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Abstract: This paper gives an analysis of the efficacy of PFC strategies. PFC is widely
used in industry for simple loops with constraint handling, as it is very simple and cheap to
implement. However, the algorithm has had very little exposure in the mainstream literature.
This paper gives some insight into when a PFC approach is expected to be successful and,
conversely, when one should deploy with caution.
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1. Introduction

Predictive control [1,2] is widely adopted in industry due to its ability to handle constraints, delays and
interactivity in an intuitive, as well as effective manner. However, it is also noted that most applications of
predictive control (MPC) are very expensive and, thus, restricted to relatively large or whole unit control
operations. This observation is somewhat depressing, given the prevalence of conventional strategies,

such as PID, even for loops where PID clearly does not work particularly well; staff tend to prefer to
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use what they know and understand, even when performance is relatively poor compared to what one
could obtain.

Of course, there is a major exception to this, and that is predictive functional control (PFC) [3,4],
which has a very significant penetration into markets where classical methods, such as PID, predominate.
The success is largely due to a few significant attributes:

1. The energy and enthusiasm of key staff alongside the intuitive nature of the approach has enabled
effective promotion of the benefits within industry.

2. The inclusion of PFC on core curricula [5] for potential plant operators, so that they are familiar
with how to tune PFC and, thus, view it as an obvious alternative to PID.

3. PFC has costs similar to PID, whereas popular alternative MPC algorithms are neither cheap and/or
not embedded in local hardware or software. Moreover, PFC handles constraints and delays much
more easily than PID approaches.

4. A default PFC set-up handles ramp and parabolic targets, whereas such scenarios have not captured
the attention of the more mainstream MPC literature, despite many practical scenarios having
such targets.

5. Because the concept is so simple, it can easily be applied on non-linear systems, which is certainly
not true for most MPC algorithms.

There appears to be little formal analysis of PFC, guarantees of performance and the like within the
literature, whereas such properties can be obtained for many predictive control algorithms, in particular
the popular dual-mode approaches [6,7]. Consequently, there seems to be a clear need in the literature
for some analysis of PFC to state things like:

Can the tuning be systematic?

Can one give any form of guarantee or expectation of good closed-loop performance?
How can we make PFC robust against model parameter uncertainty?

Can one identify scenarios where PFC will work well and, conversely, may not?

M S

Are there simple adaptations to PFC that would extend the range of scenarios for which it

works well?

This paper will offer some useful insights on what might be considered the more elementary and core
applications of PFC; later work will tackle more challenging application issues.

Section 2 gives a brief review of the core concepts underpinning a PFC approach and demonstrates
that the coding is trivial (at least for the linear case). Section 3 focuses on first order systems and
demonstrates that, for this case, one can derive some rigorous proofs of stability and performance.
Section 4 considers higher order systems and shows that for a wide range of open-loop dynamics,
including some challenging ones, the use of very simple figures gives an intuitive and simple insight
into how PFC can be tuned and, indeed, the range of closed-loop behaviours one can reasonably expect.
Section 5 then focuses on some cases where a simple PFC design does not work well and is not easy
to tune systematically, or at all. Practitioners in PFC have solutions for many such cases, but the
implementation is more involved and, thus, beyond the remit of this paper and, indeed, emphasises

the fact that a simplified approach is not enough. The paper finishes with some conclusions and a
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discussion of opportunities for further studies. In order to retain a clear focus, this paper does not look
explicitly at non-step targets and analysis for non-linear systems, and clearly, that is one important avenue
for further work.

2. Basic Concepts of PFC

This section reviews the main parts of PFC and how such an algorithm could be coded. For now,
the emphasis is on PFC for tracking step targets; later work will consider the additional issues linked
to tracking ramps and parabola. Furthermore, for convenience, as this does not impact on fundamental
concepts, tuning or analysis, this paper excludes the algebraic details required to ensure offset correction,
although those are included in all of the simulation examples. It is known that PFC automatically
includes integral action, and this enables offset free tracking in the presence of small levels of uncertainty.
Uncertainty is usually accounted for by adjusting predictions using a term d or disturbance estimate,

which is the difference between a model output and the process.

