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Abstract: Metabolic acclimation to photosynthesis-associated stresses was examined in the
thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and
photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass
composition, was analyzed using ecological resource allocation theory to predict and interpret
metabolic acclimation to irradiance, O2, and nutrient stresses. Reduced growth efficiency, shifts in
photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion
patterns were predicted to occur along culturing stress gradients. These predictions were compared
with photobioreactor physiological data and previously published transcriptomic data and found
to be highly consistent with observations, providing a systems-based rationale for the culture
phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created
niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress
tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight
into stress acclimation strategies in photoautotrophs and establishes a framework for predicting,
designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of
controllable parameters.

Keywords: cross-feeding; cyanobacteria; elementary flux mode analysis; irradiance; resource
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1. Introduction

Environmental stresses dictate competitive ecological strategies impacting nutrient and energy
flows from the scale of individual cells to ecosystems [1,2]. Cyanobacteria are significant drivers
of global nutrient and energy flows, accounting for ~10% of global primary productivity [3] and
forming essential links in carbon and nitrogen biogeochemical cycles [4]. Cyanobacteria are also used
in wastewater treatment and as bioprocess catalysts for bioproduction of specialty chemicals [5,6].
Cyanobacteria are deeply rooted in the tree of life and have adapted competitively to common stressors
associated with photosynthesis and are model organisms for examining metabolic acclimation to
these stresses.

Photoinhibition is a broad term encompassing different types of photosynthesis-associated
stresses including photo-damage by excitation, damage by reactive oxygen species (ROS), and
high localized O2 concentrations [7]. Cyanobacteria can mitigate photo-damage by downregulating
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synthesis of photosystems, as well as adjusting relative photon absorption at photosystems I and
II (PSI, PSII) to modulate ATP and NADPH regeneration (PSII extracts electrons from water which
can be used in conjunction with PSI to regenerate NADPH and ATP, while PSI operating alone
recycles electrons to regenerate ATP only; see Figure 1) [8]. High excitation can lead to oxidative
damage at the photosystems and/or a highly reduced electron transport chain, which may also lead to
cellular oxidative damage via ROS. Acclimation strategies include directing excess electrons toward
alternative biochemical routes, such as reduction of O2 (by either cellular respiration or the water-water
cycle (photoreduction of O2 to water)) or secretion of reduced carbon byproducts. High rates of
oxygenic photosynthesis can also lead to locally high O2 levels [9,10], and environments with high
concentrations of O2 relative to CO2 can cause additional metabolic stress. Ribulose-1,5-bisphosphate
carboxylase oxygenase (RuBisCO) is a dual-functioning enzyme which can react with either CO2 or
O2. When RuBisCO reacts with O2, 2-phosphoglycolate is produced, which is either secreted as the
inhibitory compound glycolate or catabolized using one of three photorespiration pathways found in
cyanobacteria [11]. Cyanobacteria have evolved mechanisms to reduce O2 consumption at RuBisCO,
including species-specific enzymes with varying affinities for CO2 and O2, as well as expression of
carboxysomes to increase the relative CO2 concentration in the vicinity of RuBisCO [12,13].
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Figure 1. Light and dark reactions of photosynthesis. The role of photosystems I and II (PSI and
PSII) in linear (a) and cyclic (b) photosynthesis and their relation to production of O2 and regeneration
of NADPH and ATP. Linear photosynthesis produces O2 and regenerates both ATP and NADPH,
whereas cyclic photosynthesis does not produce O2 and regenerates ATP only. In the dark reactions, the
bifunctional RuBisCO enzyme can incorporate inorganic carbon into biomass via the Calvin cycle (c) or
can react with O2 (d), resulting in a toxic byproduct and reducing incorporation of carbon into biomass.
Abbreviations: hν, photons (photosynthetically active radiation); PQ, plastoquinone/plastoquinol;
Cyt b6f, cytochrome b6f; PC, plastocyanin; FNR, ferredoxin-NADP+ reductase; Fd, ferredoxin; RuBP,
ribulose-1,5-bisphosphate; PGA, 3-phosphoglycerate; PG, 2-phosphoglycolate.

Stoichiometric modeling of metabolism enables prediction and interpretation of system-wide
properties of complex metabolic networks, including community-level networks [14–20]. These
systems biology approaches, such as flux balance analysis (FBA) and elementary flux mode
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analysis (EFMA), use genomic and physiological data to inform the construction of computational
representations of metabolism. The application of a steady state assumption simplifies the
mass-balanced metabolic reactions into a series of solvable linear equations, reducing the need
for difficult-to-measure, condition-dependent enzyme kinetic parameters [16]. Whereas FBA uses
objective functions such as biomass production to predict an optimal flux distribution under a specific
set of conditions, EFMA calculates the complete set of minimal pathways (elementary flux modes,
EFMs) through a metabolic network using steady state, reaction reversibility, and indecomposability
constraints. Non-negative linear combinations of EFMs define the entire phenotypic solution space of
a steady state metabolic network using a single simulation and can be used to examine all possible
physiologies in an unbiased manner [19,21]. Similarities and differences in the output of EFMA
versus other stoichiometric modeling techniques can be found in the review by Trinh et al. [19].
The enumerated EFMs can be evaluated by resource allocation theory, which quantitatively assesses
the computational phenotypic space according to tradeoffs in consumption of different resources for
the production of bioproducts [22–26]. Previous stoichiometric modeling studies of cyanobacterial
metabolism have examined the occurrence of photorespiration as well as irradiance and carbon
limitations [27–30].

