regression model. 𝑦ଵ = 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ + 𝛽ସ𝑥ସ + 𝛽ହ𝑥ହ + 𝛽଺𝑥଺ + 𝛽଻𝑥଻  (1) 

As seen in Figure 7, the value of the regression coefficients will be: 𝛽ଵ =  + 47.879, 𝛽ଶ =  −22.873, 𝛽ଷ = −12.417, 𝛽ସ = + 0.766, 𝛽ହ = + 0.273, 𝛽଺ = − 0.051, 𝛽଻ = + 0.041. 
Here, the regression model would take the following form: 𝑦ଵ = 47.879𝑥ଵ − 22.873𝑥ଶ − 12.417𝑥ଷ + 0.766𝑥ସ + 0.273𝑥ହ − 0.051𝑥଺ + 0.041𝑥଻ 

As seen from Figure 7, the first three factors have the most significant influence on 
response, with a weight of up to 98.73% (see the bar graph below). 

The practical significance of the values of the regression coefficients is the following: 
• The throughput time is positively correlated with the machining time of products at 

workplace 1. 
• The throughput time is negatively correlated with the mean time between the arrival 

of semi-finished P1 in the system (Arrival1). 
• The throughput time is negatively correlated with the mean time between the arrival 

of semi-finished P2 in the system (Arrival2). 
• Throughput time is positively correlated with machining time at workplace 5. 
• Throughput time is positively correlated with machining time at workplace 2. 
• Throughput time is negatively correlated with machining time at workplace 4. 

Figure 8. Tornado sensitivity analysis graph for throughput time.

As seen in Figure 7, the value of the regression coefficients will be: β1 = +47.879,
β2 = −22.873, β3 = −12.417, β4 = +0.766, β5 = +0.273, β6 = −0.051, β7 = +0.041.

Here, the regression model would take the following form:

y1 = 47.879x1 − 22.873x2 − 12.417x3 + 0.766x4 + 0.273x5 − 0.051x6 + 0.041x7

As seen from Figure 7, the first three factors have the most significant influence on
response, with a weight of up to 98.73% (see the bar graph below).

The practical significance of the values of the regression coefficients is the following:

• The throughput time is positively correlated with the machining time of products at
workplace 1.

• The throughput time is negatively correlated with the mean time between the arrival
of semi-finished P1 in the system (Arrival1).

• The throughput time is negatively correlated with the mean time between the arrival
of semi-finished P2 in the system (Arrival2).

• Throughput time is positively correlated with machining time at workplace 5.
• Throughput time is positively correlated with machining time at workplace 2.
• Throughput time is negatively correlated with machining time at workplace 4.
• Throughput time is positively correlated with machining time at workplace 3.

It follows from the above that the unit increase in the machining time value (x1) will
cause an increase in the throughput time by 47.879 min. Unit growth of the mean time
between arrivals for Arrival1 (x 2) will cause a decrease in throughput time of 22.873 min.
Unit growth of the mean between arrivals for Arrival2 will cause a decrease in throughput



Processes 2024, 12, 716 11 of 17

time of 12.417 min. The same principle mentioned above applies to the other factors.
Because of their low importance, we will not dwell on them in more detail below.

From the tornado graph in Figure 8, in the analysed production system, the relationship
between machining time at workplace 1 and throughput time is positive. Thus, the higher
the value of the processing time, the longer the running time will be. The relationship
between the mean time between the arrival of semi-finished products for Arrival1 and the
intermediate production time is negative, i.e., the shorter the value of Arrival1, the longer
the intermediate period will be.

The tornado chart also provides us with additional information. The size of the
tornado chart’s columns determines the significance of the factor. As seen in Figure 7, the
most significant is the Processing_Time1 factor, followed by the Arrival1 factor, and the
least significant is the Arrival2 factor. Other factors are insignificant.

Analogous conclusions can also be made for the dependence of the factors in question
and the state of WIP (the number of products that are simultaneously present in the
production system). It is clear from Figure 9 that the greater the machining time, the greater
the production WIP (positive, direct dependence). The shorter the times between the arrival
of semi-finished products in the production system, the higher the production WIP will be
(negative, indirect dependence).
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In the sensitivity analysis of the production system from Figure 4, the results of the
regression analysis (sensitivity) between the WIP state y2 and the seven input factors are
displayed in more detail in Figure 9 as a tornado graph.

Figure 9 shows a tornado chart for WIP.
We determine the values of the βi coefficients directly by subtracting them from

the tornado graph. As seen in Figure 9, the value of the regression coefficients will be:
β1 = 620.386, β2 = −462.270, β3 = −270.179, β4 = +10.852, β5 = −5.848, β6 = 5.233, and
β7 = −0.518

Here, the regression model would take the following form:

y2 = 620.386x1 − 462.270x2 − 270.179x3 + 10.852x4 − 5.848x5 + 5.233x6 − 0.518x7

The practical significance of the values of the regression coefficients is analogous to
the above case of the analysis of the intermediate period:

• WIP is positively correlated with workplace machining time 1.
• WIP is negatively correlated with the mean time between request 1 arriving in the

system (Arrival1).
• WIP is negatively correlated with the mean time between the arrival of request 2 in

the system (Arrival2).
• WIP is positively correlated with workplace machining time 5.
• WIP is negatively correlated with workplace machining time 4.
• WIP is positively correlated with workplace machining time 2.
• WIP is negatively correlated with machining time at workplace 3.

It follows from the above that the unit increase in the value of processing time (x1) will
result in an increase in WIP by 620.386 pcs. The unit growth of the median period between
the arrivals of semi-finished P1 (x2) will result in a decrease in WIP by 462.270 pcs. The unit
growth of the mean between the arrivals of semi-finished P2 (x 3) will result in a decrease
in WIP by 270.179 pcs.

