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Abstract: Performing experiments for system identification is often a time-consuming task
which may also interfere with the process operation. With memory prices going down and
the possibility of cloud storage, years of data is more and more commonly stored (without
compression) in a history database. In such stored data, there may already be intervals
informative enough for system identification. Therefore, the goal of this project was to
find an algorithm that searches and marks intervals suitable for process identification (rather
than completely autonomous system identification). For each loop, four stored variables
are required: setpoint, manipulated variable, measured process output and mode of the
controller. The essential features of the method are the search for excitation of the input
and output, followed by the estimation of a Laguerre model combined with a hypothesis
test to check that there is a causal relationship between process input and output. The
use of Laguerre models is crucial to handle processes with deadtime without explicit delay
estimation. The method was tested on three years of data from about 200 control loops. It
was able to find all intervals in which known identification experiments were performed as
well as many other useful intervals in closed/open loop operation.
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1. Introduction

In the process industry, models of varying fidelity are relevant for many different purposes, such as
process design, PID controller tuning, multi-variable supervisory control and process diagnostics. Often
the task of building a process model is complemented with an identification procedure, where some
model parameters are estimated from measured data. Performing dedicated experiments for system
identification is, however, often a time-consuming task which may also interfere with the process
operation. Nowadays, it is common to store measurement data from the plant operation (without
compression) in a history database. Such databases can be a useful source of information about the
plant, and might already contain suitable data to perform process identification. Due to the size of such
databases, searching for intervals of data suitable for identification is a challenging task. Preferably, this
task should be supported by a data scanning algorithm, that automatically searches and marks interesting
intervals of data.

Relatively little can be found in the literature that directly addresses this problem. In [1], a data
removal criterion is presented that uses the singular value decomposition (SVD) technique for discarding
data which are only noise dependent and leads to a larger mean square error (MSE) of the estimated
model parameters. Horch introduced in [2] a method for finding transient parts of data after a setpoint
change, specifically targetting the identification of time delay [3]. In [4], the authors discuss persistence
of excitation for on-line identification of linear models but do not deal with finding intervals of data that
are persistently exciting. Data mining techniques have been proposed to give a fully automated modeling
and identification, based solely on data. In [5], the authors proposed a method to discover the topology
of a chemical reaction network, whereas in [6] a method is proposed to find the dynamical model that
generated the data using symbolic regression. In [7], the authors consider the use of historical data to
achieve process models for inferential control. Some guidelines are suggested on how to select intervals
of data to build models, but no algorithm is proposed with this objective.

More recently the problem was treated in [8], referring to our original conference paper [9]. The
developed method uses the condition number of information matrix as a measure of data quality from
routine operation. In [10] our method from [9] is studied in detail, in particular with respect to its
sensitivity to the design parameters. A study that will become useful in this paper fine tuning the
approach further.

Process plants have specific characteristics that make a fully automated modeling and identification
a challenging task, see e.g., [11]. This work focuses on models that are suitable for the design/tuning
of low order controllers like PI and PID. For this purpose, it is clear from the above considerations that
a fully automated identification is challenging. Instead, the objective of this work is to develop a data
mining algorithm that retrieves intervals of data from a historic database that are suitable for process
identification. The method outputs the intervals together with a quality indicator. The user can then
decide on the model and identification method to be used.
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Compared to the original conference paper [9], this paper gives a more detailed review of the literature
on informative data especially in relation to identifiability in closed-loop. We have also modified the
estimation of the Laguerre model to add a forgetting factor and introduced a noise model.

Problem Formulation

Consider the control loop in Figure 1, where at time & the operation mode m(k) € {0,1} denotes
operation in either open-, or closed-loop denoted by the symbols 0 and 1 respectively. In manual mode,
the input to the process u(k) is decided by the operator. In automatic mode, u(k) is given by the
controller. The controller is driven by the control error e(k), formed from the setpoint (k) subtracted
by the measured process output y(k), which is corrupted by noise v(k). It is considered that the system
can be described by an unknown model M (0), which is a function of the parameters ©.

Disturbances
(k) ek N l U(lk) (k)
r(k e(k u(k y(k
-~ Controller o Process O
Figure 1. Control loop.
A collection of data ZN =[z(1), .-+ | 2(N)T]7 is available, where
2(k) = |m(k) r(k) u(k) y(k)]|- (1)

The objective is to find time intervals A = [kin, kenq] Where the data in Z N may be suitable to perform
identification of the process parameters. Remark: if m(k) is not available, the mode is usually possible
to infer from the behaviour of r(k) and u(k).

For its practical use, the following requirements are sought:

1. Minimal knowledge about the plant is required. That is, none (or little) input is expected from
the user.

2. The resulting algorithm should process the data quickly. For example, a database containing
data from a month of a large scale plant operation should not take longer than a few minutes to
be processed.

3. For each interval found, a numeric measure of its quality should be given. This can be used
by the user in order to select which intervals to use for identification.

In order to achieve both Requirements 1 and 2, some simplifying assumptions are made:

Assumption 1.1 (SISO). Since the purpose is PID tuning it is assumed that only SISO control loops are

to be estimated.
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Assumption 1.2 (Linear models). It is assumed that the process can be well described by a linear

model M (0).

Assumption 1.3 (Monotone step response). In process industry most uncontrolled processes are

non-oscillatory, i.e., transfer functions with real valued poles are sufficient.

For a process in operation there are mainly two scenarios to hope for that may result in data

informative enough for system identification (see [2]):

e The process is operating in manual mode and the input signal u(k) is varied enough to be exciting

the process.

e The controller is in automatic and there are enough changes in the setpoint r(k) to make

identification possible.

As a consequence, the method developed below is treating these two cases separately.
Notice that there are other scenarios that, at least in theory, would render a system in closed-loop

identifiable. A longer discussion on this topic is given in next section.

2. Theoretical Guiding Principles and Preliminaries

To make this paper reasonably self-contained this section gives a brief review of the necessary system
identification concepts needed to justify the design choices made. However, for a reader only interested
in the final algorithm and its application this section may be omitted. The section is mainly based
on [12-14].