2.1. Target Behaviour or Reference Trajectory

A key concept underlying PFC is that one would like to achieve closed-loop behaviour close to a
first order system with a delay ¢4 seconds (or m samples), and thus, a key requirement is to identify an
input sequence that will achieve this. The target closed-loop behaviour (or reference trajectory) can be

expressed as:
—Std —m
tr e tr z (1 — p)

where 7" (s) represents the continuous time or Laplace representation and 7'"(z) the discrete time or

1—pzt M

z-transform representation; R is taken to be the actual steady-state target. A typical desired step response,

with no delay, is plotted in Figure 1, where, here, the discrete pole is set at p = 0.8.
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Figure 1. Target closed-loop step response with a pole of 0.8 and no delay.
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Ts
The discrete pole p and target time constant 7. are related through the sampling time 7 as p = e 7r.

Some authors prefer to define a target settling time, such as the time it takes to get within 5% of the target
(denoted closed-loop time response (CLTR)) and note that 7, ~ C LT R/3.

2.2. Coincidence Point

The objective is to make the process behave like a pre-specified first order system. This means
the desired behaviour is “known”. For example, assuming no delay to simplify the algebra for now
and taking y; to be the current output and IR to be the steady-state target, one wants the future
outputs to follow a first order response from the current value to the target, in other words, to take
the following values:

Yori = R—[R—yilps 1>0 (2)

For step targets, PFC chooses a single sample instant in the future, the so-called coincidence
horizon n,, and ensures that the actual output prediction matches the target response at that point only.
Consequently, the PFC control law reduces to (conceptually), enforcing the equality:

Yitn e = B — [R — yi]p™ 3)

where the notation ¥y, means the predicted value of y at sample k + n, where the prediction is made
at sample k.

Figure 2 illustrates conceptually what is going on. The target trajectory r'" is marked with a dotted
line. One forces the output prediction (solid line) to “coincide” at a specified horizon (here, 10 samples
into the future). The computation is updated at every sample instant, and this introduces feedback.
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Figure 2. Conceptual illustration of PFC control law definition matching prediction to target
trajectory at a single point.

Remark 1. The target behaviour Equation (2) and control law requirement Equation (3) can be written
down by inspection. Clearly, Equation (2) is simple. Where the system has a delay of “m” samples, the
target behaviour should be modified slightly, as discussed in Section 2.4.
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Remark 2. One can argue that PFC is intuitive in that one in essence proposes a control move that gets
the system output closer (than the current output) to the desired steady state some time in the near future
and then continually update this, so in effect, one expects to always be getting closer and closer to the
target. However, the main weakness of PFC is the same as its strength. Basing control decision making
on a single point will work well if matching that single point implies the rest of the response is also fairly
closely matched, as this will imply consistent decision making at each sample. However, conversely, if
matching a single point does not imply matching of other parts of the response, then the implied decision
making could be seriously flawed, as it could lead to inconsistent decisions from one sample to the next.
In simple terms, one needs to be sure that the part of the prediction beyond the coincidence point moves

smoothly and monotonically to the steady state.

2.3. Prediction and the PFC Control Law

This section presents PFC for linear discrete models (single input and single output). The decision
variable is taken to be the value of the future system input. Moreover, for the purposes of prediction, the

system input is assumed to be constant in the future:
Up = U1k = U2k = 4)

so 1implicitly, within the predictions, one is “expecting” or utilising behaviour close to

open-loop dynamics.
2.3.1. First Order Models with Open-Loop Dynamics Equal to Target Dynamics

For a first order model and constant input, prediction is very simple.

14 a2z YDy = bz b
( 1 )yk 1 k } = Y = 1

(1— <_a1)i)uk =+ (_al)iyk &)

Uk = Uy = * -+ 1+aq

L'=1—qaz71, thatisa = —ay, as this

For the first order case only, we write the denominator as 14-a; 2~
makes the prediction algebra of Equation (5) easier and more transparent; also, for simplicity, b = b;.
Combining this prediction with the coincidence requirement of Equation (3) results in the following
equality or essence, the control law.

(R—(R—y)p" —a™yr)(1 —a)
b(l —a™)

Theorem 1. [If the target pole p is chosen equal to the open-loop pole a, that is a = p, then the

R— (R = yop™ =

(6)

(I —a™)up+a™y, = u,=

1—a

closed-loop pole will match the open-loop pole for any choice of n,, (in the nominal case).

