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Abstract: Growing concern for the environment, increasing stringent standards for the 

release of chemicals into the environment and economic competiveness have led to more 

environmentally friendly approaches that have resulted in greater pollution prevention via 

waste reduction and efficiency maximisation. Green process engineering (GPE) is an 

important tool that could make significant contributions in the drive toward making 

hazardous and wasteful processes more sustainable for the benefit of the economy, 

environment and society. This article highlights the guidelines that could be used by 

scientists and engineers for designing new materials, products, processes and systems. Few 

examples of current and future applications of GPE, particularly in the areas of biofuels, 

supercritical fluids, multi-functional reactors and catalytic processes, have been presented. 
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1. Introduction 

It is impossible to imagine modern life without the products manufactured by industries. These 

products are used in everyday aspects of life, including agriculture, construction, transportation, 

electronics and well-being. However, their productions generate waste, release toxic chemicals, 

increase greenhouse emissions and greatly affect human health and the environment. As such, these 
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concerns are driving new priorities that have emphasis on being “green”, ranging from products to 

processes and technologies. Engineers and scientists from diverse fields are leading the way to solve 

these issues and challenges. Thus, green engineering has the capability to support and foster this 

innovation. One of the goals of the modern green process engineering (GPE) community is to design, 

develop and commercialise industrial processes that are sustainable and economically feasible, whilst 

minimizing the impact of chemical processes on human health and the environment. GPE is defined as, 

“the design, commercialization, and use of processes and products, which are feasible and economical 

while minimizing (a) generation of pollution at the source and (b) risk to human health and the 

environment. Green engineering embraces the concept that decisions to protect human health and the 

environment can have the greatest impact and cost effectiveness when applied early to the design and 

development phase of a process or product [1]. In the past, the objective of process engineering was to 

minimise product cost and increase profitability without assessing the long-term impacts on the planet 

and human health. Hence, engineers and scientists should carefully make technical decisions that could 

have significant impact on the environment. These decisions can lead us either in the direction of 

sustainability or contribute further to the growing problems. Hence, there is a greater need for 

engineers and scientists to come together for a common vision of saving the planet by providing new 

greener technologies and products in an environmentally friendly manner. 

1.1. Issues and Challenges of Green Process Engineering 

As we move to 2014, our society is faced with challenges in the sustainability of our current 

technological and lifestyle systems. There are enormous global environmental concerns, including 

energy and fuels, food, transportation, construction, water access and use, pollution and ecological 

destruction. The current and future goals of process engineering are therefore not only to sustain and 

reduce the cost of products, but simultaneously reduce the impact on the environment and on human 

health. In other words, today’s process engineering has moved towards green process engineering 

(GPE). As such, the biggest challenge is to find innovative solutions that are based on environmentally 

benign design and manufacturing, to avoid the generation of waste or pollutants, to keep the product 

cost affordable with growing demands, to increase the capability of products to be recycled or reused 

and with the ultimate goal of introducing significant environmental improvements. Most companies 

are on a sustainability mission, where parameters, such as the utilization of non-depletable resources, 

the reduction of global-equivalent greenhouse gases emissions and the reduction of energy costs (by 

utilizing renewable energy resources), are considered important environmental and social targets [2]. 

However, in terms of fully adopting a sustainable process, there are other factors to be considered, 

including suitable market conditions, effective economical regulations and social acceptance defined 

by product demands. To improve industrial sustainability at the process level, the principles of green 

engineering provide a tangible framework to address the growing concern of human health and the 

environment and also provide a suitable guide for green process engineering. Its emphasis is on 

process, system and product optimisation. Anastas and Zimmerman [3] have outlined twelve principles 

of green engineering that are summarised in Figure 1a. Similarly, at the first conference on “Green 

Engineering: Defining the Principles” held in Florida in 2003, nine principles of green engineering 

were developed and are presented in Figure 1b. These principles provide a framework for scientists 



Processes 2014, 2 313 

 

 

and engineers to use in designing processes and products within the boundary conditions set by 

society, business and government, which are guided by important parameters, such as costs, safety, 

demand, performance and environmental impact [4]. It integrates and couples the most important 

elements on product optimisation, processes and systems [5]. 