Let each SISO loop correspond to a linear discrete-time system
S y(k) = Go(q)u(k) + Ho(q)e(k). (2)

where k is the sample index, ¢ is the shift operator (qu(k) = u(k + T') for the sampling interval T),
e(k) is white noise with variance vy, y(k) is the output and u(k) is the input, which might be given in

open-loop or by a stabilizing controller

u(k) = K(q) (r(k) —y(k)) = So(q) K (q)r(k) — So(q) K (q)Ho(q)e(k), 3)

A

where So(q) 2 (1+ K(q)Go(q))™" is the sensitivity function. The transfer functions Go(q), Ho(q)
and K (q) are rational and proper and Hy(g) is minimum phase and normalized such that Hy(co) = 1.
A parametric linear model structure M (0) is used to describe the system S as

M(0) : y(k) = G(q,0)u(k) + H(q, 0)e(k) 4)

where O € R” is the vector of unknown parameters. The true system S is said to belong to the model
set M = {M(0)|0 € Dy} for some parameter set Dy if there is 8’ € Dy such that M(0') = S. The
equality here means that Gy(z) = G(z,0’) and Hy(z) = H(z,0’) for almost all z, i.e., the system and
model are equivalent from an input-output relationship. The set defined by all 0 such that S = M (0’)
is denoted D(S, M) and contains a unique element 6y, or “true pameters”, if the model structure is

globally identifiable, the concept of identifiability will be reviewed in Section 2.2.
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The optimal one-step ahead predictor for y(k) is given by

§(k|6) = H(q,0) "' G(q, 0)u(k) + (1 — H(q,0)™") y(k). (5)

A sensible approach to find an estimate of the parameter, denoted 0, is to minimize the difference
prediction errors, €(k,0) = y(k) — 9(k|0) in some sense. As it will be reviewed in Section 2.3, if
S € M and the data set is informative enough, prediction error methods will give consistent estimates
of the parameter, i.e., 0 € D(S, M). Informative datasets are discussed in Section 2.2 and recursive
prediction error methods are considered in Section 2.3.

One approach to find a model structure such that S € M is to derive the model from the laws
of physics governing the processes and use the parameter vector 0 to describe remaining unknown
characteristics, e.g., the gain, poles or zeros. Since it would be impractical to consider knowledge of the
dynamics for each loop in an entire process plant, we consider that no knowledge is available about the
system (later on we will however assume the presence of integrators to be known). Instead, we seek for
a flexible model structure that can describe a large set of system dynamics while allowing for an efficient
identification procedure. Flexible and tractable black-box models are presented in Section 2.1.

The alternative models are called black-box since they are used to describe relations in the data and
do not necessarily have parameters that relate to the original process. Flexible black-box models fit our
purpose of finding data suitable for identification of process models. Notice that we are not aiming at

directly finding a process model, with a clear physical interpretation or suitable for control purposes.

2.1. Black-Box Modeling with Laguerre Models

Because there is a one to one correspondence for the transfer functions in Equations (4) and (5) we
focus the presentation for the predictor form and follow [13]. Assuming that H(q,0) and G(q, 0) have

the same unstable poles, it follows that the optimal predictor can be approximated as [15]

H(z,0)7'G(2,0) ~ sz 2 B, ( (62)
H(z,0) ' -1~ Zaiz_i 2 A,(2). (6b)
=1

This approximation corresponds to an ARX model of order n and is exact as n — oo. Therefore,
high order ARX models can be used as flexible black-box models. An additional advantage is that the
ARX model structure is linear in the parameters © = [ay,--- ,a,,b1,- - - b,] and its identification in
a prediction error sense is very tractable as will be discussed in Section 2.3.

There are a number of shortcomings with the parametrization in Equation (6) though. As noted by
Wahlberg in [13], the rate of convergence for the approximation as n — oo is determined by the location
of the poles of G(z,0) which are not shared by H(z,0) and the zeros of H(z,0); the closer these are
to the unit circle, the slower the approximation will converge. For sampled continuous-time systems,
the continuous-time poles (and zeros) are mapped as e?? and thus for a small sampling interval, T’, the
approximation will require large n. Similarly, for plants with an unknown delay d, it will require d/T
additional coefficients for B, (q).



Processes 2015, 3 362

An alternative parametrization that has a convergence rate of the approximation independent on 7'
and which is more suitable for plants with a delay is possible with Laguerre polynomials as

H(z,0)7'G(2,0) ~ }:bL,zaf%BA@a) (7a)
H(z,0)"' =1~ a;Li(z &) £ A,(z,«) (7b)

where L;(q, «) is the ith Laguerre filter

Lilq, o) = (1—o?)T (1 — ocq)i_1 ' ®

q—« q—«

As for the ARX model, the approximation is exact when n — oo. The distances of the Laguerre filter
pole, 0 < o < 1, to the poles of the system determine the convergence rate for the approximation [13].
For fast convergence, o can be set as equal to the largest time constant in the system [16] but in case of
scattered poles, the convergence may still be slow as discussed in [13]. Optimal choice of the Laguerre
pole is discussed in [17].

The model structure in Equation (7) is a generalization of the model in Equation (6), which is retrieved
for o = 0. In fact, introducing ® = (1 — «) /7T and 6 = (¢ — 1)/T', Equation (8) can be rewritten as [13]

61’—1
(14+6/a)”’

so the Laguerre model reduces to an ARX model with a prefilter 1/(1 + &/&)™ in the 6 domain.

€))

The Laguerre filter of order i consists of one low-pass filter cascaded with (i — 1) first-order all pass
filters, which acts effectively as a delay approximation of order (¢ — 1). The substitution of the delay
operator in an ARX model with a Laguerre filter has important characteristics to allow for an accurate
description and of low order [13]. The maximum delay d a Laguerre model can explain can be found by
comparing a Padé approximation of a delay with the all pass part of the Laguerre filters [18,19] and is
given by

d=—2(n—1)T/log «. (10)

If the real pole o« and order n are selected properly, Laguerre models can efficiently approximate a large
class of linear systems [2]. In general, the performance of the identification is relatively insensitive to
the choice of « [10,20]. Estimation of « from data is presented in, for example, [21], but this has not
been found necessary in this paper.

Because a Laguerre model has a finite gain at low frequencies, it is not a good approximation for plants
with an integrator. This is in fact an important limitation of Laguerre models since many processes in
process industry (most notably level control) have an integrating behavior. To overcome this we will
treat integrating loops separately as described later in Section 3.