The presented study analyzes metabolic acclimation to photosynthesis-associated stresses
in the thermophilic, non-diazotrophic unicellular cyanobacterium Thermosynechococcus elongatus
BP-1 (hereafter BP-1) and the formation of heterotrophic niches. BP-1 was isolated from the
alkaline (pH 8.6) Beppu hot springs in Japan where temperatures range from 50–65 ◦C [31,32].
BP-1 is a major primary producer in its native hot springs where it often grows in bacterial
mat communities with heterotrophs and is subject to high irradiance, high O2, and low nutrient
availability stresses. The objectives of this study were to (i) identify ecologically relevant acclimation
strategies to high irradiance, O2/CO2 competition at RuBisCO, and nutrient limitation at varying
degrees using a computational BP-1 stoichiometric model and EFMA combined with resource
allocation theory, (ii) analyze BP-1 acclimation to high irradiance through controlled photobioreactors,
(iii) compare general computational predictions to specific photobioreactor observations to interpret
BP-1 acclimation strategies, and (iv) examine the impact of stress acclimation strategies on the ability
of BP-1 to interact with heterotrophic partners. The presented study contributes to the understanding
of cyanobacterial metabolism by examining specific photorespiration pathways, relative photon
absorption of the photosystems, and byproduct secretion profiles under simultaneous stress conditions
of high irradiance and O2/CO2 competition at RuBisCO, as well as by predicting cross-feeding
photoautotrophic-heterotrophic interactions. The computational resource allocation-based modeling
integrated with photobioreactor observations provides a rational basis for interpreting natural
cyanobacterial behavior and a framework for controlling cyanobacteria for bioprocess applications.

2. Materials and Methods

2.1. Photobioreactor Culturing

T. elongatus BP-1 cultures were grown using modified BG-11 (mBG-11) medium [33,34], containing
17.6 mM NaNO3, 0.304 mM MgSO4·7H2O, 0.175 mM KH2PO4, 0.245 mM CaCl2·2H2O, 0.0028 mM
Na2EDTA, and 0.0144 mM FeCl3. A trace metal supplement was added (1 mL/L), comprised of
46.254 mM H3BO3, 9.146 mM MnCl2·4H2O, 0.772 mM ZnSO4·7H2O, 1.611 mM Na2MoO4·2H2O,
0.316 mM CuSO4·5H2O, and 0.170 mM Co(NO3)2·6H2O. Inoculum cultures of BP-1 were initiated
from frozen stocks into 150-mL sealed serum bottles filled with 50 mL mBG-11 amended with 15 mM
sodium bicarbonate and adjusted to pH 7.5 under N2 headspace containing 10% CO2.

Photobioreactors were operated as turbidostats as described in Bernstein et al. [33], similar to
Bernstein et al. and Melnicki et al. [35,36]. Reactors were inoculated with exponentially growing
inoculum culture to OD730nm = 0.01. All cultures were grown under continuous light of varying
irradiances at 52 ◦C, pH 7.5, and were continuously sparged at 4 L min−1 with a 98% N2 and 2%
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CO2 gas mixture. Incident and transmitted scalar irradiances were measured and used to adjust
the turbidostat growth rate. The specific optical cross section (σ, m2 (g CDW)−1, CDW, cell dry
weight) was determined according to a previously described method using a light diffuser and
spectrophotometer [37]. The specific photon absorption rate was calculated by multiplying the specific
optical cross section by the incident irradiance.

2.2. Biomass Composition Determination

Macromolecular composition was analyzed from turbidostat biomass samples (pelleted and frozen
at Pacific Northwest National Laboratory and then shipped to Montana State University for subsequent
analysis) according to the following procedures. DNA was quantified from alkali-lysed solutions with
Hoechst 33258 fluorescent dye [38]. Glycogen was quantified by co-precipitation with sodium sulfate
and detection with anthrone [39]. Lipids were quantified gravimetrically via chloroform-methanol
extraction [40]. Total protein and amino acid distribution were quantified with HPLC fluorescence
detection using o-phthalaldehyde (OPA) and 9-fluorenylmethylchloroformate (FMOC) derivatizations
of acid-hydrolyzed protein [41]. Cysteine, methionine, and tryptophan were degraded, and asparagine
and glutamine were converted to aspartate and glutamate, respectively, during hydrolysis [42];
therefore, abundances were predicted from protein-coding gene codon usage. RNA was quantified
by lysis with potassium hydroxide, extraction into cold perchloric acid, and measurement of UV
absorbance at 260 nm [43]. Appendix A contains detailed protocols for each method.

