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Abstract: Optimization techniques are typically used to improve economic performance of
batch processes, while meeting product and environmental specifications and safety constraints.
Offline methods suffer from the parameters of the model being inaccurate, while re-identification of
the parameters may not be possible due to the absence of persistency of excitation. Thus, a practical
solution is the Nonlinear Model Predictive Control (NMPC) without parameter adaptation, where the
measured states serve as new initial conditions for the re-optimization problem with a diminishing
horizon. In such schemes, it is clear that the optimum cannot be reached due to plant-model mismatch.
However, this paper goes one step further in showing that such re-optimization could in certain cases,
especially with an economic cost, lead to results worse than the offline optimal input. On the other
hand, in absence of process noise, for small parametric variations, if the cost function corresponds to
tracking a feasible trajectory, re-optimization always improves performance. This shows inherent
robustness associated with the tracking cost. A batch reactor example presents and analyzes the
different cases. Re-optimizing led to worse results in some cases with an economical cost function,
while no such problem occurred while working with a tracking cost.

Keywords: process optimization; batch processes; process control; constrained optimization;
sensitivity; real-time optimization

1. Introduction

Batch processes are widely used in specialty industries, such as pharmaceuticals, due to their
flexibility in operation. As opposed to continuous processes, their operating conditions vary with time,
in order to meet the specifications and respect safety and environmental constraints. Additionally,
in order to improve process operation efficiency, reduce cost, numerical optimization based on
phenomenological models is used to obtain the time-varying schedule [1].

However, using an optimum, computed off-line, suffers from the problem of the model not
exactly representing the reality. Very often, it is hard to get a precise model due to the lack of quality
or quantity in the experimental data. In addition, in many cases, parameters are estimated from lab
experiments, and thus are not very accurate when scaled-up to industrial processes.

To address this problem, use of measurements in the framework of optimization is
recommended [2,3]. The idea is to repeatedly re-optimize, changing the optimization problem
appropriately using the information obtained from measurements. The initial conditions of the
optimization problem are adapted based on the current measurements. In addition, it is also possible
to identify the parameters of the system from the measurements and update them. Thus, two main
categories need to be distinguished, though there is a bit of inconsistency in the nomenclature reported
in the literature. If only the initial conditions are updated, the schemes are referred to as Model
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Predictive Control (MPC) [4–11], while Dynamic Real Time Optimization (D-RTO) schemes incorporate
adaptation of both initial conditions and parameters [12].

MPC schemes incorporate feedback by re-optimization, when computation is not prohibitive [4–7].
In this case, the model is not adapted, while a new optimum is computed from the initial conditions
obtained from current measurements. Most real systems are better represented by a nonlinear model [8,9]
and using Nonlinear Model Predictive Control (NMPC) is more appropriate [10,11].

In D-RTO, the parameters of the model are also adapted. The major problem with the adaptation
of model parameters is the persistency of excitation. The optimal input is typically not persistently
exciting, and adding an excitation for the purpose of identification would cause sub-optimality [13].
Thus, in short, D-RTO is very difficult to implement except in special cases [14,15].

NMPC schemes do not get to the optimum due to plant-model mismatch, while D-RTO is not
practical to implement. An intermediary solution is the robust NMPC reported in the literature [16,17].
The most known is the min-max method, that considers the worst-case scenario for optimization [18].
This method, however, is very conservative and clearly not optimal. Other methods such as the multi-stage
NMPC [18] seek a compromise between conservatism and optimality. Stochastic NMPC [19] considers
a probabilistic setting for the parameter uncertainties, and seeks an optimum in a stochastic sense.

The current study takes a different approach and explores the pertinence of re-optimizing
with adapted initial conditions without adapting the model (NMPC) in the case of batch processes
optimization with parametric errors. The main question asked is: “Given that the true optimum will
not be reached due to plant-model parameter mismatch, is re-optimizing worthwhile? Will there be an
improvement compared to simple implementation of the off-line optimal solution?” It is shown that
NMPC re-optimization may deteriorate the performance, especially with an economic cost function.
On the other hand, no such effect is present when the cost function is a squared error of the deviation
from a desired trajectory feasible for the plant and the active constraints are invariant. In the absence
of process noise, the tracking objective shows robustness and repeated optimization can be used even
when the model is subject to small parametric errors. This paper, thus, highlights the difference in
robustness between the economic and tracking objectives.