Another limitation is that the poles for the Laguerre filter are real and for resonant processes the
approximation may take long to convergence. An alternative is to consider the use of complex poles in

the expansion with, e.g., Kautz polynominals. See [22] for details.
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2.2. Identifiability, Informative Data Sets and Persistence of Excitation

After selection of an adequate model structure, one might ask whether it is possible to unequivocally
identify its parameters from the data using a prediction error method. Whether this is possible will
depend on properties of both the model structure and of the data set used. Recalling there is a one to
one relation between the optimal predictor in Equation (5) and the model in Equation (4), we study this

question based on the predictor form. Following [12,23] we introduce the shorthand notation,

(H0) = [10.0)1Glg.0) (1~ (g, 0))] [yg,’g] ~ W(g,0):(k) an
oo ey

First, it will not be possible to distinguish two different parameters, 0 # ©’, if the related linear filters
are the same i.e., W(z,0) = W (z,0’). Identifiability of a model structure at ' € Dy is thus defined
as whether

W(z,0)=W(z0),Vz2=0=0 (12)

in a region (locally identifiable) or for any O (globally identifiable). Notice that if S € M and the
model is globally identifiable D(S, M) = 6. Furthermore, the ARX model structure is strictly globally
identifiable, i.e., it is globally identifiable at any 0" € Dy.

Even if the model is globally identifiable, the parameters may not be retrievable depending on the
data z(k), take for instance z(k) = 0. This leads to a definition of informative datasets, which allows
for a distinction of different parameters in the model set. For what follows, we say that a signal ¢ (k) is

quasi-stationary if it satisfies

E¢(k) = mq(k), Img (k)| < C, vk (13a)
E¢(k)d(r) = Ry(k,7), |Ro(k,7)| < C (13b)
ER(])(]{Z, k — T) = Rd)(T), VT, (13¢)
where
_ 1 &
Ef(k) £ lim =% Ef(k). (14)
k=1

The expectation in Equation (13) applies only for stochastic parts. For deterministic signals the
expectation is dropped and the definition means that ¢ (k) is a well-defined, bounded, sequence.
A quasi-stationary data-sequence {z(k)} is informative enough with respect to a model set M if it

allows for the distinction between any two models W (z, 0,), W(z, 02) in the set, i.e.,
E[(W(z,01) — W(z,05))z(k)]* = 0= W(e™, 0;) = W(e™,0,) (15)

for almost all w. Notice that this definition depends only on the model set and not on the true system.

To illustrate the consequence of this definition to signals, we define

Definition 1 (Persistent excitation). A quasi-stationary regressor $(k) is persistently exciting (PE) if

E [d(k)d(k)T] > 0.
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Definition 2 (Richness of a signal). A scalar quasi-stationary signal u(k) is sufficiently rich of order n
(SRn) if (k)T = [u(k —1),--- ,u(k —n)] is PE.

As discussed, informativeness of a data set depends on the model structure used. We review the
conditions on the data for open and closed loop for ARX models, analogous results are possible for the
ARX-Laguerre model using the 0 representation given in Equation (9) with a prefilter. Let the ARX
model in Equation (6) have polynomials A,,, (¢) and B, (¢), then the following results apply [23].

Theorem 1 (ARX, open loop). Let the system be operating in open-loop, the data set is informative if
and only if u(k) is SRn.

Therefore, for the open loop case, the input signal must be rich enough. The closed loop case
was studied already by Soderstrom, Gustavsson and Ljung [24]. It turns out that the system may be
identifiable even if the setpoint is zero, provided the controller is complex enough. A number of such
scenarios are discussed in [12]; nonlinear control, switching linear controllers or fixed linear controller
with high enough order. The case of fixed linear controllers is further studied in [14]. Distinguish
between two cases, either r(k) = 0, i.e., the system is driven solely by the noise, or (k) is changing.
We denote the first situation as a controller operation for disturbance rejection and the second as
a servo operation. Let the feedback stabilizing controller given in Equation (3) be given in a coprime
);éj;l; where the polynomials are X (271) = 29 + 1271 + -+ + 2,27 and
Y(z') =14y127' 4+ -+ + y,, 2~ ". Then the following resuls apply [14]:

factorization K (z) =

Theorem 2 (ARX, servo). Let max(n, —ng, n, —ny) < 0, the data are informative for almost all SRn,

r(k), if and only if n, > min(n, — ng, ny, — ny).

Theorem 3 (ARX, disturbance rejection). Let r(k) = 0, then the data are informative if and only if

max(ng — ng, ny — ng) > 0.

In [25], more general results are given for general linear plants with a delay and considers possible
pole-zero cancellations. These theorems above give a minimal set of conditions on the inputs to allow for
a distinction of the parameters from the data. The result in Theorem 3 indicates that it is possible to find
the parameters based on the excitation from the noise if the controller has high enough order compared
to the model. For a model structure of high order, and controlled by PID controllers, it is clear that this
condition will hardly hold. In this case, the information contained in the reference must complement the
simplicity of the controller as given by Theorem 2.

The following are more general results which apply to general linear models. Defining the spectrum
of a signal ¢ (k) as

Dy(w) £ > Ry(t)e ™™, (16)

a signal is said persistently exciting if its spectrum ®4(w) > 0 for almost all w. The next results follow
for any linear plant [12],
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Theorem 4 (Open loop). A persistently exciting input wu(k) is informative enough for open
loop experiments.

Theorem 5 (Closed loop). A persistently exciting reference r(k) is informative enough for closed
loop experiments.

So, in general terms, for open-loop (closed-loop) there should be enough changes in the input

(reference) to allow for an identification of any linear plant.

2.3. (Recursive) Prediction Error Methods

An important feature of the general predictors given by the approximations in Equations (6) or (7) is
that they can be written as linear regressions,

J(k|6) = @™ (k)8, (17)

where @7 (k) is function of past inputs u(k — 1),..., u(1) and outputs y(k — 1),..., y(1). In a linear
regression, the parameters © € R"™ appear as a linear function with the regressors, which allow for
a simple identification procedure. A common choice of identification approach is the prediction error
method, where the prediction error ¢(k, 0) = y(k) — §(k|0) = y(k) — @(k)T0 is minimized according
to some criterion. To reduce the storage requirements of the resulting algorithm and to allow for
adaptive solutions, recursive methods are preferred, which can be updated in a data stream. Many
recursive prediction error methods are possible, see, e.g., [12]. For the presentation here, we consider

an exponentially weighted quadratic prediction error criterion, where the estimate is given as

0, = arg min Vj(0) = arg min Z?\k ‘e?(k,0), (18)

0€Dyg 0€Dy 4

with 0 < A < 1. Direct minimization gives the solution for this problem in closed form, which can be
written recursively as [12],

ék = ék:—l + R(l{?)_l(p(k?>£(k, ék—l) (193.)
R(k) =AR(k — 1) + @(k) (k)" (19b)
Vie(01) = AVi1(0_1) + €(k, 051 )e(k, 65). (19¢)

This algorithm is known as the Recursive Least Squares (RLS). The feasibility of Equation (19a) depends
on whether the information matrix R(k) is invertible, i.e., the matrix must be full-rank.