Figure 1. (a) The twelve [3] and, (b) nine [4] principles of green engineering. 

(a) (b) 

•Designers need to strive to ensure that all material and 
energy inputs and outputs are as inherently nonhazardous 
as possible.

Principle 1

•It is better to prevent waste than to treat or clean up waste 
after it is formed.

Principle 2

•Separation and purification operations should be designed 
to minimize energy consumption and materials use.

Principle 3

•Products, processes, and systems should be designed to 
maximize mass, energy, space, and time efficiency.

Principle 4

•Products, processes, and systems should be “output 
pulled” rather than “input pushed” through the use of 
energy and materials.

Principle 5

•Embedded entropy and complexity must be viewed as an 
investment when making design choices on recycle, reuse, 
or beneficial disposition.

Principle 6

•Targeted durability, not immortality, should be a design 
goal.

Principle 7

•Design for unnecessary capacity or capability (e.g., “one 
size fits all”) solutions should be considered a design flaw.

Principle 8

•Material diversity in multicomponent products should be 
minimized to promote disassembly and value retention.

Principle 9

•Design of products, processes, and systems must include 
integration and interconnectivity with available energy 
and materials flows.

Principle 10

•Products, processes, and systems should be designed for 
performance in a commercial “afterlife”.

Principle 11

•Material and energy inputs should be renewable rather 
than depleting.

Principle 12

•Engineer processes and 
products holistically, use 
systems analysis, and 
integrate environmental 
impact assessment tools.

Principle 1

•Conserve and improve 
natural ecosystems while 
protecting human health and 
well-being.

Principle 2

•Use life-cycle thinking in all 
engineering activities. 

Principle 3

•Ensure that all material and 
energy inputs and outputs 
are as inherently safe and 
benign as possible. 

Principle 4

•Minimize depletion of 
natural resources.

Principle 5

•Strive to prevent waste. 
Principle 6

•Develop and apply 
engineering solutions, while 
being cognizant of local 
geography, aspirations, and 
cultures. 

Principle 7

•Create engineering solutions 
beyond current or dominant 
technologies; improve, 
innovate, and invent 
(technologies) to achieve 
sustainability.

Principle 8

•Actively engage 
communities and 
stakeholders in development 
of engineering solutions.

Principle 9
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In 2012, the U.K. Engineering and Physical Sciences Research Council (EPSRC) announced four 

new engineering projects that aim to help the U.K. in developing lightweight, novel, easily recyclable, 

with a longer lifetime, materials and clean contaminated land for reclaiming valuable metals [6]. These 

projects are: (i) CLEVER (Closed Loop Emotionally Valuable E-waste Recovery); (ii) Cleaning Land 

for Wealth (CL4W); (iii) EXHUME (Efficient X-sector use of Heterogeneous Materials); and  

(iv) CORE (Creative Outreach for Resource Efficiency). 

Thus, as noted, many industrial and academic sectors are considering greener and cleaner 

alternative routes. Green engineering applications are extremely broad and include almost every 

industry. These applications can be generally grouped into the following categories: renewable power 

energy [7], process optimisation [8], environmental monitoring [9] and the development of green 

products and technologies [2]. In this paper, we will focus on green processes, examine how industry is 

moving towards this direction and highlight the challenges chemical and process engineers are 

currently facing. A mini review of a selection of implemented processes, such as the utilization of 

supercritical fluids, continuous hydrothermal processes and a few important catalytic processes, that 

have had direct impact on the field of green engineering are discussed in the following section. 

2. Applications of Green Process Engineering (GPE) 

2.1. Production of Biodiesel and Biofuels 

Currently, the majority of the world’s energy is supplied through petrochemical sources, coal and 

natural gas. However, depleting fossil fuels, increasing energy demand from various sectors, global 

warming, environmental pollution due to the widespread use of fossil fuels and price fluctuations make 

petroleum-based energy unreliable. Therefore, it is increasingly necessary to develop renewable energy 

resources to replace the traditional sources. 