2.3. Model Construction

The metabolic network model for BP-1 was constructed in CellNetAnalyzer [44,45] from the
annotated genome [46] with the aid of MetaCyc, KEGG, BRENDA, and NCBI databases [47–49].
Reversible exchange reactions were defined for protons and water. Irreversible exchange reactions
defined bicarbonate, magnesium, nitrate, phosphate, photons, and sulfate as possible substrates and
O2, acetate, alanine, ethanol, formate, glycolate, lactate, pyruvate, and sucrose as possible byproducts.
Biomass was also defined as a product.

Macromolecular synthesis reactions were defined for nucleic acids, glycogen (most common
form of cyanobacterial carbohydrate storage [50]), lipid, and protein. Synthesis reactions utilized two
phosphate bonds per nucleic acid monomer, one phosphate bond per glycogen monomer, and four
phosphate bonds per protein monomer [51]. Nucleotide distributions were set based on percent GC
content of the genome for DNA and nucleotide sequence of the rRNA genes for RNA. Fatty acid
distribution was assigned based on literature values of fatty acid chain and lipid types measured
for BP-1 [52–54]. The amino acid distribution was set using the experimentally measured values
in the current study. Macromolecular composition (DNA, glycogen, lipid (including chlorophyll),
protein, and RNA) was determined experimentally in the current study (see Section 2.2) and used to
set the molar coefficients in the biomass synthesis reaction, normalized to 1 kg dry biomass (File S1 in
the Supplementary Materials). Chlorophyll was also included in biomass synthesis using the mass
fraction measured for Synechococcus sp. PCC 7002 [29], and the lipid mass fraction was adjusted
to reflect the proportion of chlorophyll. The biomass composition was converted into an electron
requirement using degree of reduction (moles of electrons per mole of carbon) calculations [55] with the
assumption that each biosynthetic electron requires two photons (one absorbed at each PSII and PSI).
Degree of reduction was calculated with respect to nitrate as a nitrogen source. To estimate photons
necessary for ATP regeneration, the phosphate bond requirement for polymerization of monomers
into macromolecules was converted into a photon requirement via a stoichiometry of four photons per
phosphate bond (one photon absorbed at PSI per proton pumped, with four protons translocated per
ATP molecule synthesized). Photon and proton stoichiometries remain active areas of research, and this
estimate is recognized as an upper bound considering linear photosynthesis without a Q-cycle [56,57].

All reactions were balanced for elements, charge, and electrons. Thermodynamic considerations
were built into the model via reaction reversibilities, based on data from BRENDA [49]; in the
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event that data for bacterial species were not available from BRENDA, thermodynamic calculations
were performed with eQuilibrator (http://equilibrator.weizmann.ac.il/) to determine physiological
reversibility, using a product concentration three orders of magnitude greater than the reactant
concentration [58,59]. Nitrogen requirements were determined for each reaction by summing the
number of nitrogen atoms specified by the enzyme amino acid sequences. Iron requirements were
determined for central carbon metabolism and photosynthesis reactions based on metal requirements
of similar cyanobacterial species in BRENDA [49]. For instances of missing or conflicting information
in the database, literature values compiled for oxygenic photoautotrophs were used [60]. A one-to-one
(minimal resource investment) correspondence of enzyme to reaction was used to calculate the total
cost per EFM, as it has previously been shown to provide a good approximation of flux distributions in
Escherichia coli [23,24]. EFMs were enumerated using EFMtool [61]. Resource allocation analysis (cost
assessment) of the resulting EFMs was performed with MATLAB and Python. The metabolic model
with supporting details and CellNetAnalyzer metabolite and reaction input, SBML model version, and
documented analysis routines can be found in the Supplementary Materials (Files S1–S4).

3. Results

3.1. Computational BP-1 Metabolic Model and Photobioreactor Biomass Composition Measurement

The BP-1 computational metabolic model was constructed from the annotated genome [46].
Genetic potential was mapped to enzymes and metabolic reactions which encompassed photosynthesis,
central metabolism, and biosynthetic reactions leading to biomass production according to a defined
macromolecular composition reaction. Transport reactions were defined for nutrient uptake and
product secretion. Subsequent EFMA resulted in a description of the phenotypic space spanning
the range of possible nutrient uptake and product secretion rates, which could then be analyzed for
ecologically relevant stress acclimation strategies. The model accounted for 334 metabolism-associated
genes which were mapped to 279 metabolites and 284 reactions (File S1 in the Supplementary Materials).
Photons were assumed to be within the spectrum of photosynthetically active radiation (PAR;
400–700 nm). A stoichiometrically balanced schematic demonstrating operation of the photosynthetic
electron transport chain (linear and cyclic photosynthesis) and carbon flow in the model is shown
in Figure 1. Nutrient substrates for the model were selected in alignment with the photobioreactor
culturing medium. Bicarbonate was modeled as the sole carbon source based on culturing pH while
interconversion with CO2 was modeled via the carboxysomal carbonic anhydrase enzyme, and nitrate
was modeled as the sole nitrogen source. Two of the three photorespiration pathways possible in
cyanobacteria [11] were identified in BP-1, namely, the C2 cycle and the glycerate pathway. A variety
of organic byproducts (Table 1) were considered based on previous genomic analysis of BP-1 [62] and
culturing studies of related unicellular cyanobacteria [63,64]. Secretion of several different amino acids
has been observed in BP-1 and related species [33,63,64]; alanine was included as a representative
amino acid byproduct in the current model, closely linked to central metabolism.