This paper first presents the basics of NMPC. Then, an analysis points out why re-optimizing
without parameter adaption can give worse results. A demonstration showing that such situation does
not arise for a quadratic tracking cost follows. Finally, an example is used to illustrate the different
possible situations.

2. Problem Formulation—Model Predictive Control without Parameter Adaptation

Model Predictive control consists of repeatedly optimizing a given cost function based on a model
of the system, using the state information obtained from the measurements. Two types of formulations
are found in the literature—the receding horizon [20], typically used for continuous processes, and the
diminishing horizon [21], used for batch processes. In this paper, the diminishing horizon for a batch
process with fixed final time t f will be studied. Thus, at a given time tk, the state obtained from the
measurements is xk, and the optimization problem is given as follows:

min
u[tk ,t f ]

Jk = φ
(

x
(

t f

))
+
∫ t f

tk
L (x (t) , u (t)) dt

s.t.
.
x = F (x (t) , u (t) , θ) +

.
v, x (tk) = xk

S (x, u) ≤ 0

T
(

x
(

t f

))
≤ 0 ,

(1)

where J is the function to minimize, u the input variable, x the states, F the equations describing the
system dynamics, v the process noise, φ a function representing the terminal cost evaluated, L the
integral cost function, θ the parameters and S and T respectively the path and terminal constraints.
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The initial conditions are obtained from the measured values, xk.
.
x and

.
v represent, respectively,

the differentiated states and noise.
The above formulation gets to the optimum, to the extent allowed by the sampling, when there

is process noise but no parametric errors. The process noise would move the states away from the
predicted value, but the repetition of the optimization assures that an optimum is found even from the
deviated value.

Contrarily, this paper would consider the case where the functional form is assumed to be correct,
but the parameters θ are unknown, so the error in the parameters θ = θ− θreal is non-zero. This would
also cause a variation in the states, but it might not be sufficient to simply optimize from the new states
and the wrong parameters. Additionally, the excitation present in the system might not be sufficient to
identify them online. In this work, the influence of such a parametric error on the operation of the
NMPC would be studied.

3. Variational Analysis of Model Predictive Control without Parameter Adaptation

Let us consider an appropriate input and state parameterization (e.g., piecewise constant),
where the parameterized input vector U and the parameterized states X will be used. Additionally,
assume that the active constraints are invariant with respect to parametric variations and so become
additional algebraic equations. These algebraic equations reduce the dimension of the search space.
Let Uk represent the reduced vector of inputs from time tk until t f , and the states during this time
interval is represented by Xk. The dynamic relationships can be written in a nonlinear static form and
the dynamic optimization problem becomes the following static nonlinear programming problem:

min
Uk

Jk = J (Xk, Uk, θ)

Xk = Ψk (Uk, θ) + dk ,
(2)

where dk is the difference between the predicted and observed measurements, caused by process noise
and parametric variations.

In what follows, variational analysis will be carried out assuming that the parametric variations
are “small”. Thus, higher order terms will be neglected. Thus, the results obtained are valid for
“small” parametric variations. In presence of parametric uncertainties and disturbances to the system,
the variation equation ∆J can then be written as a second order development:

∆J = ∂J
∂U ∆U + ∂J

∂d ∆d + ∂J
∂θ∆θ+ ∆UT ∂2 J

∂θ∂U ∆θ+ ∆dT ∂2 J
∂θ∂d ∆θ+ ∆UT ∂2 J

∂d∂U ∆d

+ 1
2 ∆UT ∂2 J

∂U2 ∆U + 1
2 ∆dT ∂2 J

∂d2 ∆d + 1
2 ∆θT ∂2 J

∂θ2 ∆θ .
(3)

In this equation, certain terms are constant since ∆d and ∆θ cannot be affected by manipulation
on the process. Furthermore, the first term is zero by definition. Removing these terms and renaming
the modifiable terms as ∆̃J, the equation becomes the following:

min
∆U

∆̃J = ∆UT ∂2 J
∂θ∂U

∆θ+ ∆UT ∂2 J
∂d∂U

∆d +
1
2

∆UT ∂2 J
∂U2 ∆U. (4)

The necessary condition for the variational optimization can be obtained by differentiating it with
respect to the input and equating to zero. The following equation is obtained:

∂∆̃J
∂U

=
∂2 J

∂θ∂U
∆θ+

∂2 J
∂d∂U

∆d +
∂2 J
∂U2 ∆U = 0. (5)

The optimal input can be calculated as:

∆Uopt = −
(

∂2 J
∂U2

)−1 (
∂2 J

∂θ∂U
∆θ+

∂2 J
∂d∂U

∆d
)

. (6)
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Define:

td =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂d∂U

)
∆d, (7)

tθ =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂θ∂U

)
∆θ, (8)

which are mathematical constructs that represent the parts of (6) that correspond to ∆d and ∆θ

respectively. Under the standard assumption that the Hessian is positive definite, the square root exists.
The units of tθ and td are the same as J−0.5 and so it is difficult to find a physical interpretation.

This paper considers the case where the parameters are not adapted principally due the absence
of persistency of excitation. It is well known that the optimum cannot be reached in such a case.
The following proposition goes one step further to show that it might even be harmful to re-optimize
under certain circumstances.

Proposition 1. Consider the repeated dynamic optimization problem (1) solved using the corresponding static
nonlinear programming problem (2). Let the variations in the measured states be caused by both parametric
variations and process noise. Furthermore, assume that the active constraints are invariant with respect to
parametric variations. If the correction is only based on state measurements and the parameters are not adapted,
then re-optimization will be worse than the offline solution when the terms tθ and td point in opposing directions,
satisfying tT

d tθ ≤ − 1
2 tT

d td.

Proof. If only ∆d is measured and corrected, then:

∆Uopt = −
(

∂2 J
∂U2

)− 1
2

td (9)

and:
∆̃Jopt = −

1
2

tT
d td − tT

d tθ. (10)

Obviously, − 1
2 tT

d td ≤ 0 while −tT
d tθ is sign indefinite. If td and tθ point in the same direction,

i.e., ∠ (td, tθ) ∈
[
−π

2 , π
2
]
rad, then ∆̃Jopt ≤ 0. However, if they point on different directions, ∆̃Jopt could

still be negative as long as the first term (− 1
2 tT

d td) dominates. Yet, if tT
d tθ ≤ − 1

2 tT
d td, ∆̃Jopt is positive,

making the offline solution better than the re-optimization.
In the absence of process noise, ∆d = ∂Ψ

∂θ ∆θ, and, thus, the terms tθ and td can be written as:

td =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂d∂U

)
∂Ψ
∂θ

∆θ, (11)

tθ =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂θ∂U

)
∆θ. (12)

Since for a general cost function (such as an economic objective) there is no relationship between
these two terms, the result from Proposition 1 holds. However, it will be shown in the following
proposition that, for a tracking cost with a trajectory feasible for the plant, re-optimization is beneficial
even if the parameters are not adapted. This, in other words, expresses the inherent robustness
associated with a tracking cost function.

Proposition 2. Consider the repeated dynamic optimization problem (1) solved using the corresponding

static nonlinear programming problem (2) with the tracking cost J = 1
2

(
Xk − Xre f

)T (
Xk − Xre f

)
+

1
2 w
(

Uk −Ure f

)T (
Uk −Ure f

)
, with Xre f being a trajectory feasible for the plant with Ure f being the

corresponding input and w the weight for the input variations. Let the variations in the measured states
be caused by parametric variations only. Furthermore, assume that the active constraints are invariant with
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respect to parametric variations. If the correction is only based on state measurements and the parameters are not
adapted, then, for small enough parametric variations, tθ = td, and the re-optimization will be better or equal to
the offline solution, i.e., ∆̃Jopt ≤ 0.

Proof. If the variation in the state is caused only by parametric uncertainties, then ∆d = ∂Ψ
∂θ ∆θ.