Biodiesel has recently attracted enormous interest as an alternative and environmentally friendly 

fuel source. Biodiesel exhibits characteristics that are similar to traditional diesel fuel. In addition, the 

flow and combustion properties of biodiesel are similar to petroleum-based diesel [10]. Biodiesels 

have the following advantages over diesel fuel: they produce less smoke and particulates, have higher 

cetane numbers, produce lower carbon monoxide and hydrocarbon emissions, are biodegradable and 

non-toxic and provide better performances in engine lubricity compared to low sulphur diesel fuels. 

Hence, it could be used as a substitute for diesel fuel. 

Abbaszaadeh et al. [11] have compared different current biodiesel production technologies, 

including blending of vegetable oils, micro-emulsions, pyrolysis and transesterification reaction. The 

preferred method for the production of biodiesel is generally prepared from the transesterification of 

triglycerides. The most common sources of triglycerides are first generation biofuels, such as edible 

virgin vegetable oils, and second generation biofuels, such as animal fats and used cooking oil (UCO). 

Most of the current biodiesel (>95%) is prepared from first generation agricultural crops [12]. The use 

of food sources for biodiesel production could have serious consequences on the food supply chain. 

Hence, UCO is considered to be an attractive feedstock for biodiesel production, since it does not put 

pressure on food supply, helps in recycling the UCO and is significantly cheaper than virgin oils. 

However, UCO must go through a pre-treatment process before it can be used for the production of 
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biodiesel [13,14]. Alcohols, such as methanol, ethanol and butanol, have been used for the 

transesterification reaction [15,16]. However, it is considered that short chain alcohols, such as  

methanol and ethanol, give a stable product and higher conversion, compared to long-chain  

alcohols [17]. The transesterification reaction can be acid-catalysed [18], alkali-catalysed [19] or 

enzyme-catalysed [18,20,21]. A number of authors have reported biodiesel production in terms of 

composition, properties and specification [22], the effect of different catalysts on biodiesel  

production [23], biodiesel production using enzymatic transesterification [24] and waste cooking  

oil [25,26]. 

A comparison of an immobilised enzyme (Novozyme 435) with an ion exchange resin  

(Purolite D5081) for the pretreatment of used cooking oil (UCO) for biodiesel production was reported 

by Haigh et al. [18]. A 94% conversion of free fatty acids (FFA) was obtained using Purolite D5081 

compared to FFA conversion of 90% with Novozyme 435. On the other hand, it was reported that 

there are side reactions associated with Novozyme 435, which result in the formation of more fatty 

acid methyl esters (FAME) and FFA. However, it was stated that Novozyme 435 uses a low optimum 

methanol to FFA ratio of 6.2:1, instead of the very high methanol to FFA ratio, i.e., 98:1, required by 

Purolite D5081 for optimum FFA conversion. Jachuck et al. [27] reported an energy efficient 

continuous production of biodiesel from methanol and sodium hydroxide using an intensified narrow 

channel reactor module and canola oil as a feedstock. A triglyceride conversion of 98% was reported 

within 3 min at 60 °C, 80 psig and 1% catalyst loading. 

To eliminate the drawbacks of first and second generation biofuels, including the issue of 

sustainability, the third generation of biofuels, such as microalgal oil, is regarded as the best route for 

biodiesel production, as it is independent of food sources [12,28,29]. During the process of 

photosynthesis, algae efficiently store solar energy and sequester CO2, easing climate change caused 

by the emission of greenhouse gases [29]. In addition, algae could grow 7–31 times faster than palm 

oil plants, and 50% of their weight consists of oil [28]. Pfromm et al. [30] studied the economics of 

biodiesel from algae using the principle of conversion of mass and concluded that algal biodiesel could 

be produced sustainably with the exception of natural gas to produce nitrogen-based fertiliser in the 

long term. Overall, the commercialization of algae to biodiesel during initial stages will depend on the 

support of the government [31,32]. A number of reviews on biodiesel production using microalgae as 

feedstock has been published [33,34]. 