From the tornado graph in Figure 9, it is clear that in the analysed production system
the relationship between processing time and WIP is positive. Thus, the higher the value of
the processing time, the higher the WIP will be. The relationship between the mean time
between the arrival of semi-finished products 1 (Arrival1) and the WIP is negative, i.e., the
lower the value of Arrival1, the higher the WIP will be. The relationship between the mean
time between the arrival of semi-finished P2 (Arrival2) and the WIP is negative, i.e., the
lower the value of Arrival2, the higher the WIP will be.

As seen in Figure 9, the most significant is the Processing_Time1 factor, followed by
the Arrival1 factor and the Arrival2 factor. Other factors have very little effect on response.

4. Discussion and Conclusions

The quantification of the influence of factors on production efficiency is presented in
Figures 10 and 11. These figures present the results of the sensitivity analysis as pie and
bar graphs, depicting the percentage influence of each factor on the respective responses.
Specifically, for work in progress, Processing_Time1 impacts up to 45.11%, Arrival1 con-
tributes 33.61%, and Arrival2 affects 19.65%. Collectively, these three factors account for
a significant 98.37% influence, underscoring the critical importance of time management
and material flow in optimising production efficiency. This dominance of specific factors
emphasises the necessity for managers to consider not only their direct impacts but also
the potential for synergies and conflicts when devising process improvements.
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Similarly, these factors’ influence on the length of the running period shows a clear
hierarchy: Processing_Time1 at 56.82%, Arrival1 at 27.12%, and Arrival2 at 14.73%, cumu-
latively accounting for 98.67% impact. This information, confirming the substantial effects
of processing and arrival times on production timelines, provides a roadmap for targeted
interventions. It suggests the value of implementing predictive scheduling algorithms
and fine-tuning Just-In-Time (JIT) delivery systems to mitigate the variability of these
crucial factors. Integrating analytical tools like queueing theory could further dissect these
influences, offering a mathematical basis for observed effects and supporting the design
of more resilient production systems. Figure 10 depicts the sensitivity analysis results for
throughput time and WIP in a pie graph format, offering an intuitive breakdown of each
factor’s contribution. This visual representation enhances understanding and strategically
guides managerial focus towards optimising process timing and material flow.

Figure 11, conversely, details the percentage influence of individual factors on work in
progress and throughput time in a bar diagram format. This serves as a direct guide for
prioritising process optimisation efforts, highlighting that minor adjustments in key areas
can significantly improve overall efficiency.

Figure 12 combines a tornado chart for throughput time with a bar diagram for both
throughput time and WIP. This combined graphical representation provides a comprehen-
sive overview of the factors’ impacts, enabling decision-makers to visualise the relative
importance of each variable at a glance. Such a synthesis of information enables decision-
makers to have a balanced understanding of various factors’ influences, supporting a more
nuanced management approach to production systems.
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In our analysis, we utilised a simple additive linear regression model, which allows
for a certain degree of prediction accuracy between independent and dependent variables.
Although this approach provides a solid foundation for understanding fundamental re-
lationships within the data, it is important to highlight that there also exists a nonlinear
regression model, which may better capture the more complex relationships between
variables (see Table 4).

The fundamental difference between linear and nonlinear regression models lies in
the assumption about the relationships between variables. While the linear model operates
under the assumption of direct proportionality between independent and dependent
variables, the nonlinear model opens up the space for analysing more complex, potentially
nonlinear relationships that may exist in real data.
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Table 4. Comparison of linear regression model and nonlinear regression model.

Feature Linear Regression Model Nonlinear Regression Model

Assumptions Requires a linear relationship
between variables.

Does not require a linear
relationship, suitable for
modelling more complex

relationships.

Complexity Simpler and easier to
interpret.

More complex in
implementation and requires

more advanced analysis
techniques.

Flexibility Limited to linear
relationships.

Allows for flexible modelling
of various relationships.

Interpretability Direct interpretation of
coefficients.

Interpretation can be more
complicated due to the forms

of relationships.

Suitability
Excellent for simple

relationships and quick
analysis.

Preferred when examining
systems with complex

interactions.

The choice between these two models should depend on the specifics of the data
and the goals of the analysis. Although the linear model provided us with the necessary
perspective for our specific conclusions, we recognise the potential value of nonlinear
modelling in situations where the linear approach could be overly simplistic.

In addressing the inclusion of factor screening and local sensitivity analysis, it is
acknowledged that while our study primarily showcased global sensitivity analysis, the
roles of the former methodologies were integral yet under-discussed. Factor screening
would have efficiently identified Processing_Time1, Arrival1, and Arrival2 as pivotal,
optimising our focus and resource allocation for in-depth analysis. Local sensitivity analysis
could offer detailed insights into the system’s response to minor deviations from these
factors’ baseline values, enabling precise operational adjustments. Future studies will
aim to fully integrate this tripartite approach, enhancing the precision of optimisation
strategies within manufacturing systems and providing a more nuanced understanding of
factor impacts.

This study contributes to the field by elucidating the paramount importance of pro-
cessing times and material arrival schedules in production efficiency realms. By leveraging
sensitivity analysis, we identified specific areas where focused improvements can lead
to significant enhancements in productivity and competitive edge, offering insights for
manufacturing entities aiming to elevate their operational efficiency. This marks a pivotal
step forward in applying sensitivity analysis for production system optimisation, paving
the way for more informed and effective management strategies and extending the applica-
bility of these findings to diverse manufacturing contexts to explain sensitivity analysis’s
generalizability and potential as a foundational tool in industrial engineering.
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