Proof. The PFC control Equation (6) is summarised as follows when p = a:

_[RA=p™) + ("™ —p™)y](1—a)  RA—p™)1—-a) 1-a, R
= b(1 — pmv) D =% )

where, in effect, K represents the system steady-state gain. As expected, this suggests that input is

moved directly to the expected steady-state and is not dependent on the current output. This observation
is irrespective of the choice of coincidence horizon n,. Clearly if the input selection is a constant,

open-loop dynamics will follow. [
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2.3.2. First Order Models with Open-Loop Dynamics Different from Target Closed-Loop Dynamics

As the prediction of the output at the coincidence point is based on an assumption of constant input,
for large coincidence horizons, it is not intuitively reasonable to request closed-loop behaviours much
different from open-loop behaviours, as this will give a significant inconsistency between the assumed
input predictions and the actual desired input behaviour to give the required response; in other words,
faster responses need over-actuation in transients. Nevertheless, a basic premise of PFC is that one can
choose a target pole, so it is worth doing some analysis of the extent to which this really can work
effectively. Specifically, we are interested in the extent to which the user selection of p is meaningful in

that the resulting closed-loop dynamic is close to p.

Theorem 2. For first order models, the link between the desired pole p and the actual closed-loop pole

is weak and is effective only when n, = 1.

Proof. The PFC control and system is summarised as follows when p # a:

(R(1—p™) + p"yx — a™yi)(1 —a)
b(1 —a™) ’

U = (1 —az My = bz uy, (8)

Eliminating uy, one finds that the closed-loop dynamic is given as:

(@ = p)(1 = b

1—az Yy =bz"lu, = (1—az '+ b= ) Yy = YR )
Closed—loop z;gle polynomial
where 7 is a scalar.
The closed-loop pole is therefore defined as:
Ny — oMy )(1 —
pole = a — (a p)(1 = a) (10)

(T —am)

It is obvious that, as n,, increases, the deviation of the pole from a reduces. However, for a coincidence
horizon of one, the resulting pole is given as:

(a—p)(1—a) _
(1-a)

Hence, one can achieve the desired pole exactly if n, = 1. [J

(11)

pole = a —

For completeness, Figure 3 shows how the closed-loop pole position varies with the coincidence
horizon for various choices of p, assuming that a = 0.8; the figure makes it clear that the closed-loop
poles tend to a for large n,, but are close to p iff n, is small.

Corollary 1. The coincidence horizon and parameter p only have a noticeable impact on the control
law if the coincidence horizon is small. Irrespective of the choice of p, the closed-loop pole tends to a as

the coincidence horizon tends to infinity. This is a natural consequence of Equation (10), because:

@) )
imoo (1 —af)

=0 (12)
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Figure 3. Closed-loop pole dependence upon coincidence horizon and p for a = 0.8.

2.4. First Order Model with Delay

The modification to deal with delays is subtle, but simple, so just a passing comment is given here;
with this minor edit, the results of this section all carry across. Clearly, if a system includes a delay,
then a reasonable target to follow is a delayed first order response. For a delay of m samples, the target
trajectory becomes:

Ykin, = B = [B—= Ypgmp] ™™™ ny >m (13)

There are two key changes here.

1. The replacement of p"v by p"v~™ to take into account the fact that the response cannot begin until
after m samples.

2. The replacement of process measurement y; by a predicted value ¥y, x; this second change is
essential as the target first order response is expected to begin m samples ahead, so the initial error

from the target must be based on that sample.

2.5. PFC for Higher Order Models

In the case of higher order models, one cannot easily write down a simple expression for the n,, step

ahead prediction [8]. It can be shown that for a model of the form (usually, we assume ay = 1):
[ag +arz ™t + - anz "y = [brz 4 - bz ug (14)
then the n, step ahead prediction, with the future inputs fixed, takes the form:

Yktn, = Nn, Uk + Qn, Lyk:, Yk—1-"" 7yk—n]7:+pny [we1, s Wpmn]” (15)

Y

<

T4

for suitable h,,,, p,, , qn,. Consequently, the PFC control law reduces to:

R—[R—ylp™ = hn,uk + @,y +Ppu =  wp= i (16)




Processes 2015, 3 32
It is immediately clear that in this case, the algebra gives very little insight into the expected control
law or closed-loop behaviour and, indeed, the sensitivity to the choice of n,,.

Theorem 3. As the coincidence horizon approaches infinity, the PFC control law will reduce to giving

open-loop characteristics for a stable open-loop process, irrespective of the choice of p.