Biomass composition impacts growth and byproducts [65], making appropriate composition
parameters important for computational growth predictions. BP-1 macromolecular biomass
composition was determined analytically from continuous culture samples and was used to
parameterize the model growth reactions. The major measured macromolecule classes (DNA, glycogen,
lipid (including chlorophyll), protein, and RNA) summed to 98.1% of cell dry weight (Table 2); the
remaining 1.9% was assumed to be ash. Protein and lipid/chlorophyll comprised the largest mass
fractions of biomass, accounting for 62.0% and 17.4%, respectively. Since protein comprises the largest
fraction of biomass, amino acid monomer distribution was also determined analytically (Table A1 in
Appendix C) and used to parameterize the model reaction for protein synthesis. A strong correlation
was observed between the measured amino acid distribution and the distribution predicted from
protein-coding gene sequences (Figure A1 in Appendix B).

http://equilibrator.weizmann.ac.il/
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Table 1. T. elongatus BP-1 metabolic model inputs and outputs, including potential reduced carbon
byproducts, with corresponding degree of reduction.

Compound Formula Charge Degree of Reduction

Inputs

Carbon dioxide CO2 0 0
Water H2O 0 0

Photons NA NA NA
Nitrate NO3 −1 −8/−5/0

Outputs

Molecular oxygen O2 0 −4
Biomass CH1.6N0.2O0.3P0.01S0.005 −0.7 4.3/5.0/6.1 a

Acetate C2H3O2 −1 4
Alanine C3H7NO2 0 4/5/6.7 a

Ethanol C2H6O 0 6
Formate CHO2 −1 2

Glycolate C2H3O3 −1 3
Lactate C3H5O3 −1 4

Pyruvate C3H3O3 −1 3.3
Sucrose C12H22O11 0 4

a Degree of reduction calculated with respect to ammonia/molecular nitrogen/nitrate. NA, not applicable.

Table 2. Experimentally determined T. elongatus BP-1 biomass composition from turbidostat biomass
samples grown under an irradiance of 2000 µmol photons m−2 s−1.

Macromolecule Mass Percent Extraction Method/Analytical Method

DNA 0.4 Alkaline lysis/Hoechst 33258 fluorescence

Glycogen 2.0 Sodium sulfate
co-precipitation/Anthrone detection

Lipid (including chlorophyll) 17.4 Chloroform-methanol/Gravimetric

Protein 62.0 Hydrochloric acid hydrolysis/OPA,
FMOC derivatization

RNA 16.3 Alkaline lysis, perchloric acid/UV
absorbance

Total 98.1

3.2. Computational Analysis of Stress Acclimation

The computational BP-1 metabolic model was decomposed into 4,636,498 unique EFMs using
EFMtool [61], with ~99.5% producing biomass. Each EFM, as well as any non-negative linear
combination of multiple EFMs, represented a mathematically feasible phenotype and possible stress
acclimation strategy. Competitive stress acclimation strategies were identified using ecological resource
allocation theory. Resource allocation theory analyzes the amount of catabolic or anabolic resource
required to synthesize a cellular product, often biomass. Minimizing the requirement of a limiting
resource represents a competitive, cost-effective phenotype and is hypothesized to be a probable
cellular strategy selected by evolution. When two or more resources are considered simultaneously,
a multi-dimensional tradeoff surface is created that quantifies the utilization relationship between
the limiting resources [22–25]. Biomass-producing EFMs were ranked quantitatively based on
efficiency of resource use for biomass production under simulated environmental stresses including
high irradiance, O2/CO2 competition at RuBisCO, and limited availability of dissolved inorganic
carbon (DIC) as well as nitrogen or iron. The tradeoff between optimal use of two resources was
quantified by simultaneously minimizing the cost of biomass production under two different stress
factors. Similar methods have been applied to extend FBA to account for biosynthetic costs [26],
but enumeration of complete EFMs combined with resource allocation theory allows exploration of
the entire phenotypic space.
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3.2.1. Irradiance and Photosynthetic Electron Flow