A number of publications have reported the production of biodiesel from algal oil using a two-step 

process, i.e., acid esterification followed by base transesterification. [35,36]. Using a two-step process, 

a 90.6% yield of biodiesel was achieved at optimum conditions using Enteromorpha compressa algal 

oil [36], while 100% conversion of triacylglycerols (TAG) and FFA was achieved using Scenedesmus 

sp. algal oil [35]. Krohn et al. [37] reported the production of biodiesel using a supercritical fixed bed 

continuous flow process using algae (N. oculata) as a feedstock with 85% efficiency. A single-step 

process of converting wet algal biomass (Inoculum: Nannochloropsis sp.) to biodiesel using 

supercritical methanol was reported by Patil et al. [38]. Similarly, a single-step method using a wet 

lipid extraction procedure (WLEP) was conducted to extract 79% of transesterifiable lipids present in 

wet algal biomass (84% moisture) via acid and base hydrolysis [39]. The single-step process looks 

promising, as it eliminates the need for drying and extraction of algal biomass and yields faster 

reaction times. Martin and Grossman [40] conducted experiments for the production of biodiesel using 
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different technological routes and concluded that for algal oil, the optimised route for biodiesel 

production is an alkali-catalysed process, while for waste cooking oil, heterogeneous catalysed 

transesterification is regarded as the optimum process for biodiesel production. 

As of now, the production of biodiesel is much less compared to traditional fuels to make a 

significant impact on the fuel market. In comparison to petroleum-based fuel, biodiesel has poor cold 

flow properties, therefore, having a tendency to gel or solidify at low temperatures, and possesses low 

volatility, high pour and cloud points, higher NOx emissions and incomplete combustion. In addition, 

the cost for biodiesel is not competitive compared to petroleum-based fuel and requires special 

management for transportation and storage. However, engineers and scientists are putting significant 

efforts into improving the current technology of biodiesel production, so as to reduce the greenhouse 

gases and to meet the needs of current and future fuel demands. 

2.2. Green Synthesis of Organic Carbonates from Carbon Dioxide 

One of the requirements for a sustainable environment in designing a green chemical process is the 

utilization of renewable raw materials. Carbon dioxide (CO2) emissions have increased to 

unsustainable levels in the atmosphere, which has led to climate change. The reduction of CO2 

emissions has therefore become a global environmental challenge. Organic carbonates, such as 

propylene carbonate (PC) and dimethyl carbonate (DMC) have been widely used as intermediates in 

the synthesis of chemicals, pharmaceuticals and fuel additives [41–45]. Organic carbonates are 

generally synthesised using homogeneous catalysts, toxic raw materials, including phosgene and  

iso-cyanates and solvents [45–50]. Hence, there is an urgent need for an environmentally benign green 

process for the synthesis of organic carbonates from CO2 by using a heterogeneous catalyst and 

eliminating the use of toxic chemicals and solvents. Several methods have been developed to design a 

stable and reusable heterogeneous system by immobilised or grafted ionic liquids and salts into solid 

materials, such as polymers [51,52], a molecular sieve MCM-41 (Mobil Composition of Matter  

No. 41) [53,54], magnesium oxide (MgO) [55,56] and silicon dioxide (SiO2) [57,58]. These 

heterogeneous catalysts showed good catalyst activity and selectivity for the cycloaddition reaction of 

organic carbonate synthesis, but failed in terms of catalyst reusability. 

Adeleye et al. [59] synthesised PC in a Parr high pressure reactor using several heterogeneous 

catalysts, including ceria doped zirconia (Ce-Zr-O), lanthanum oxide (La-O), lanthana doped zirconia 

(La-Zr-O), ceria and lanthana doped zirconia (Ce-La-Zr-O) and zirconium oxide (Zr-O), and without 

using a solvent. High propylene oxide (PO) conversion and yield of PC were reported at 170 °C,  

70 bar CO2 pressure and 10% catalyst loading using the Ce-La-Zr-O catalyst. Reusability studies 

revealed that the Ce-La-Zr-O catalyst could be used several times without any significant decrease in 

PC yield. 