Proof. For a stable open-loop process, it is easy to show that the prediction parameters of Equation (15)

have the following asymptotic properties:

. T'L—l bz
1 by = 2= 0 g, 0 17
i A, =S Py Gn, = 0} (17

Consequently, the control law becomes:

R— R = ylp™ — an, ¥ — Pn,u "
P 7Pl 2iztip R (18)
Ny —00 hny Zi:l b; K

In other words, the selection of input is the steady-state value required to give no offset and is

independent of the current state. [

Corollary 2. The PFC code for large coincidence horizons can be reduced to a few trivial lines. This is
self-evident from Equation (18).

More general guidance on PFC tuning for higher order models will be discussed in Section 4.

2.6. Model Uncertainty, Offset Free Tracking and Disturbances

It is known that PFC provides robust offset free tracking in the presence of some model uncertainty
and disturbances. The detailed algebra is not included in this paper, as it is not a primary focus.
Moreover, these details have no impact on the discussions and analysis in this paper, so they are omitted
to enable easier reading of the core concepts, although the reader will note that they are included within
several of the simulation examples. Therefore, a brief comment only is given here for completeness.

Within PFC, it is common practice to simulate a model (say G,) in parallel with the process G ; the
model is used for prediction. The difference d = y, — v,, between the model output y,,, and process
output y, is taken as an estimate of the system disturbance, although, in fact, it can also correct the offset

for parameter uncertainty. The PFC control law that ensures offset free tracking reduces to:
R —[R = yp(R)]p"™ = yp(k + ny[k) = ym(k + ny[k) + d(k) (19)

Remark 3. Where a system has real roots only, several PFC practitioners (e.g., [4,9,10]) favour using
partial fractions to write the model G, as a sum of first order models. This has the advantage that the
prediction can be written down explicitly in forms like Equation (5) and, thus, with much simpler coding.

However, this issue is not central to the current paper.
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2.7. Constraint Handling

Constraint handling is a core attribute of PFC; however, the techniques for doing this do not form part
of the core or novel contribution of this paper, and thus, the reader is referred to the references for a more
detailed discussion [10]. It should be noted of course that that the proposals given in this paper fit within

a conventional PFC approach, and thus, standard PFC constraint handling procedures can be deployed.

2.8. Summary of PFC Tuning

It is clear that for first order systems, the PFC approach will work well as a means of designing a
control law that will give dynamics close to the open-loop behaviour and offset free tracking. Moreover,
one can use PFC as an effective way of changing the dynamics, as long as the coincidence horizon is
small, preferably one. Section 3 will give some numerical examples to reinforce this.

For systems with more complex dynamics, it is less transparent whether PFC will work well or not.
Given the complexity of Equation (16), existing analysis does not give any useful generic results beyond
Theorem 3. Consequently, there is a need for some better insight into when PFC is appropriate and how

it might be tuned. Section 4 will present some proposals along with numerical illustrations.

3. Numerical Illustrations for First Order Systems

This section will look at the tuning of PFC through a number of first order examples and demonstrate

the impact of changing the parameters p, n,,.

3.1. Concepts of Well-Posed Decision Making

Within predictive control, the concept of well-posed decision making is based on the consistency in
subsequent samples of any decisions made. In other words, if one determines a strategy now that is
supposedly good for the long term, then one would expect that at the next sample, the updated strategy
would be very similar. Substantial changes in strategy from one sample to the next are an indicator of
inconsistency, which could lead to chaos and most certainly are not a solid foundation for a control law.

In this section, the figures presented will give two line plots:

1. The implied PFC prediction at a given sample (denoted wup,yp for the input and
output, respectively).

2. The actual closed-loop behaviour that results (denoted wus,ys for the input and output,
respectively).

3. The signal r in Figures 4, 5, 8, 9 and 12-14 is used to denote the target r'" that arises from
Equation (1), rather than the steady-state target value R.

The indicator we are looking at for well-posed decision making is that prediction and behaviour are
similar, and most certainly, the change from one sample to the next should be small.
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3.2. PFC Responses with Target Behaviour Equal to Open-Loop Behaviour

Take a first order model (1 — az™!)yx = bz~ 'uy; without loss of generality, we will use a = 0.8,
b = 0.25 for the simulation, as the observations here are based around selecting p = a. Plot the
closed-loop responses for various choices of coincidence horizon and overlay the predictions made at
the first sample. The results are given in Figure 4. What is immediately clear is that the predictions and
closed-loop behaviour overlap (ys = yp) precisely (as expected from Theorem 1) in the nominal case,
so in this case, PFC gives well-posed decision making.