Photosynthetic electron flow was examined as a function of irradiance-induced stress to interpret
relationships between photon absorption and photocatalytic water oxidation. Net O2 production
per carbon mole (Cmol) biomass produced was plotted as a function of photons absorbed per Cmol
biomass produced, a metric of irradiance-induced stress (Figure 2). Each net O2 molecule is the
byproduct of four photosynthetically derived electrons extracted from water and requires eight
total photons absorbed [66]; this relationship is reflected in the slope of the upper boundary of the
phenotypic cone. Photons absorbed at PSI during cyclic photosynthesis are decoupled from O2

production. Growth phenotypes were analyzed for the ability to direct electrons toward either biomass
or reduced byproducts. The EFMs along the lowest boundary of the phenotypic cone in Figure 2
represented growth where all electrons were directed to biomass and no reduced byproducts were
secreted, extending up to ~80 mol photons absorbed per Cmol biomass produced. Net O2 production
(~1.53 mol O2 per Cmol biomass) at the lowest boundary corresponds to the biomass degree of
reduction, ~6.1 mol electrons available to reduce O2 per Cmol biomass (Table 1). EFMs with higher net
O2 production directed electrons to reduced carbon byproducts, such as formate or acetate.
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Figure 2. Computational analysis of irradiance and photosynthetic electron flow in cyanobacterium
T. elongatus BP-1. Net O2 production (net mol O2 evolved (Cmol biomass produced)−1) is
plotted as a function of photon absorption (mol photons absorbed (Cmol biomass produced)−1)
for biomass-producing EFMs. Each point represents a unique EFM. The slope of the upper boundary
of the phenotypic cone indicates maximum net moles of O2 produced per mole of photons absorbed
(eight photons required per molecule O2 evolved; theoretical minimum quantum requirement).
No byproducts were secreted on the lower boundary of the phenotypic cone minimizing net O2

production per biomass produced; net O2 production along this boundary was a direct result of
electrons incorporated into biomass; secreted reduced carbon byproducts were predicted throughout
the remaining phenotypic space. Color scale represents the photon absorption at PSII relative to PSI for
each EFM (mol photons absorbed at PSII (mol photons absorbed at PSI)−1). Relative contribution of
PSII was predicted to increase as photon absorption increased. Less than 1% of the EFMs had a PSII/PSI
ratio greater than 6 (with maximal value of 20) and were excluded from the plot to represent a more
feasible phenotypic space [67–69]. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area shown are representative of 4,371,798 EFMs.

Biomass-producing EFMs were assessed for photon absorption at PSII relative to PSI to quantify
the contribution of the two photosystems to photosynthetic electron flow (Figure 2, shaded color bar).
A value less than one indicated elevated cyclic photosynthesis, a value greater than one indicated
elevated operation of PSII independent of linear photosynthesis (i.e., reduction of O2 through either
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cellular respiration or the water-water cycle), and a value equal to one indicated linear photosynthesis
or, alternatively, equivalent cyclic photosynthesis and O2 reduction. Figure 1 provides greater detail on
cyclic and linear photosynthesis. An increase in photon absorption at PSII at a fixed net O2 production
indicated greater gross production of O2, which was consumed by cellular respiration and/or the
water-water cycle. In general, photon absorption at PSII relative to PSI was predicted to increase
as irradiance-induced stress increased (Figure 2), indicating a greater contribution of PSII to photon
absorption at high irradiance.

3.2.2. Irradiance, High O2, and Nutrient Limitation

Computational BP-1 growth phenotypes were interrogated for stress acclimation strategies under
a range of relative O2 to DIC concentrations, represented by O2/CO2 competition at RuBisCO
(Figure 3a). The tradeoff curve simultaneously minimizes the cost of biomass production under
O2/CO2 competition (moles O2 per mole CO2 consumed at RuBisCO) and irradiance-induced stress;
EFMs on the tradeoff curve (or non-negative linear combinations thereof) represent optimal predicted
growth phenotypes under the combined stresses. Photorespiration, as opposed to secretion of glycolate,
was predicted as an essential process on the tradeoff curve except at zero O2/CO2 competition,
and utilization of photorespiration reactions increased with increasing stress. Utilization of the C2
photorespiration cycle was predicted to increase along the tradeoff curve, whereas use of the glycerate
pathway remained minimal. Photon absorption at PSII relative to PSI was also predicted to increase
along the tradeoff curve. Neither cellular respiration nor the water-water cycle was active along the
tradeoff curve, indicating that all photosynthetically derived electrons were directed to either biomass
or reduced carbon byproducts. The tradeoff curve was divided into four phenotypic zones based on
the suite of byproducts predicted. Zone 1 phenotypes did not secrete reduced byproducts, but as
O2/CO2 competition at RuBisCO increased, more energy from photons was required to mediate the
stress as indicated by higher photon absorption per biomass. At high O2/CO2 competition (~0.8 mol
O2 (mol CO2)−1), byproduct secretion represented the most resource-efficient acclimation strategy
under the combined stresses. Byproduct synthesis effectively consumed photosynthetically derived
electrons at the expense of fixed DIC and, conditionally, reduced nitrogen, as seen in the transition in
byproducts produced along the tradeoff curve. Formate was predicted to be the most resource-efficient
byproduct (zone 2 phenotypes), followed by combinations of formate and amino acids, represented in
the model as alanine (zone 3 phenotypes), and acetate and amino acids (zone 4 phenotypes). Secretion
of glycolate was not the most competitive use of metabolic potential under the considered stresses.
Net O2 production of the tradeoff curve EFMs quantified the fraction of electrons directed to biomass
and reduced byproducts as a function of stress acclimation (Figure 3b). A nonlinear increase in net O2

production per Cmol biomass was predicted; the increase in net O2 production correlated with the
secretion of reduced byproducts (formate, acetate, and/or alanine).