Similarly, Saada et al. [60] have used heterogeneous catalysts, such as ceria-zirconia doped graphene 

(Ce-Zr-graphene) catalyst, for the synthesis of DMC from CO2 in the presence of 1,1,1-trimethoxymethane 

(TMM) as a dehydrating agent and without using a solvent. The results for the synthesis of PC and 

DMC look promising as a future greener process. From the environmental, economic and human 

health point of view, solvent-free heterogeneous catalysis is the process route of the future for 

eliminating the shortcomings of the current process of organic carbonate synthesis. 
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2.3. Production of Commercially Important Epoxide Building Blocks 

Epoxides are valuable building blocks for organic synthesis, particularly for the production of 

commercially important products for pharmaceuticals, plastics, fragrances, food additives, paints and 

adhesives [61–64]. The conventional methods for the industrial production of epoxides employ either 

stoichiometric peracids or chlorohydrin as an oxygen source. However, both methods have a serious 

environmental impact, as the former produces an equivalent amount of acid waste, whilst the later 

yields chlorinated by-products and calcium chloride waste. In addition, there are safety issues 

associated with the handling and storage of peracids. Hence, there is a strong need for cleaner catalytic 

epoxidation methods that use safer oxidants and produce little waste.  

Over the years, soluble compounds of transition metals have been used as efficient catalysts in 

alkene epoxidation [65,66]. A notable industrial implementation of homogenous catalysed epoxidation 

is the Halcon process [67]. However, homogenous catalysed systems suffer from several industrial 

difficulties, including corrosion, deposition of the catalyst on the wall of the reactor and difficulties in 

the separation of the catalyst from the reaction mixture, which may lead to product contamination [68]. 

As such, alternatives have been considered. These new routes include developing a greener 

epoxidation process by utilizing a heterogeneous catalyst and a benign oxidant, such as tert-butyl 

hydroperoxide (TBHP), as it is environmentally benign, safer to handle and possesses good solubility 

in polar solvents. There has been a considerable amount of publications on polymer supported alkene 

epoxidation catalysts, such as Fe, Ni and Co [69], Ru [70], Ti [71], Mn [72], Mo [73] and Cu [74]. 

Additionally, polymer supported molybdenum catalysts have been reported to be effective for alkene 

epoxidation using alkyl hydroperoxide as the oxygen source [75–83]. 

A number of authors reported a novel and greener solvent-free process for alkene epoxidation using 

environmentally benign tert-butyl hydroperoxide (TBHP) as an oxidant [84,85]. In this process, 

polybenzimidazole supported molybdenum complex (PBI.Mo) and a polystyrene 2-(aminomethyl) 

pyridine-supported molybdenum complex (Ps.AMP.Mo) were used as catalysts for the epoxidation of 

alkenes. During the epoxidation reaction, tert-butanol is also formed as a co-product, and hence, this is 

termed as an atom-efficient process. Furthermore, tert-butanol can be efficiently recycled through 

hydrogenolysis and oxidation [86]. Recently, continuous epoxidation of 1-hexene with TBHP using 

the Ps.AMP.Mo catalyst has been conducted in an RDC (Reactive Distillation Column) [87,88] and 

FlowSyn reactor [89,90]. 

Continuous flow reactions in a FlowSyn reactor (Figure 2) have shown substantial benefits, 

including increased selectivity, scalability and reproducibility, and therefore, they have enormous 

potential as a process alternative for carrying out liquid phase chemical reactions [91–94] compared to 

experiments conducted in a classical batch reactor. The reactor is equipped with a stainless steel 

column packed with catalyst, two HPLC pumps, a control interface, SquirrelView software and a data 

logger supplied by Grant Instruments. Recently, epoxidation experiments conducted in a FlowSyn 

reactor achieved 95% conversion of TBHP and ~82% yield of 4-vinyl-1-cyclohexane 1,2-epoxide at 

353 K and a 5:1 feed mole ratio (FMR) using Ps.AMP.Mo catalyst [90]. 
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Figure 2. Continuous FlowSyn flow reactor experimental set-up. 