2.3.1. Frequency Description of Prediction Error

Some important properties of prediction error methods can be highlighted with a description in the
frequency domain. To illustrate this, we replace the exponential weighting function A*~¢ in Equation (18)

by the constant weight -, where NV is the number of data samples, and let N — oo. The limiting cost

2N
is denoted V() and it follows from the definition of the Fourier transform and Equation (16) that

— 1 ™
V(8) ]&EHOOWZE (k,8) e2(k,0) = 47T/ D, (w,0)dw. (20)
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Using the shorthand notation GG, Hj to describe the system’s transfer functions in Equation (2) and Gy,
Hjy to describe the transfer functions of the model in Equation (4), it follows, see [12], that the residuals’
spectrum can be written as

|Go + Bo — Go? |Hy — He|? |De |
®€ ae - ¢u - 5 21
((,U ) |H6|2 + |H6|2 Yo (I)u +YO ( a)
(I)ue
Bo = (Ho — Ho) 2. (21b)

where the inputs were dropped for compactness and @, denotes the cross-spectrum of u and e, defined
in an analogy to Equation (13). The expression allows us to study the effects of the model chosen and
excitation to the cost function and thus to the estimated parameters. Notice for instance that if S € M,
0p minimizes the criterion. Furthermore, Gy will be pushed towards (Go + By), and for that reason By
will introduce a bias to the estimate of (5.

For open-loop experiments, the input « is uncorrelated with the noise e so ¢, = 0 and so the bias
term By = 0. The input spectra ¢,, will thus control the frequencies where |Gy — Go|? is minimized. For
instance, some times the noise model is unimportant and thus fixed to a constant, i.e., H(q,0) = H.(q),
this was used in our previous paper [9]. In this case we have

)
“d 22

arg mein V(0) = arg mein/ |Go — Gol?

and the minimizing argument is such that the distance |Gg — Go|? is decreased according to the frequency
weight given by the ratio of the input spectrum ®,, and the noise model chosen |H,|?. Furthermore, the
relevance of a persistently exciting input becomes clear in the expression.

For the closed-loop case, u will be correlated to e leading to non-zero ®,,. and thus the bias term By
should be addressed by adjusting the noise model Hy to H. Splitting the input spectrum into the parts
originating from the reference r and noise e as ¢, (w) = P (w) + P (w), if the input can be written as

u(k) = K1 (q)r(k) + Ka(q)e(k), then |, (w)[? = vo®¢ (w) and

T |G0 + Bg — G9|2
| Ho|?

Hy — Hy|? "
%cﬁdw, (23a)

argrnein V(0) = arg mein/

—Tr

(I)u +Y0

and the bias contribution follows as

Yo by

Bo|* = |Hy — Hp|? .
|Bo|® = |Hy 9'%%

(23b)

The equation shows that fixing the noise model for a system operating in closed loop will lead to
a biased estimate of (Gy. Furthermore, for a controller in disturbance rejection mode, with ®, = 0,
the bias can only be controlled by the ratio of the noise energy and the contribution of the noise to the
input energy due to feedback, i.e., yo/d¢. So to reduce the bias, the influence of the noise to the input
should increase, which contradicts many control objectives. Reducing the bias for a system operating in
disturbance rejection mode is therefore difficult. In servo mode, the reference 7 can reduce |Hy — Hg|?
through the ratio ¢ /®,,, thus reducing the bias term.
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2.3.2. Asymptotic Properties of the RLS

Assume that the system in Equation (2) is in the model set, i.e., S € M, and that the data are
informative enough then as A — 1 and k£ — oo,

VIZA@—00) € AsN(0.P), P JyoR™, R E[p(k)o(h)] (24)

so the asymptotic estimate is consistent and is distributed according to a Gaussian distribution. The
covariance matrix is given by

Yo 2 B (01 — 00) (0 — 00)" | ~ =S =vo R, (25)

(1-7)
2
which is controlled by R. In order to make the covariance small, R should be made large in some
sense. This idea is explored, for instance, in experiment design (choosing ) for system identification.
The asymptotic result in Equation (24) will provide useful guidance when defining our algorithm in the

next section.

For finite sample, we can replace R and y, with their sample estimates, given by
Ve =(1-MNVi(0), Ri=(1-NR(k), (26a)

and so the sample covariance matrix is given by

(=N = 1=A) . o -
2= Lo Ng, i = UMy o). (26b)

3. User Choices, Data Features

Based on the theoretical guiding principles outlined, we describe and motivate the choices leading to
the proposed algorithm. The main ingredients are the choice of a flexible black-box model structure,
followed by the definition of data features and test to indicate and quantify the quality of the data
to retrieve a linear model. Through the section, choices are made taking into consideration reduced
complexity, implementation aspects and tuning.

The algorithm is outlined in Section 4 and for a recursive implementation, based on a data stream.
Two basic pre-processing steps are required. First, the signals are considered to be normalized (scaled)
between 0 and 1. This is important to simplify the tuning and because some of the features are sensitive
to scaling. An adequate scaling is possible if the range for the variables is available, which is normally
the case in the process industry. Furthermore, we remove the first sample, of the data stream, from r(k),
u(k) and y(k) since we are working with linear models. To avoid confusion, the transformed variables
are denoted with a - symbol whenever important. Four tests of increasing complexity are used which
are checked in cascade and notation which is relevant to the implementation will be introduced through
the section.
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3.1. Choice of Model Structure

While by Assumption 1.2 it is considered that the loops in the plant can be described by a linear
model as given in Equation (2), it would be too restricting to consider available knowledge of a model
structure M (0) for each SISO loop in an entire plant. Since our objective with the algorithm is not to
find a process model but rather to find segments of data from where a process model can be retrieved, it
is natural to avoid including knowledge of the models for each loop and to instead use flexible black-box
models when searching for data. From the discussion presented in Section 2.1, flexible and tractable (i.e.,
allowing for a representation as a linear regression given by Equation (17)) linear models can be achieved
with high-order ARX as in Equation (6) and high order ARX-Laguerre models as in Equation (7).