For completeness, a Figure 5 shows responses for an equivalent system with a delay; the same

observations follow as expected.

0 5 10 15 20 0 5 10 15| up
Samples Samples |~ ~"US
n =8 n =20 °or
y y

0 5 10 15 20 0 5 10 15 20
Samples Samples

Figure 4. Closed-loop PFC input and output us, ys responses overlaid with predictions

up, yp made at the first sample for a = p; here, ys = yp, us = up.
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n =11 n =20 | -7 up
y y

- ¢ 5 10 15 20 0 5 10 15 20
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Figure 5. Closed-loop PFC input and output us, ys responses overlaid with predictions
up, yp made at the first sample for a = p; here, ys = yp, us = up for system with a
three-sample delay.
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3.3. PFC Responses with Target Behaviour Different from Open-Loop Behaviour

Take the same model as in the previous section, but use time constants a little faster p < a (Figure 6)
and a little slower p > a (Figure 7) than the open-loop dynamics. Again, investigate various choices
of the coincidence horizon. The actual closed-loop dynamic behaviour is strongly linked to the choice
of n,, as discussed in Section 2.3.2, but here, we are also interested in the consistency of the decision

making, so the figures overlay the implied predictions utilised by PFC and, of course, the target dynamic.

0 5 10 15 20
Samples

n =8
y

0 5 10 15 20
Samples

Figure 6. Closed-loop PFC input and output us, ys responses overlaid with predictions
up, yp made at the first sample for a > p.
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y

20000004

0 5 10 15 20
Samples

Figure 7. Closed-loop PFC input and output us, ys responses overlaid with predictions
up, yp made at the first sample for a < p.

1. When p # a, for small n,, there is clearly some inconsistency from one sample to the next, as the

input prediction up at the first sample is different from the closed-loop evolution us that results.
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For example, when p = 0.7,a = 0.8,n, = 1, the input change from Sample 1 to Sample 2 is
from 1.2 to 1.08.

2. Despite the inconsistency between implied predictions yp and actual behaviour ys, with n, = 1,
the target behaviour r has been achieved.

3. As n, increases, the choice of p becomes less and less significant (the output yp does not track the

target ), but there is much better consistency between predictions yp and behaviour ys.

Remark 4. There is an interesting inconsistency noted here. If the coincidence horizon is small,
the design parameter p is effective in changing the closed-loop dynamics, but the implied long-term
predictions are a poor indicator of final behaviour. Conversely, if the coincidence horizon is large, the
design parameter p has no affect, but the predictions are consistent. Of course, readers may note that
PFC never claimed to take any account of long-term predictions within the decision making process, and

therefore, it was not implicit that one would keep the input constant at future samples!

4. Tuning PFC for Higher Order Systems

The reader will not be surprised with the observation that PFC may be less effective when the
expectation of a closed-loop behaviour close to a first order response is invalid or not realistic, as with
higher order systems, and therefore, more care is needed. A weakness of PFC is the lack of the explicit
inclusion of long-term effects. While for systems with simple first order dynamics this matters little,
the repercussions for systems with more challenging dynamics can be more serious, especially if one
introduces constraint handling (some examples are in Section 5). Although a well-trained PFC user can
demonstrate that PFC works well if tuned effectively, it is important to understand the difficulties that
can arise if one makes poor tuning decisions.

In cases where the open-loop response does not include significant oscillation or instability and moves
smoothly to the steady state, it is possible to demonstrate that matching the step response to a first order
response at some point in the future still makes good intuitive sense and is likely to lead to a well-posed
decision making or control law; of course, this is notwithstanding the fact that a rigorous proof or analysis
is future work and may even not be possible in many cases. This section will give some demonstrations
of how one can be systematic at designing a PFC control law that works reasonably well, that is choosing
a coincidence horizon that works reasonably well and achieves close to the target time constants.

4.1. Coincidence Horizon Issues with Higher Order Models

It is normal for higher order systems, even over-damped ones, to have a lag in their step response,
and consequently, forcing the system output to precisely match a typical first order response could be
counter intuitive. See Figure 8 for an example of this; the figure overlays the step responses of:

G

0.2271 02271 \? 0.1z~
- 2=< : ); 5 © (20)

T 1-08: 1 1-0821 T 1200921
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Figure 8. Target first order step response with poles of 0.8 and 0.9 overlaid with a step

response of a second order system.