 

2.4. Green Chemical Processing Using Supercritical CO2 (SC-CO2) 

A supercritical fluid (SCF) is defined as a material that is used in a state above the critical 

temperature and critical pressure (Figure 3) where gases and liquids can coexist [95–97]. They exhibit 

unique properties that are different from those of either gases or liquids under standard conditions. 

SCF has a higher diffusion coefficient, lower viscosity (very similar to the gas phase) and lower 

surface tension than a liquid solvent and improved mass transport properties. SCF properties can be 

tuned dramatically by small changes in pressure, especially when the critical parameters are being 

approached [98]. 

Figure 3. A simplified phase diagram for a pure phase substance illustrating density 

changes from liquid to gas. Pc and Tc are the critical pressure and temperature, respectively. 

Pc and Tc are the defining boundaries on a phase diagram for a substance. Beyond these 

points, the fluid is supercritical, with unique physical and chemical properties between 

gases and liquids. 

 

The increased interest in SCFs is driven by the ability to easily modulate their properties  

(via altering the pressure and temperature) and, more importantly, their potential to substitute toxic 

organic solvents [95,99] Conventional synthetic processes use volatile organic solvents that are 

flammable, toxic, generate large amounts of waste and, consequently, are non-sustainable. Dictated by 
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the changes in legislation on waste solvent production and emissions and the significant increased 

costs of their waste disposal, many industrial sectors have moved towards cleaner and greener 

chemical manufacturing routes. 

The substitution of the organic solvents by SCFs (e.g., carbon dioxide or water) offers significant 

improvements in the chemical and environmental fields. As such, supercritical carbon dioxide  

(sc-CO2) offers relatively low critical parameters (Tc = 31.1 °C, Pc = 7.38 MPa), non-toxicity,  

non-flammability, recyclability and is a by-product of the industrial synthesis of ammonia [100]. 

Furthermore, it leaves no residue, as the solvent removal is done easily via the decompression of CO2. 

As a result, the number of applications in various areas, including industrial scale-up production, has 

increased dramatically. These include nutrition, such as coffee bean decaffeination, pharmaceutical 

and polymer processing [99,101–103] of compounds, such as hyperbranched copolyesters [104], 

polycarbonates [105] and polyurethane [106], cleaning applications in the area of microelectronics, 

medical instrumentation and metallic surface cleaning, textile processing and dyeing of natural fibres, 

such as cotton, cellulose fibres and some synthetic materials [107,108], offering optimisation in the 

economical, energy reduction and waste aspects of this technology [109,110], chromatography and 

materials synthesis [111–114], such as metallic Janus silica particles [115], palladium (Pd) 

nanoparticles [116] or the treatment of LiFePO4 cathode materials [117], in addition to the fabrication 

of semiconductor devices [118]. Recent scientific reports have utilised sc-CO2 for the synthesis of 

graphene-related materials, including exfoliation of graphite to make graphene [119], 

polystyrene/functionalised graphene nanocomposite foams [120], platinum (Pt) [121] or  

platinum-ruthenium/graphene catalysts [122] for methanol oxidation and cell or silver-graphene 

antibacterial materials [123]. Our group employed an innovative approach for synthesizing  

graphene-inorganic nanoparticles via the utilization of sc-CO2, which allows us to homogeneously 

grow and disperse various nanoparticles onto graphene [124,125]. This is because of the high diffusion 

rates, zero surface tension and low viscosity; the SCF can rapidly transport and homogeneously deposit 

a range of materials onto a sample matrix very efficiently. In a typical experiment, graphene 

(synthesised using the chemical exfoliation method), a Pd precursor and the reducing agent were 

placed in the reactor with sc-CO2, (as shown in Figure 4), leading to the formation and homogenous 

dispersion of Pd nanoparticles onto graphene. 

Figure 4. A schematic representation for the synthesis of Pd-graphene nanocomposites 

using sc-CO2. 
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The Pd-graphene ratio was varied, and the properties of the nanocomposites were studied. Atomic 

force microscopy (AFM) and transmission electron microscopy (TEM) images of homogeneously 

dispersed Pd nanoparticles onto graphene materials are shown in Figure 5. This is a promising strategy 

for designing, synthesizing and developing next-generation functional novel nanomaterials with a 

broad range of applications, where the simplicity of the reactor design offers great possibility for the 

production of graphene-based nanocomposite materials. 