The partial derivatives for this case are given by:

∂J
∂U

=
(

X− Xre f

)T ∂Ψ
∂U

+ w
(

Uk −Ure f

)T
, (13)

∂2 J
∂θ∂U

=
(

X− Xre f

)T ∂2Ψ
∂θ∂U

+

(
∂Ψ
∂U

)T ∂Ψ
∂θ

, (14)

∂J
∂d

= (X− Xref)
T , (15)

∂2 J
∂d∂U

=

(
∂Ψ
∂U

)T
. (16)

With these, the two terms tθ and td can be written as

td =

(
∂2 J
∂U2

)− 1
2
(

∂Ψ
∂U

)T ∂Ψ
∂θ

∆θ, (17)

tθ =

(
∂2 J
∂U2

)− 1
2 (

X− Xre f

)T ∂2Ψ
∂θ∂U

∆θ+

(
∂2 J
∂U2

)− 1
2
(

∂Ψ
∂U

)T ∂Ψ
∂θ

∆θ. (18)

At the optimum, since Xre f is assumed to be feasible for the plant,
(

X− Xre f

)
= 0. Outside the

optimum,
(

X− Xre f

)
grows with ∆θ and the first term in Equation (18) becomes proportional to ∆θ2.

For small enough parametric variations, this term can be neglected. Then, tθ and td are the same and
this gives:

∆̃Jopt = −
1
2

tT
d td − tT

d tθ = −3
2

tT
d td ≤ 0. (19)

In this case, the re-optimization is always better than the offline solution.
Such a robustness result cannot be established when process noise is present. Inclusion of process

noise would cause ∆d = ∂Ψ
∂θ ∆θ+ v, which would lead to an additional term in Equation (17). This in

turn prevents tθ from being equal to td, which could eventually lead to a potential degradation in
performance. Thus, robustness can only be established mathematically for a trajectory cost without
process noise.

4. Results and Discussion

4.1. Illustrative Example

To illustrate the importance of parametric errors on NMPC, six different cases will be treated.
The first three will be with economical cost, while the last three will have a trajectory to follow.
In both situations, cases with terminal constraint, path constraint and no constraints will be done.
Barrier functions will be used to treat the constraints.

For each case, a batch reactor with two reactions is studied (inspired from Reference [12]): A→ B
and A + B→ C. From a mass balance, the following model is derived for the system:

.
cA = −k1cA − k2cAcB,

.
cB = k1cA − k2cAcB,

(20)
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where cX is the concentration of X (mol/L) and k1 and k2 are the kinetic reaction coefficient (h−1),
which are obtained using the Arrhenius equation:

ki = ki0exp
(
− Ei

RT

)
. (21)

Using the following scaled temperature as the input parameter:

u = k10exp
(
− E1

RT

)
(22)

and considering:

α =
E2

E1
, k10 = 1 and k20 = k20

(
1

k10

)α

, (23)

the kinetic coefficient are expressed as:

k1 = k10u and k2 = k20uα. (24)

The nominal values of all the parameters, as well as the constraint values, for these simulations
are given in Table 1. For each case, the parameters with errors will be α and k10.

Table 1. Models parameters, operating bounds, and initial conditions for Cases 1 to 6.

Parameter Value Units

cA0 5 mol/L
cB0 0 mol/L
k10 5 × 103 h−1

k20 7 × 1016 -
E1 2 × 104 J/mol
E2 1 × 105 J/mol
R 8.314 J/mol.K
α 5 -

k1 0 1 -
k2 0 0.0224 -
t f 2 H

umin 1.25 -
cA fmax 0.1 mol/L
γ 0.001 -
β 0.999 -

Case 1: Unconstrained system with economical cost

The objective of the three first cases is to maximize the final concentration of B. In the first case,
there are no constraints on the system, which gives the following optimization problem:

max
u(t)

J = cB

(
t f

)
. (25)

Case 2: System with terminal constraint and economical cost

The objective is to maximize the final concentration of B, in this case with a constraint on the final
concentration of A:

max
u(t)

J = cB

(
t f

)
s.t.cA

(
t f

)
≤ cAmax .

(26)



Processes 2016, 4, 27 7 of 10

The optimization is subject to a terminal constraint on cA. The terminal constraint is included in
the numerical optimization using the following barrier function, where b (c) is a barrier function for
the constraint −cmax ≤ 0:

b (c) =

{
−γlog (c− cmax) , c > βcmin

γ(c−βcmax)
(1−β)cmax

, c ≤ βcmin
. (27)

Case 3: System with path constraint and economical cost

The objective is to maximize the final concentration of B, in this case with a lower bound on the
input parameter:

max
u(t)

J = cB

(
t f

)
s.t. u ≥ umin .

(28)

The optimization is subject to a path constraint on u. The path constraint is included in the
numerical optimization once again using a barrier function.