From this observation, it is rather obvious that using a coincidence horizon of one for higher order
systems makes no sense at all, and indeed, one may need to target a much slower implied first order pole,
such as G, along with a higher coincidence horizon (n, = 12 is marked in this figure) to get sensible
answers! Indeed, it can be shown that using n,, = 1 can imply a controller using “plant inversion”, which
is not robust.

Readers will note that one can only force coincidence with faster poles (G5 and ) by having over
actuation during transients, so the implied steady state within the prediction is well above the target.
Readers are also reminded, however, of Theorem 3 and that using too large n, PFC essentially reduces
to choosing the steady-state input, so the tuning parameter p would have a smaller affect.

The proposal here is linked to the underlying common sense or intuitive nature of the PFC approach,
that is the argument that the part of the prediction which is ignored (further into the future than the
coincidence point) is implicitly moving closer to the desired steady-state, and hence, iterative decision
making will be well posed if it gradually moves the coincidence point nearer and nearer to the target
(in absolute terms). This will happen automatically if 7, is based on a point where the step response is

increasing, and changes relative to the steady state are close to monotonic thereafter.

Conjecture 1. For systems with close to monotonically convergent behaviour after immediate transients,
a good choice of coincidence horizon is one where the open-loop step response has risen to around
40% to 80% of the steady state and the gradient is significant (formal proofs and details constitute

future work).

Remark 5. A manual for training engineers [4,5] on PFC suggests that a suitable value for n, might
also be determined by identifying the so-called inflexion point on the step response curve, that is, where
the gradient is maximum. However, care must be exercised, as the maximum gradient may not be enough

on its own, especially with non-minimum phase systems, as noted briefly with system G..
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4.2. PFC Tuning for Systems with Relatively Simple Dynamics

Consider a simple second order system:

0.04271
Gy= —""°" 21
2T (1-0.8z71)2 @
and overlay the trajectories of several typical targets with the actual open-loop step response (see
Figure 9) and possible choices of coincidence points.

1. Following Conjecture 1 and due to the lag in the process (the step response takes a few samples
to start moving significantly), it is not reasonable to use n, < 5. Similarly, n,, > 15 will put too
much emphasis on the steady state.

2. It is clear that for p = 0.9, an intercept exists between the step response and target, and hence,
n, = 8 would be a logical choice of coincidence point.

3. For smaller and larger choices of p, there is no intercept in the range 5 < n, < 15, and hence,
to force coincidence (essentially to move the step response up or down), PFC will either have to
under- or over-actuate using these choices of p. This is what we expect, as a faster p requires
over-actuation and a slower p requires under-actuation.

4. Limits on the actuation permitted will be a guide as to what range of p is permissible to request
and, indeed, the appropriate n,,. For example, p = 0.7 requires an input over actuation of around
2.5 to get coincidence at n,, = 5 or around 1.8 if n,, = 8.

0 é 16 1‘5 20
Samples

Figure 9. Open-loop step response overlaid with several possible targets and potential
coincidence points.

The actual closed-loop responses with PFC are given in Figure 10, and these reinforce the comments
above: faster p (that is smaller values of p) requires over-actuation in transients, a choice of p = 0.8
and exact coincidence, giving an almost constant input and a slower p (that is, p > 0.8), giving
under-actuation. In all cases, it is clear that a sensible choice of n, has resulted in the choice of p
being an effective tuning parameter, that is the closed-loop outputs converge roughly at the same speed
as the target.
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Figure 10. Closed-loop step responses for a second order system G, with various p,n,
overlaid with the underlying target trajectory.

4.3. PFC Tuning for a Non-Minimum Phase System

Next, take a third order system with some non-minimum phase characteristics, but otherwise
smooth behaviour.
—0.0569271 +0.051422 + 0.0502z3

G, =
121984221+ 1.33012-2 — 0.30122-3

(22)

Overlay the responses of several typical targets with the actual open-loop step response (see
Figure 11). Due to non-minimum phase characteristic, it is clear that using Conjecture 1, the coincidence
horizon should be in the range 7 < n,, < 12. Potential choices of coincidence points are marked on the
figure. Readers may also note that the inflexion point is around n, = 5, and clearly, as the magnitude of
the step response is still very small here, such a design choice for n,, is inappropriate and can be shown
to give very poor closed-loop performance!