In addition to DIC, nitrogen and iron are essential anabolic resources and place constraints on
cellular functions such as growth or ATP regeneration [70]. Acclimation to nitrogen- or iron-limited
growth, assessed by investment into enzymes, was analyzed in conjunction with O2/CO2 competition
(Figure A2a,b in Appendix B). Increasing O2/CO2 competition at RuBisCO necessitated an increase
in nitrogen and iron investments into metabolic enzymes due to the requirement to process
2-phosphoglycolate. Tradeoff curve analysis of simultaneous acclimation to O2/CO2 competition
and nutrient limitation showed trends similar to those predicted under irradiance-induced stress
in Figure 3a, and amino acid secretion was again predicted at the highest resource limitation
stress. However, under nitrogen limitation, reduced byproduct secretion was required for the most
competitive phenotypes over the entire range of resource-limited growth. BP-1 metabolism was
predicted to be less robust to nitrogen-limited stress than irradiance-induced stress as indicated by
relatively fewer suboptimal EFMs near the tradeoff curve (Figure A2a in Appendix B). Additional
details on nitrogen and iron limitation are found in Appendix D. While the majority of EFMs produced
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biomass, energy-producing EFMs (not producing biomass) also showed similar optimal byproducts
under irradiance-induced stress and O2/CO2 competition (data not shown).
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Figure 3. Computational analysis of irradiance-induced stress and O2/CO2 competition at
RuBisCO in cyanobacterium T. elongatus BP-1. (a) O2/CO2 competition at RubisCO (mol
O2 (mol CO2)−1 consumed) as a function of photon absorption (mol photons absorbed (Cmol
biomass produced)−1) for biomass-producing EFMs are plotted. Each point represents a unique
EFM. The tradeoff curve defining competitive strategies between O2/CO2 competition and
irradiance-induced stress was divided into four distinct phenotypic regions based on byproduct
secretion behavior, labeled accordingly (intensity of shading increases with increasing stress). The
maximum amount of O2 per CO2 consumption at RuBisCO that can be sustained is two to one.
Consumption of two O2 molecules followed by photorespiration recycles 2-phosphoglycolate to
regenerate the ribulose-1,5-bisphosphate precursor, but loses the single molecule of CO2 that
was consumed and thus cannot support biomass production. Points in the plot area shown are
representative of 4,457,199 EFMs. (b) Net O2 production (net mol O2 evolved (Cmol biomass
produced)−1) as a function of photon absorption (mol photons absorbed (Cmol biomass produced)−1)
for biomass-producing EFMs are plotted. Colored points indicate net O2 production of EFMs on the
tradeoff curve in (a). Color scale represents the photon absorption at PSII relative to PSI (mol photons
absorbed at PSII (mol photons absorbed at PSI)−1). Modeled biomass production did not include
maintenance energy requirements. Points in the plot area shown are representative of 4,355,094 EFMs.

3.3. Comparison of Computational Predictions with Photobioreactor Physiological Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with data from turbidostat culturing experiments. Irradiance levels altered both specific
growth rate and biomass yield during cultivation. Specific growth rates ranged from 0.06–0.29 h−1 at
irradiances varying from 200–2000 µmol photons m−2 s−1 (Figure 4a). Specific growth rates increased
linearly as a function of incident irradiance below 500 µmol photons m−2 s−1. Above 500 µmol photons
m−2 s−1, irradiance became saturating, possibly inhibitory, and specific growth rate approached
a maximum at 1800–2000 µmol photons m−2 s−1. Conversely, biomass yield per photon absorbed
had a maximum at low irradiance (200–300 µmol photons m−2 s−1) and decreased nonlinearly as a
function of incident irradiance (Figure 4b). Irradiance-induced stress at 2000 µmol photons m−2 s−1

reduced the biomass production efficiency by more than 50% compared to low irradiance conditions.
The decrease in biomass per photon yield is consistent with predicted acclimation strategies, as is the
nonlinear relationship between stress and biomass growth efficiency (Figure 3).
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Figure 4. Photobioreactor impact of irradiance on specific growth rate and biomass production
efficiency in T. elongatus BP-1 continuous culture. (a) Photobioreactor measurement of BP-1 specific
growth rate (g CDW (g CDW)−1 h−1) as a function of incident irradiance (µmol photons m−2 s−1).
CDW, cell dry weight. (b) Photobioreactor measurement of BP-1 biomass yield (g CDW (mol photons
absorbed)−1) as a function of incident irradiance (µmol photons m−2 s−1).