As discussed, the Laguerre representation presents important advantages, it will often require lower
order models for the same quality of the approximation and it is more suitable for processes with a delay
since the delay operator is replaced by the Laguerre filters, acting as a delay approximation. The later
feature is critical in the process industry as many loops contain nonzero delays. A Laguerre expansion

is thus used to model the input relation, i.e.,
H(z,0)'G(2,0) ~ ZbL Z,00). (27a)

For the noise model, we do not expect any delays. Since the use of a Laguerre model requires the
additional computational complexity for the filtering operations, we choose a noise model based on the

expansion on lags as in Equation (6), i.e.,
H(z,0) ' =1~ ) aiz". (27b)
i=1

The predictor can be written as a linear regression given by Equation (17) with

QR = (k) (k) y(k—1) o ylk—mna) (28a)
07 = b o by @ e an,| = @7 (09)7], (28b)

where @;(k) £ Li(q, oc)u(k). The resulting model presents the key characteristics

e for an adequate choice of model orders n;, n,, it 1s a flexible representation of any linear system,

e for an adequate choice of & lower orders 7, are possible compared to high-order ARX because of

the use the Laguerre polynomials to describe the input relations,

e it can be written as a linear regression which allows for an efficient identification, using, e.g., the
RLS algorithm.

These features are instrumental for the method proposed in this paper.
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3.1.1. Tuning

The use of the Laguerre representation requires the choice of the model order n, and the Laguerre
filter pole, «. As discussed in Section 2.1, & will control the convergence rate of the approximation
and for a fast convergence one can set equal to the largest time constant present. Once « is chosen, the
maximum delay d the Laguerre filters can approximate is given by Equation (10). With knowledge of

the maximum delay possible in the plant or an upper bound for it, the model order n; can be chosen as

—dl
ny > {T‘)g"‘ n ﬂ, (29)

where [-| denotes the ceiling operation.

3.1.2. Plants with an Integrator

To overcome the limitation of a Laguerre model having a finite gain at zero frequency, it is assumed
known if an integrator is present in each loop. The input is then integrated as

u' (k)
(1—qt)

and u(k),y'(k) are used in the identification instead. As found in [10], since the main dynamics for

(k) = (30)

integrating plants relates to the integrators themselves, the pole of the Laguerre filters « for integrating
plants can be made considerably smaller (faster) than for non-integrating plants. The Laguerre pole for
integrating plants is denoted here as o¢;. The same model order n for non-integrating plants can be used

or a specific choice n; can be made for integrating plants, e.g., using Equation (29) with o;.

3.2. Choice of Operational Modes to Consider

Based on the discussion on informative datasets in Section 2.2, there are three main modes of
operation of a plant, open-loop and closed-loop in servo or disturbance rejection operation. For operation
in disturbance rejection mode, with r(k) = 0, even if the condition on controller order in Theorem 3
is fullfilled, it only guarantees that the information matrix is full rank while its numerical conditioning
might be poor. The identification in disturbance rejection mode is in general challenging as discussed in
Section 2.3.1. To further illustrate this, consider the frequency representation of Equation (23), where
the bias term is controlled by vo/®¢ when r(k) = 0, i.e., &7 = 0. For a closed-loop system given
by Equation (3), ®¢ = |Sp|?| K |*|Go|*Yo and thus the bias can be reduced by increasing the sensitivity
function gain. This directly contradicts with the control objective of disturbance rejection, where the
sensitivity function should be made small. This is also the practical experience by the authors that, even
if first-order models are identified, closed loop identification with a constant setpoint very rarely leads
to useful models. See [8,26] for simulation examples where the disturbance rejection case is considered
for process identification.

As already presented in the Problem Formulation this has influenced us to only look for intervals

where the input r (or u for the open-loop case) is in fact moving. We consider theoretically based tests in
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Sections 3.4 and 3.5. Before proceeding though, we develop two heuristic tests that will help to reduce

the overall evaluation time for the algorithm.

3.3. Simple Heuristic Tests

Process plants often operate in steady-state. Except for the disturbance rejection operation, which is
not considered further, there must be some change in the inputs « or r in open- or closed-loop respectively
if any process model is to be retrieved. After a change in the input, it is also expected that the output will
be varying after some time, only if these two events are observed can one expect to be able to retrieve
a process model from the input-output data. Checking for changes in the input and for the variability
of the output are computationally cheap and can thus be useful to reduce the amount of computations
required to scan large datasets. We discuss two approaches of how this can be achieved.

3.3.1. Input Step Change Test

The operation of process plants with the changes of setpoints and eventual open-loop operation is
often done through step changes. This is in fact the case for the evaluation example presented in

Section 5. For ease of notation, we define
(k) £ =m(k)u' (k) +m(k)r' (k) 31

so that ((k)=u/(k) in case of an open-loop operation and ((k)=r'(k) in case of closed-loop operation.

A step change of size n; can be detected with a threshold check

|C(R)] >, (32)

for a change larger than 1;. The threshold 1; should be chosen very small as this test is only used to
avoid scanning for steady-state data.

3.3.2. Variability of y Test

Once a change in the input has been detected, one can check for reasonably sized variations of y
before applying more computationally demanding tests. To reduce memory requirements and to allow
for adaptability, the variance of y can be computed recursively with an exponential moving average.
Denoting ,(k) as an estimate for the mean and vy, (k) as an estimate for the variance, a recursive
estimate can be found by [27]

Hy(F) = Ay (k) + (1 = Ay) (k= 1) (33a)
2—A ,
(A W) =y ()" + (1= A)) vy (k= 1)) (33b)
which is tested with a threshold check

Yy (k) > M2 (33¢)

where 0 < Ay, A, < 1 are the forgetting factors, controlling the effective size of the averaging window

for the estimation of the mean and variance of y respectively. Since 3/ is normalized between 0 and 1,
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the threshold 12 can be chosen relative to its range, e.g., 1y = 0.012 means a standard deviation of 1%
relative to the output range.

3.4. Finding Excitation in the Data

More theoretically based criteria are possible based on the conditions for informative datasets of
Theorems 1 and 2. Checking whether the inputs are sufficiently rich is however impractical since the
definition of persistent excitation is based on an ensemble of potential observations, with the F operator
given in Equation (14). Furthermore, many signals used in practice, during the operation of the plant,
are of low SRn. As an example, consider a unit step (Heaviside step) change u(k) = H(k), with
H(k) = {1if £ > 0,0 otherwise}, let (k) = [H(k — 1), ..., H(k — n)] as in Definition 2 and note that
the rank of

N N -1 N —n
_ 1 I N—-1 N—-2 ... N-— 1 0
Eo()b(0)] = im 5 | ._”:":LJ 50
N—-n N-—-n --- N—n

is 1 for any n and a step is thus SR1. This is true even though the matrix is full rank for finite /V and it
would be possible to compute an estimate. Instead of attempting to check for persistence of excitation,
we check whether it is possible to compute an estimate of the parameters.