12

16 1‘5 20
Samples

Figure 11. Open-loop step response of (G, overlaid with several possible targets and potential
coincidence points for a non-minimum phase system.
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The actual closed-loop responses with PFC are given in Figure 12, and these reinforce the
expectations. Notwithstanding the fact that one cannot follow a first order target in immediate transients
due to the non-minimum phase characteristic, nevertheless, as long as n,, is well chosen, the choice of p
has been effective in affecting the closed-loop settling time and input activity, and thus, p is an effective
tuning parameter.

ny:7,p:0.7 ny:9,p:0.8
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.
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Figure 12. Closed-loop step responses for a third order system G4 with various p, n,, overlaid
with the underlying target trajectory.

4.4. PFC Tuning for an under-Damped System

Next, take an under-damped system.

~ —0.056527" +0.0495z 72
1 —1.56432"1 + 0.670322

5 (23)

Overlay the responses of several typical targets with the actual open-loop step response (see
Figure 13). In order to follow Conjecture 1, it is better to select a coincidence horizon in the range
3 < n, < 6. Potential choices of the coincidence point are marked on the figure.

14
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Samples

Figure 13. Open-loop step response of (G5 overlaid with several possible targets and potential
coincidence points for an under-damped system.
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The actual closed-loop responses with PFC are given in Figure 14, and once again, it is seen that the
choice of p has been effective in affecting the closed-loop settling time and input activity and, thus, is an

effective tuning parameter.
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Figure 14. Closed-loop step responses for an under-damped system G5 with various p, n,

overlaid with the underlying target trajectory.
4.5. Summary

This section has shown that even for processes with underlying dynamics that are not close to a first
order system, nevertheless, PFC can be an effective strategy and, moreover, the tuning parameter p, that
is the target closed-loop time constant, can be used effectively. This, of course, is invaluable to technical
users who wish to specify response times rather the controller gains. In practice, the desired settling
time (CLTR) is used, which can be represented as an equivalent p, as shown earlier. It is noted that one
needs to select the coincidence horizon carefully, and the proposal here involves an overlaying of typical
targets with the open-loop step response as a simple mechanism (Conjecture 1) of identifying a suitable
n,. One can, of course, do an iterative design, underpinned by simulations with various n,, to determine

the final choice.

5. PFC for Processes with Difficult Dynamics

It was hinted in earlier sections that the main concepts in PFC may not carry over well to processes
with oscillatory, unstable or other non-simple dynamics. In simple terms, the assumption of a constant
input is not sufficient to create an output that will have good characteristics [11]. In order then to make
PFC more effective and easier to tune, it may be necessary to undertake some pre-conditioning to form
input predictions and possibly output targets, which are more realistic, but notably, without following
the normal predictive control route of performance indices and quadratic programming optimisations,
which are non-trivial to implement. This section illustrates some of those scenarios, and notably, these

are systems that fail the core requirements to apply Conjecture 1.
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5.1. Second Order Model with Oscillatory Dynamics

It is clear that a system with oscillatory dynamics cannot easily match a first order target. Moreover,
it is intuitively obvious that matching the predicted response at a single coincidence point in the future

could be a very poor indicator of actual closed-loop behaviour. The tuning difficulties are well illustrated
with the following system:

0.1z71 +0.4272
Ge = (24)
1 —27140.8272
The results of using PFC are given in Figure 15 and in essence demonstrate:
n =3
y
2
: ,,' |
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Figure 15. Closed-loop PFC input and output us, ys responses overlaid with predictions
up, yp made at the first sample for an oscillatory system Gf.
1. PFC gives good results with p = 0.7, n, = 2,3 (fails totally for
ny, = 1), but it is difficult to argue that this is more than just a fluke,

given that the shapes of the closed-loop input trajectory are not close
to a constant.