BP-1 maintenance energy requirements were estimated by analyzing specific photon absorption
rate as a function of specific growth rate (Figure 5). The non-growth associated maintenance energy
requirement (0.16 mol photons (g CDW)−1 h−1) was estimated by extrapolating the specific photon
absorption rate data to a zero growth rate. Photon requirements for growth can be partitioned into the
cellular energy required to (1) reduce nutrients such as DIC and nitrate into biomass monomers and
(2) polymerize monomers into macromolecules. The photon requirement to reduce nutrient substrates,
including bicarbonate and nitrate, to biomass monomers was calculated using the experimentally
measured biomass composition. Macromolecular synthesis reactions in the model incorporated the
energy cost of phosphate bonds required to polymerize monomers.

Photon requirement per Cmol biomass increased nonlinearly at higher growth rates (Figure 5),
which corresponded to higher incident irradiance and represented successively increasing
irradiance-induced stress and reduced biomass production efficiency. The difference between the
photon requirement for biomass and the experimentally measured photon requirement is hypothesized
to be the photon requirement for growth-associated maintenance energy, including tasks such as
general protein repair, enzyme turnover, and maintenance of gradients, or other drains such as
non-photochemical quenching of absorbed photons [8,71–73]. Additionally, the repair and recycling
of PSII due to increased photoinactivation at high irradiance requires a large investment of nitrogen
and poses a significant limitation on growth [74,75]. The implications of nitrogen source degree of
reduction were also factored into maintenance energy calculations. A comparison of the effects
of different nitrogen sources on the photon requirement is shown in Figure A3 in Appendix B.
Molecular nitrogen and ammonia required fewer photons per biomass since they are more reduced
than nitrate. Nitrate may be a preferred nitrogen source for photoautotrophs under high irradiance
conditions, likely because it represents a possible sink for electrons which can buffer over-reduced
photosynthetic machinery.
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Figure 5. Growth rate-dependent photon absorption rate and maintenance energy in cyanobacterium
T. elongatus BP-1. Specific photon absorption rate (mol photons absorbed (g CDW)−1 h−1) is plotted as
a function of specific growth rate (g CDW (g CDW)−1 h−1) for experimental BP-1 turbidostat cultures
(black circles). Specific photon absorption rate is dependent on specific growth rate (µ) according to
the equation 0.16e9.47µ determined from an exponential regression of the photobioreactor data. The
non-growth associated maintenance energy requirement was extrapolated from a specific growth rate of
zero (light blue line). Measured photon absorption rates are contrasted with calculated requirements for
biomass synthesis, including polymerization (dark blue line). CDW, cell dry weight.

3.4. Comparison of Computational Predictions with Photobioreactor Transcriptomic Data

The optimal predicted growth phenotypes identified along the tradeoff curve (Figure 3a) were
compared with previously published BP-1 transcriptomic data [33]. The transcriptomic data were
analyzed for differentially expressed genes (two-fold or greater difference) between high and low
irradiance conditions (2000 versus 200 µmol photons m−2 s−1). A change in expression of two-fold
or greater was observed for 1147 genes. Differentially expressed genes were examined according
to metabolic pathways and compared with the pathways utilized in the predicted optimal stress
acclimation phenotypes. Consistencies and inconsistencies between predicted and observed metabolic
functionalities were grouped into six categories (Table 3) and are discussed in detail below.

Table 3. Comparison between computational predictions of stress acclimations and previously
published photobioreactor gene expression data under high versus low irradiance conditions [33].
Metabolic functionalities were predicted from competitive pathways along the optimal tradeoff curve
for irradiance-induced stress and O2/CO2 competition (Figure 3a), and observations were made
from gene expression data comparing change in transcripts from high to low irradiance (2000 versus
200 µmol photons m−2 s−1) [33].

Prediction Observation

1. Photosystem
contribution

• Increased PSII photon absorption
relative to PSI

• Upregulation of PSII-associated genes
• No change in PSI-associated genes

2. Photorespiration
pathways

• Use of photorespiration
• Increase in photorespiration with higher
O2/CO2 competition

• Transcription of photorespiration genes
• Upregulation of C2 cycle genes

• Primarily C2 cycle, minimal glycerate
pathway usage • No change in glycerate pathway genes

3. Byproduct secretion
• Production of reduced byproducts•
Formate and acetate production

• Upregulation of formate, acetate, and sucrose
synthesis genes

• Amino acid (alanine) secretion at
highest stress

• Upregulation of amino acid synthesis
pathway and transporter genes
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Table 3. Cont.