Considering an estimate based on the recursive least squares in Equation (19), note that the paremeter
estimate in Equation (19a) corresponds to solving the linear system

R(k)AB = @(k)e(k, 0x1) (35)

and updating the estimate as ék = A0 + ék_l. A necessary condition for the solution is that the
information matrix R(k) is full-rank. A rank test, however, gives little information about the numerical
condition of R(k). If R(k) is ill-conditioned small perturbations to the right-hand side of Equation (35)
(or to R(k)) can lead to large errors to the estimate. A more suitable test is to check for its condition
number which is described next.

Numerical Conditioning of R(k) Test
Numerical conditioning of a linear system of equation Ax = b can be assessed as follows. Introduce

a perturbed linear system A(z + Az) = (b + Ab), then it follows that (see e.g., [28]),

A Ab
|Az]l, np(A)” lp.
]l 161l
where r,(A) > 1 is the condition number of matrix A. Small values of

rp(A) = Al IA™ Iy,

rp(k) = rip(R(K)) (36)
are thus desirable in order to improve the reliability of the solution to numerical errors. Any p-norm can
be used, the commonly chosen 2-norm gives,

a(A) = Zmax( )

Gmm(A) (37)
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with 0yax(A) and 0,1, (A) denoting the largest respectively smallest singular values of A.

Because 0,,;, can be close to zero, x(k) can vary between [1,00) and it might be difficult to set
a threshold for it. An alternative is to monitor its inverse, also known as the reciprocal condition number
as it will have values in [0, 1]. Notice that when using the reciprocal condition number, high values relate
to good conditioning. The reciprocal condition number is tested with a threshold

Ky (k) > ms. (38)

The condition number has been suggested as measure of data excitation already in [9] and is commonly
used to monitor the reliability of the solution of a linear system, see e.g., [18]. In [8], the authors note
that the condition number for step changes will often be large, which can be seen from the finite sample
matrix in Equation (34). They suggest a choice of threshold in the order of 10%, i.e., 10~* when using its
reciprocal. We note that increasing the model orders may increase the number of small eigenvalues in

R(k) due to over-fitting and thus 13 may be chosen proportional to the number of estimated parameters.

3.5. Granger Causality Test

Notice, however, that the condition number is scaling independent. Hence even if the the condition
number is low it says nothing about the magnitude of the excitation compared to the noise. Therefore, it
is necessary to also check there there is in fact a noticeable correlation between input and output. A more
conclusive test would be to verify whether there is a causal relation between the input u and the output y.
If there is a casual relation between the variables, it is reasonable that y(¢) can be predicted better making
use of past input-output data, {u(k), y(k)}. ™" than it would be predicted by using only {y(k)},~". This
relates to the concept of Granger causality, see [29] for example.

For the black-box model used here given in regressor form by Equation (28), if u(k) Granger-causes
y(k), it must be that some of the parameters relating to the input-output relation is non-zero, i.e.,
0, # 0. We can thus define a null hypothesis H, : 68, = 0 which should be rejected in case there
is a Granger-causal relation present. A statistical test for this hypothesis is readily available from the
asymptotic results for the estimate 0 given by Equation (24) since under the null hypothesis H,,

(60)7 (25)71 6% € As A, (39)

where (Eb)*l is the inverse of the sub matrix of Xy associated to 0, only and &; is the chi square
distribution with d degrees of freedom. The statistics can be computed based on the finite sample
estimates in Equation (26), giving

s(k) £ (63)"(Z3) 7164 (40)
The null hypothesis is rejected if
ul
s(k) >4, M4 £ arginf {n eR: / X, (r)dx > p} 41)
n —00

where the threshold 14 is taken as the p quantile of X, . This condition must be satisfied in our algorithm
to assign a data interval as useful.
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The statistic s(k) can also be seen as a measure of data quality since the larger it is, the more evidence
there is in the data of a causal relation between v and y. This quantity can therefore be used to rank the
quality of the various intervals that are found, larger meaning better.

As discussed in Section 3.4 however, the standard implementation of the RLS filter given in
Equation (19) requires inversion of R(k) which may lead to numerical problems. The problem of ill
conditioning can be reduced with an alternative implementation choice based on the QR factorization,
which gives better numerical conditioning of the solution. This is described next.

Choice of Implementation of RLS Based on the QR Factorization
For k data points, the recursive least squares with a forgetting factor A can be written as
6, = argmin V;,(8) = argmin [|A (k)" (V' (k) - b (k)0)| 2 (42)
where A(k) is a diagonal matrix with [A(k)]; = A*~? and
YR =[y(1) - k)], o) =o(1) - ()] (43)

Because the norm in the minimization is not affected by an orthonormal transformation () such that
QQT = I, find the QR factorization to

AR 2O() A(K)Y2Y (k)] = Q(R)R (k). (44)

where (k) is orthonormal and R(k) is a matrix of the form

Ri(k) Ry(k)

Rky=| - |, Rolh)= R

: (45)

where the matrix Ry(k) is square upper triangular of dimension n + 1 and Rj3(k) is a scalar. Applying

the orthonormal transformation Q(k)? from the left in Equation (42), then gives

0) = [|A(K)/2 (Y (k) — d(k)O)[|; = [|QTAR)* (¥ (k) — b (k)O)||; (46)
H ’; P”(O’“”] — [ Ra(k) — RuR)OIE + [ Ra(R)? @

Hence, the estimate 0, that minimizes Vi(0) is given by the solution to
Ri(k)6y = Ra(k). (48)

By taking the SVD of R;(k) and comparing the singular values of R;(k) and the ones of
Ry = &(k)TAk)d(k) = Ri(k)T R, (k) gives

A

ka(Ry) = ka(Ri(k))?, (49)
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and therefore solving for 0, in Equation (48) is better numerically conditioned than the standard problem
in Equation (35), it is also simpler since R; (k) is upper triangular. Sample estimates for V;, R and S

as in Equation (26) are given by

Vi = (1= NVi(0i) = (1= N)Rs(k)?, (50a)
Ri = (1= N (k)TAK) (k) = (1 — ARy (k)T R (k) (50b)
Sy = < ; A)f/kéil -4 ; Y Ry(k)* [Ru(k) T Ru(K)] (50c)

The alternative estimates of éz and (22)_1 given in Equations (48) and (50) can be used to compute the

chi-square statistic and the test simplifies to (see the Appendix for a proof)

o(h) = —2 (éb)TPbéb >y (51a)
(=N Rk \F) TR
where
~ -1
0} 2 (k) — R (k) (RS(K))  R3(h), (S1b)
PY 21— R (BT RE(R) + BYETRY(R)) R )T 51e)

The forgetting factor A affects the effective sample size, Ny = used in the identification. For

1
T-A°
a consistent identification, it should be such that it is larger than the number of parameters in the model
Nt > n =ng + np.