2. For large horizons, the open-loop dynamic dominates and the behaviour is unacceptable.

5.2. Model with Open-Loop Unstable Dynamics

There has been some brief discussion of using PFC with open-loop unstable processes in the past [12];
the proposal there was to prestabilise the predictions by cancelling unstable modes [11] before applying
a PFC algorithm. However, before we return to discussions on how the base PFC algorithm could be
modified (future work), it is worth demonstrating the extent to which it is effective in its base form. The
tuning difficulties are well illustrated with the following system and p = 0.8:

0.1z71 +0.4272

Gr=—" 1.1 (25)

The results of using PFC are given in Figure 16 and, in essence, demonstrate the following:

1. PFC fails for both n,, = 1 and large n,,.
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2. In this case, reasonable behaviour results for n, = 3, but it would be difficult to argue that this is
a systematic design; and certainly, the parameter p has not been effective.

o 5 10 1 ys
Samples Samples | == up
n =8 ny=20 ---us

5 10 15 20 o 5 10 15 20
Samples Samples

Figure 16. Closed-loop PFC input and output us, ys responses overlaid with predictions
up, yp made at the first sample for unstable process G+.

5.3. Summary

For many systems, the tuning of PFC is not obvious, and the designer is left with, in effect, a global
search across p, n,, but without a clear expectation of whether this will give a good result or not.
Intuitively, the core failing is the desire to follow a first order trajectory, and using a constant future input
as this is clearly unrealistic for systems with complex dynamics. Therefore, to extend the benefits of
PFC, one needs to extend the target behaviours and/or input parametrisations. It should be emphasised,
however, that PFC practitioners have work-arounds, and modifications for these scenarios and future
work will investigate those proposals in depth, alongside the consideration of alternative modifications.

e A reasonable conjecture is that one should begin from a target trajectory that is realistic, as
then, ensuring the predictions are close to this trajectory would give a high expectation of
good behaviour.

e For systems with oscillatory open-loop dynamics, it is reasonable to conjecture that the future
control input should be shaped so that the impact of this oscillation is minimised.

e For unstable open-loop processes, it is well known that one should parametrise the future
decisions in such a way that the predictions are all guaranteed convergent [7], preferably to the

correct steady state.

In summary, therefore, rather than using the next value of the input wu; as the control decision and
assuming that all future inputs are constant, one needs alternative parametrisations, which ensure that
the process has underlying good behaviour and, within that parametrisation, include some flexibility that

can be used to influence the speed of response.
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6. Conclusions

This paper has provided an elementary analysis of PFC and the expected behaviour and tuning. It is
clear that generic stability and performance results may not be possible, in general, and, here, have been
determined rigorously only for the simple first order case.

6.1. Key Points

For the first order case, it was shown that the choice of pole is meaningful only for a coincidence
horizon of one. As the coincidence horizon is increased, this parameter has a decreasing effect on the
control law and resulting closed-loop behaviour, and indeed, for high n,, the PFC control law reduces to
estimating the process steady state input; thus, p has no impact at all.

For higher order systems, the tuning rules and efficacy of the parameters p,n, are not consistent
and vary from one example to another depending on the underlying process dynamics. Consequently,
some suggestions were made as to how one could determine an appropriate range of n,, p before any
fine tuning. The methodology was demonstrated on several examples and found to be effective and,
moreover, is similar, but not identical, to the empirical suggestions in [4].

Finally, a rather simple, but useful observation, is that PFC with a large coincidence horizon reduces
to an integral control law, which gives a closed-loop with open-loop dynamics (or so-called mean-level
control, as noted elsewhere in the predictive control literature). Where such behaviour is acceptable,
one can vastly simplify the current PFC code to just a few lines, and moreover, in cases of only input

constraints, even the constraint handling becomes trivial.

6.2. Future Work

Aside from the need to consider whether one can give more rigorous tuning rules with guarantees
of behaviour or performance with higher order systems, there are also a number of issues not covered
here that would be interesting and should be pursued next. For example, one advantage of PFC is the
ease with which one can target ramps and parabolas with no offset or lag, so it would be interesting to
develop some analysis of how that can be done systematically. When does it work well and what sorts
of scenarios produce challenges? Are there simple improvements that can be suggested?

In a similar vein, the constraint handling approaches of PFC are relatively simple, and thus, it is easy
to find examples where the strategies would fail. However, the more important point is that for many
realistic scenarios, it works quite well, and with a very simple approach to code and maintain. Hence,
once again, it would be useful to provide a more formal analysis of the efficacy of PFC approaches to
constraint handling.

Finally, it was noted that there do not exist simple proposals in the literature for how the simple
concepts of PFC can be adapted to deal with some challenging dynamics; this would be worthwhile, as
the benefits of easy coding and tuning would make such proposals useful.
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