Figure 5. (a) Atomic force microscopy (AFM) images and (b) transmission electron 

microscopy (TEM) images of Pd-graphene nanocomposites. 

(a) (b) 

2.5. Continuous Hydrothermal Flow Synthesis (CHFS) 

Like sc-CO2, supercritical water (sc-H2O) has attracted tremendous interest amongst academia and 

industry [126]. The critical parameters of sc-H2O (374 °C and 22.1 MPa) are higher than those for  

sc-CO2 (31.1 °C and 7.38 MPa). In the supercritical state, water solvent properties, such as the density, 

viscosity and dielectric constant, change drastically in comparison to ambient water [95]. Conventionally, 

due to the high dielectric constant, ambient water easily dissolves polar compounds [127]. However, 

near the critical phase, the dielectric constant of water is greatly reduced, and therefore, it has the 

ability to dissolve non-polar compounds. Furthermore, the lower density and viscosity values of water 

at its supercritical state mean higher diffusion and, consequently, faster reaction rates, provided that 

mass transfer is the rate controlling step of the process. The density, viscosity and dielectric constant of 

sc-H2O, as with most SCF properties, can be controlled by fine-tuning the pressure and temperature of 

the fluid. Sc-H2O with unique tuneable properties provides an excellent medium for the synthesis of 

various highly crystalline nanoparticles [128]. 

In the manufacture of materials, hydrothermal (superheated or sc-H2O) syntheses can offer many 

advantages over conventional preparation methods, e.g., lower synthesis temperatures and relatively 

less processing steps [129–131]. The vast majority of hydrothermal synthesis tends to be conducted in 

batch reactions, which are time consuming and allow little or no control over the final product 

properties. Following the pioneering research of the Arai group in Japan [132], continuous 

hydrothermal flow reactors were developed [133–136]. The process is considered green, since it uses 

water rather than organic solvents. The basic process involves mixing a flow of superheated or sc-H2O 

with a flow of an aqueous solution of metal salts to give the rapid precipitation and growth of  
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well-defined particles [137,138]. The composition and certain particle properties, such as size and 

morphology can be modulated by controlling the ratios of the metal salt feed, the pressure, the 

temperature of mixing and the presence of a pH or redox modifiers [131,137,139]. Sc-H2O provides a 

rapid nucleating and crystallizing environment within a hydrothermal flow reactor, which facilities the 

accelerated synthesis of highly crystalline nanomaterials. The mechanism of the production of 

nanomaterials is generally explained in terms of: (i) the kinetics of the reaction; (ii) the solubility of the 

metal oxide; and (iii) the hydrodynamics around the mixing point. Near to or in the supercritical 

conditions, the rate of the hydrothermal reactions increases, and the solvation of metal oxides are 

extremely low. Consequently, such hydrothermal reactions are associated with high supersaturation 

levels, very rapid nucleation, high dehydration and low growth rates, which lead to the precipitation of 

fine particles. Further, the reaction engineering of the reactor, including the shape and the direction of 

the mixing point, influence the particle size and the particle size distribution of the final product. 

Commonly, the mixing of water and metal feeds is usually carried out in a tee union mixer. In the 

nozzle reactor, the water is injected downwards using a pipe-in-pipe design [133,136], whereas the 

side injection of water has been reported to produce smaller particles. Recently, a new mixer design 

was reported, where the metal salt feed and auxiliary were mixed well and then split into two streams 

before entering the reactor through two inlets, where they meet sc-H2O, forming nanoparticles [140]. In all 

cases, the synthesis of uniform reproducible nanoparticles has been successfully achieved. To 

conclude, continuous hydrothermal synthesis has been proven to be an excellent medium for the 

synthesis of nanomaterials. In such processes, control over particle properties, such as the size and 

composition, is easily achievable. Moreover, continuous hydrothermal systems offer the ability to 

carry out synthesis in a high-throughput mode, enabling the discovery of new materials [139,141,142]. 