The outlined QR based solution is however not sequential in the data. To find a sequential solution,

notice that V;(0) can be written as

2
MPAk—1D)V2Y (k-1 MP2Ak = 1)k -1
y(k) o (k) 2
assume ()(k — 1) and R(k — 1) are available, then by applying the orthonormal transformation
. Qk—1) 0
k—1)= 53
Q( ) [ 0 1 (53)
to Vi (0) gives
ARy (K —1) AR (k1)
Vi(0) = || [A2R3(k — 1) | — 0 0| . (54)
y(k) @(k) )
And thus applying the QR factorization
A2RI(k—1) AYV2Ry(k—1
(k=) i 2(k = 1) AV2Ro(k — 1)
0 ARy (k- 1) | = = Q(k)R(k) (55)
o(k)  y(k)

o(k) y(k)
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Algorithm 1 QR-RLS algorithm
Set Ro(O) = Ro.
for £ do

ARy (k-1
o DN = Q.
e(k)  yk)
Solve Ry (k)0 = Ra(k), compute s(k) as in Equation (51).
end for

Compute

gives Ry (k)0; = Ry(k) as the solution. Notice here that the left hand side of Equation (55) has size
(n+2) x (n+1) for all k£ and the problem does not increase in size. This last step outlines the QR-RLS
algorithm, described in Algorithm 1 with an initialization as Ry(0) = Ry. The matrix R, can be chosen
as diagonal to ensure well-posedness and with small values to reflect the large uncertainties present
during initialization, recall the expression for the covariance of the parameters given in Equation (50c).

4. Outline of the Algorithm

At this point, we define our method to search for suitable data to perform process identification. We
outline a recursive implementation based on a data stream starting at sample k_; and finishing at N,
{z(k)} ., where z(k) is given in Equation (1).

Before checking for the tests suggested in the previous section, we search for a long enough interval
where the operation mode m (k) was the same, we require it to be at least longer than a multiple of the
number of parameters. Since m(k) € {0, 1}, this can be checked recursively in the data by

k k
Ty : c(k) = Z m(i) >mng | V Z —-m(i) > ng |, (56)
it=max(k—nog,k—1) it=max(k—no,k—1)

where n is the minimal length of data under the same mode to be considered and can be adjusted to
avoid too short intervals.
The four tests presented in the previous section are listed again and we introduce some notation

Ty = |C(k)] >, Ty vy (k) > Mo, (57)
Ty ky (k) >3, Ty:s(k) >ng (58)

The tests 7.4 have increasing orders of complexity and demand on the data quality for identification.
While there is no causal relation between the tests, it is reasonable to consider that it is only worth the
effort of computing more complex tests once the simpler tests have been triggered. Denoting the first

sample a test is triggered by k;, a test 7; is only checked from k;_; to the current sample k, and thus

ki 2inf{keC:T;}, ic{l,23,4}, (59a)
]fo = inf {k‘ S Co . TU} — Ny, (59b)
Ci = {ki_1,...,k}, i€{0,1,2,3,4}. (59¢)
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When a test 7;_ is triggered, initialization of the next test 7; is taken from k; —ng, i.e., ny < ng samples
before the step change, to the current sample £,

:Z’-i é {l{,‘l—nl,...,ki_l},i € {27374}7 (60)

notice that 7; and 7 do not require initialization.

After initialization, the tests are updated recursively. Test 75 is update as in Equation (33c), Test 73
is given by Equation (38) with R(k) updated as in the standard RLS solution given in Equation (19b)
due to its simplicity and test 7}, is updated as in Equation (51) using the QR-RLS implementation given
by Algorithm 1.

The algorithm exits whenever one of the following situations occurs

Ejy: achange of operating mode happened,
Ey: Ti 1s not triggered,
FEs.4: Ts.4 returns to false after reaching a true value for some & in Cs.4 respectively,

Es: the data stream reaches the end.

The first sample where any of these conditions are fulfilled is denoted k.. Once the algorithm exits, it is
called again with k_; = k. + 1 until Ej is achieved, i.e., all data is processed in the stream.

An interval is marked as good only if the chi-square test, T}, is triggered at some point. In this case,
we consider the interval A = [k1—n, k.| as possibly suitable for identification. The interval A is returned

to the user, together with the largest value for s(k),

5 2 sup{s(k) € C4}, (61)

which is used to rank the different intervals found.

Figure 2 gives an overview for the execution flow of the algorithm. It highlights the algorithm’s logical
sequence, and shows how every required quantity is initialized and updated sequentially, pointing out
the related equations.

5. Illustration Based on Real Data from an Entire Process Plant

To test the developed method, historic data collected from a chemical plant was used. It contains data
from 195 control loops of density (7), flow (58), level (54), pressure (26) and temperature (50) types. The
loops have considerably different dynamics but most of them can be modeled as a first order model with
delay. It is also not hard to tell beforehand which loops will have an integrator. The delays can vary up to
10 min. The data are mainly from closed loop operation, but there are also open loop data. The database
contains data of over three years of operation (37 months), which have been stored at a sampling rate of
four samples per minute, in a total of almost 1.15 G samples and are stored in 6.7 G bytes.