Case 4: Unconstrained system with trajectory cost

The objective of the three last cases is to minimize the difference between a trajectory and the
concentration of B. In this case, there are no constraints on the system, which gives the following
optimization problem:

min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt, (29)

where cBre f is the trajectory to follow. For the three tracking cases, cBre f is a path following 90% of the
maximal production (model optimum). Additionally, in those three cases, inputs are not penalized,
mainly because no measurement noise was considered.

Case 5: System with terminal constraint and trajectory cost

The objective is to minimize the difference between a trajectory and the concentration of B, in this
case with a constraint on the final concentration of A:

min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt

s.t.cA

(
t f

)
≤ cAmax .

(30)

The optimization is subject to a terminal constraint on cA. The terminal constraint is included in
the numerical optimization using a barrier function. cBre f is the trajectory to follow and not a function
of time.

Case 6: System with path constraint and trajectory cost

The objective is to minimize the difference between a trajectory and the concentration of B, in this
case with a lower bound on the input parameter:

min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt

s.t. u ≥ umin .
(31)

The optimization is subject to a path constraint on u. The path constraint is included in the
numerical optimization once again using a barrier function. cBset is the trajectory to follow and not
a function of time.
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4.2. Results

The terminal cost obtained for each simulation is shown in Table 2. The simulations in which
the feedback re-optimization ended giving worse result than just using the offline optimization are
indicated in bold. The parametric errors considered are all ±20% except for Case 3. This particular
case was harder to optimize and a greater parametric error was required for the feedback’s impact to
surpass the optimization difficulties.

Table 2. Comparison of offline, re-optimization and plant optimum solutions for the six cases with
parametric errors. Cost is maximized for Cases 1–3 and minimized for Cases 4–6.

Case Parametric Error
Cost

Offline Re-Optimization Plant Optimum

1. Unconstrained,
Economic cost

– 4.03 4.03 4.03
k10: −20%; α: −20% 3.70 3.71 3.72
k10: −20%; α: +20% 3.691 3.686 3.697

2. Terminal constraint
Economic cost

– 3.71 3.71 3.71
k10: −20%; α: −20% 1.29 2.03 3.35
k10: −20%; α: +20% 3.01 2.93 3.06

3. Path constraints
Economic cost

– 3.80 3.80 3.80
k10: −50%; α: −50% 3.079 3.079 3.17
k10: −50%; α: +50% 2.39 2.37 2.40

4. Unconstrained
Trajectory cost

– 0.00 0.00 0.00
k10: −20%; α: −20% 1.16 0.303 0.03
k10: −20%; α: +20% 1.10 0.30 0.00

5. Terminal constraint
Trajectory cost

– 0.00 0.00 0.00
k10: −20%; α: −20% 2.84 1.49 0.03
k10: −20%; α: +20% 1.80 1.38 0.36

6. Path constraint
Trajectory cost

– 0.21 0.21 0.21
k10: −20%; α: −20% 0.20 0.16 0.02
k1 0: −20%; α: +20% 2.060 1.48 0.47

Note that scenarios where re-optimization is worse than offline solution only occur with
economical costs. Additional simulations have been made with different parametric errors, all leading
to this same observation. All trajectory-tracking problems with a trajectory feasible for the plant
always lead to the re-optimization being better. However, if a path more demanding than the maximal
production was chosen for cBset , i.e., not a feasible trajectory, then the tracking problem suffers the
same difficulties as the economical cost.

The simulation for a +20% error on α and −20% on k10 in Case 1 is shown on Figure 1. It shows
how re-optimization is actually worse than the offline solution. The figure clearly shows that the input
is being pulled away from its optimal value with each re-optimization.
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Figure 1. Input for Case 1, with perturbation in α and k1 0.

5. Conclusions

Optimization is frequently used on processes, whether it is offline or online in a control method,
such as NMPC. In this paper, the impact of using NMPC in presence of parametric errors is studied.
An analysis of the mathematical formulation of NMPC has shown that situations can occur where
online optimization could lead to results worse than the offline one. The example studied presented
this case in particular. It was seen that deterioration of the performance occurred only for an economical
cost, while online optimization always helped with the tracking cost. A theoretical analysis has been
performed and supports this result, showing that, for a quadratic tracking cost, online re-optimization
will improve performance with small parametric uncertainties.
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