Additionally, large-scale production is also reported [143,144]. 

2.6. Supercritical Water Oxidation (SCWO) Process 

Supercritical water oxidation utilises the unique properties of sc-H2O, such as the high diffusivity, 

low density and remarkable mass transport properties, for the destruction of various toxic and 

hazardous wastes streams, such as paints, oils, pharmaceutical wastes, chemical warfare agents and 

contaminated soil [145–149]. The addition of an oxidant, such as hydrogen peroxide or oxygen, is 

often required. The destruction efficiencies of supercritical water oxidation (SCWO) are reported to be 

very high (99.99%). At supercritical conditions, various organic compounds, such as chlorinated 

organic compounds or nitro-compounds, are destroyed to more environmentally friendly compounds, 

such as chloride ions and nitrates, respectively [150]. However, this process is associated with 

technical drawbacks, such as corrosion and salt precipitation, and, as such, is limited to the selection of 

a suitable wastewater and correctly designed reactors that satisfy a selection of criteria for successful 

operation, including an energy recovery system for the economically feasible implementation of this 

technology [151]. 

2.7. Green Process Using Biphasic Catalysis 

Most of the industrial processes rely on catalysis, such as chemical, pharmaceutics, materials, 

polymers and energy. In the case of homogeneous catalysts, where the catalyst is in the same phase as 
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the reactants, they offer numerous advantages for optimizing catalytic systems [152]. However, 

homogeneous catalysts suffer from many drawbacks, including difficulty in separating the catalyst 

particles after the reaction, which could increase the overall product cost. The concept of biphasic 

catalysis, which could possess high activity and reusability, has attracted considerable interest [153]. 

One such example of the biphasic catalytic process is the Ruhrchemie/Rhone-Poulenc commercial 

process [154]. In a biphasic catalysis system, a homogenous catalyst is modified to dissolve in a 

particular solvent, e.g., Solvent A, and the reactants are dissolved in another solvent, e.g., Solvent B. 

During the course of the reaction, the reactants, catalyst and Solvents A and B are vigorously stirred to 

form a single phase in which the reaction can take place. As soon as the reaction is completed, the 

reaction mixture is cooled down, resulting in phase separation and can be easily separated by simple 

decantation. Since the catalyst and product are in separate phases, this helps in removing the catalyst 

from the reaction mixture, and it could be recycled several times without any problems. Yu et al. [155] 

investigated the oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide as the oxidant 

and metal dodecanesulfonate salts as the catalysts and found that ~100% selectively could be achieved 

by the principle of biphasic catalysis. Recently, the application of biphasic catalysis for hydrogenation 

of cinnamaldehyde to hydrocinnamaldehyde has been reported, wherein 100% selectivity of 

cinnamaldehyde to hydrocinnamaldehyde has been achieved [156]. 

3. Conclusions 

Engineering strategies have a direct significant impact on the environment. These approaches can 

either add to growing environmental concerns or direct us towards sustainability if the right tools and 

options are selected. As such, green engineering is an effective approach, which offers guidance and 

support towards the direction of sustainable processes, products and systems, whilst reducing the risks 

to humans and the environment. The “greening” of the industry with the introduction of processes that 

provide adequate environmental protection is a key component for the future sustainable growth of our 

society. To implement this vision, new approaches have been developed. These include the utilisation 

of greener supercritical fluids, catalysis, continuous flow processes for the synthesis of a broad range 

of materials or the conversion of carbon dioxide to a value-added chemical. Overall, the examples 

represented here aim to be green in terms of processing with cleaner solvents, avoiding multiple step 

reactions and lowering the energy requirements, in addition to providing materials with improved 

properties. To conclude, driven by fast developing social and economic factors, the greening of the 

industry is the key to our future, where the motivation and efforts of chemical and process engineers 

have introduced attractive and ecological changes via changes in chemical processes. However, there 

still are challenges ahead, and much has to be achieved for the “greening” of chemical processes. 
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