There are a total of nine parameters and four thresholds to choose. Following the guidelines presented
through the paper, they are chosen with values given in Table 1. The proposed algorithm is implemented
in Matlab and the entire dataset is searched for segments of data. Running in a standard desktop
computer, the total run time was 168 min and the evaluation time, i.e., without considering the time

to load data files and data pre-processing, was 100 min. Table 2 gives a summary for the intervals
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that have been found. A large number of intervals are found for the flow loops in closed-loop since
their reference signals were changed often during operation. In total, about 1.45% of the total original
samples were found by the algorithm. This is a significant reduction in the amount of the data one would
have to manually screen. The associated quality measure s can support the selection of the intervals for
further processing.

kE k_q ko ko+ng .- k1—ny Kk ky ... ks ke ... k. N

py (k) 7, Update as in Equation (33a)
Yy (k) 7, Update as in Equation (33b)
(k) > T B,
o(k) 73 Update as in Equation (28a)
R(k) T Update as in Equation (19b)
Ky (k) Zs Update as in Equation (36)
() > e Y
s(k) Zy Update as in Alg. 1
] E.
S(k) > My - 4

Figure 2. Algorithm execution sequence. Lines denote the different logical tests. Boxes
relate to the computations of quantities used in the different tests. Shaded boxes denote the
samples used during initialization of the different quantities and white boxes refer to their
online update.

To verify the relevance of each test 7j., in the proposed algorithm, we count the number of times
a certain test was the deepest to be triggered before an exit condition. We also present the counts for
the exit conditions F;. The results are shown in Table 3 for open and closed loop. The algorithm is
well balanced since every step affects the behavior of the algorithm in selecting and rejecting intervals.
The large number for 7} is due to the large number of intervals retrieved for flow loops, recall Table 2.
The operation of the plant is mainly carried out in closed-loop, for which case most loops operate in
steady-state. This is reflected by the large count for F;, meaning that no significant step change was
found for those intervals. The simple test 77 can thus considerably reduce the number of computations
needed to scan the data.
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Table 1. Parameters and thresholds used.
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Parameter Symbol Value
Filter coefficient for Au 0.99
Filter coefficient for vy, Ay 0.9
RLS forgetting factor A 0.99
Initialization matrix for QR-RLS Ry 0.005 -1
Laguerre poles &, XJ 0.8,0.6
Order of Laguerre input model ny 10
Order of noise model Ng 10
Minimal number of samples under the same mode ng 2(ng + np)
Number of initialization samples before step change ny (ng + nyp)
Test description Threshold Value
Step change size uft 0.002
Variance of output M2 0.001252
Reciprocal condition number N3 0.002
Chi-square N4 232 (p=0.99)

Table 2. Some statistics characterizing the performance of the method when applied to
a historical dataset.

Number of Intervals Scanned  Average Length of A

Total Found (Samples)
Loop type open closed open closed | open closed
Density 2973 9074 425 102 75 86
Flow 34,177 79,334 460 39,141 | 198 421
Level 18,008 59,030 616 146 72 105
Pressure 6286 15,846 312 47 64 109
Temperature 9118 48,739 72 41 67 76

Table 3. Counts for the deepest test 7; triggered before the algorithm exits and counts for
the condition causing the algorithm to exit the scanning F;.

Deepest T; Triggered E; Triggered

¢t open closed open closed
0 17,305 158,186 27,711 6746
1 7342 435 17,305 158,186
2 16,189 5398 2936 10,766
3 130 1881 1066 6645
4 1885 39,477 435 22,383
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5.1. Selected Examples

The three year database contains stretches of data where we know that the control group at Perstorp
conducted identification experiments, performed in manual mode with a sequence of steps in u(k). All of
these intervals and many others were found with the proposed algorithm. The models built using the data
intervals selected by the new method were found very similar to those obtained during the identification
experiments. The related s were also consistently large. The first column in Figure 3 presents one of such
intervals retrieved by the algorithm for a level control loop. As can be seen, all quantities respond well to

a change in excitation and the retrieved data behaves nicely, with no evident presence of a disturbance.

0.8F
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Figure 3. Examples of retrieved intervals and the quantities used during the algorithm

execution.

(a) Level, open loop; (b) Density, closed loop; (¢) Test for variance of y;

(d) Test for variance of y; (e) Test for numerical conditioning of R(k‘); (f) Test for numerical

conditioning of R(k); (g) Granger causality test; (h) Granger causality test.
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The second column in Figure 3 presents an interval retrieved from a density loop operating under
feedback. As can be noticed, there is a large delay for this plant. A step change is detected at k;
and, compared to the previous example in Figure 3c, significant changes for the variance of y takes
considerably longer time to be detected as seen in Figure 3d. Despite the large delay, the use of
a Laguerre expansion can capture the excitation in the data and is well adjusted to the first changes
in y. The Granger causality test also indicates the presence of excitation and the algorithm exits when its
value returns below the threshold.

To illustrate the importance of the Granger causality test, we present an example where the interval
was rejected because it did not pass this test. The data, seen in Figure 4a, was collected from the
open loop operation of a temperature loop. As can be seen, there are almost no changes in u but y is
varying considerably due to the presence of an external disturbance. A small change in the input activates
the algorithm and because of the disturbances, both the test for the variance of y and the numerical
conditioning of R(k) exceed the thresholds. However, the Granger causality test remains below the
threshold and the interval is not accepted as useful. This example illustrates that the condition number
alone is not sufficient to determine the quality of the data.

041

0.3r

0.2

0.1r

201 ¢

15

10

(© (d)

Figure 4. Data under a significant disturbance that was rejected by the algorithm.
(a) Temperature, open loop; (b) Test for numerical conditioning of R(k); (c) Test for variance
of y; (d) Granger causality test.

6. Conclusions

From the quite extensive testing it seems that the method developed in this paper can successfully find
intervals of data relevant for system identification. It requires minimal knowledge of the control loops,
namely, whether the process is integrating or not. It is implemented efficiently in a recursive manner.
A day’s worth of data, from all loops in the test plant, takes less than 10s to be processed.
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The developed method is based on classical results from identification theory of linear systems. As
an initial screening, it checks that input and output signals are varying at all. Then it forms an information
matrix and checks its condition number. Finally, it estimates a provisional model using a Laguerre
model structure. If the parameter estimates of this provisional model are found to be statistically
non-zero the data interval is marked as potentially useful for system identification and a quality measure

is also provided.
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Appendix
A. Proof of Equation (51)
For ease of notation we drop the argument so

R Rg
0 RS

R,
I

} 2 —

o (=N

, f]:c(Rle)_l, c 5

R, = R3. (A1)

Taking the inverse for 5 using the block matrix inversion lemma and evaluating for 6°,
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and the upper left block in Equation (A2) corresponds to ©?, so

o= (R) e, (=)' = % (RY)" PRY (A4)

and finally,

s(k) = (éb)T (z0) 16 = (éb)TPbéb. (A5)
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