Prediction Observation

4. Glycolysis • Increased use of lower portion of
glycolysis

• Upregulation of genes in lower portion of
glycolysis

5. TCA cycle • No change in TCA cycle use • Upregulation of TCA cycle genes leading to
synthesis of α-ketoglutarate

6. Nitrate and sulfate
assimilation

• Increased nitrate uptake in pathways
that secrete amino acid byproducts

• Upregulation of nitrate uptake and
assimilation genes

• No change in sulfate uptake • Upregulation of sulfate uptake and
assimilation genes

3.4.1. Photosynthesis, Photorespiration, and Byproducts

The predicted increase in photon absorption at PSII relative to PSI (Figure 3a) was reflected
in the transcriptomic data [33] showing upregulation of genes coding for several PSII subunit and
repair genes but no upregulation of PSI-associated genes (Table A2 in Appendix C). The increase in
transcript level could be due to increased photon absorption, or it could reflect an increased turnover
of PSII, which has been reported during culturing at high irradiance [74,75]. A relative increase in
photon absorption at PSII would suggest an increased relative contribution of PSII to photosynthetic
electron flow under irradiance-induced stress. Photorespiration was a predicted strategy under high
irradiance and O2/CO2 competition, corresponding to upregulation of photorespiration pathway
genes observed in the transcriptomic data [33]. Predicted pathways indicated preferential utilization
of the C2 photorespiration cycle as opposed to the glycerate pathway, and transcriptomic data [33]
indicated upregulation of C2 cycle genes with no change in expression of glycerate pathway genes
(Figure 6). Byproduct secretion was predicted as a competitive strategy at high irradiance and O2/CO2

competition. Irradiance, nitrogen investment, and iron investment analyses in conjunction with
O2/CO2 competition all predicted amino acid secretion as a resource-efficient strategy at the highest
combined stress conditions (Figures 3a and A2). These predictions corresponded with observations
of upregulated genes for synthesis pathways of organic compounds such as acetate and formate
(Figure 6), as well as for more than 50 amino acid synthesis pathway and transporter genes (Table A3
in Appendix C). Altogether, these parallels with the transcriptomic data [33] suggest increased electron
flow into the system, increased photorespiration, and reprocessing of salvaged carbon into other
byproducts with greater degree of reduction (Table 1) at higher irradiance.

3.4.2. Central Metabolism and Nutrient Assimilation

Several glycolysis genes were observed to be upregulated under high irradiance conditions [33],
primarily genes involved in the lower portion of glycolysis after glyceraldehyde-3-phosphate
(glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase,
enolase, and pyruvate kinase) (Table A2 in Appendix C). Tradeoff curve analysis of the EFMs under
high irradiance and O2/CO2 competition predicted that utilization of the reactions catalyzed by these
enzymes increased with increasing stress except for glyceraldehyde-3-phosphate dehydrogenase. Both
glyceraldehyde-3-phosphate and 3-phosphoglycerate intersect the Calvin cycle and glycolysis; thus,
increased use of the lower portion of glycolysis suggested funneling of glyceraldehyde-3-phosphate
from the Calvin cycle into glycolysis to produce pyruvate, which may be used to synthesize byproducts
such as formate, acetate, and amino acids. Several TCA cycle genes were also observed to be
upregulated under high irradiance conditions, predominantly genes catalyzing reactions up to the
synthesis of α-ketoglutarate, from which several amino acids are synthesized (Table A2 in Appendix C).
Tradeoff curve analysis of the EFMs under high irradiance and O2/CO2 competition predicted no
change in utilization of any TCA cycle reactions. The BP-1 model utilized alanine as a representative
amino acid which could be secreted as a byproduct; alanine is synthesized via pyruvate. However,
if the computational model was modified to allow secretion of amino acids that are synthesized via
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TCA cycle intermediates, such as glutamate, it would lead to predictions of increases in some TCA
cycle fluxes.
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Figure 6. Cyanobacterium T. elongatus BP-1 photorespiration and byproduct secretion
pathways with transcriptomic data measured under high versus low irradiance. Genome-based
photorespiration routes (C2 cycle, dark blue, and glycerate pathway, light blue) and byproduct
secretion pathways included in the BP-1 model are illustrated. Green circles represent upregulated
gene expression measured under high irradiance (2000 versus 200 µmol photons m−2 s−1), and red
circles represent downregulated gene expression, previously measured in [33]. Numbers indicate fold
change for each gene. Enzymes coded in Roman numerals are: i, ribulose-1,5-bisphosphate carboxylase
oxygenase; ii, phosphoglycolate phosphatase; iii, glycolate oxidase; iv, glyoxylate carboligase; v,
tartronate semialdehyde reductase; vi, glycine transaminase; vii, serine hydroxymethyltransferase; viii,
serine-glyoxylate transaminase; ix, glycerate dehydrogenase; x, glycerate 3-kinase; xi, acetaldehyde
dehydrogenase; xii, alcohol dehydrogenase; xiii, succinate-semialdehyde dehydrogenase; xiv,
acetyl-CoA synthetase; xv, pyruvate dehydrogenase; xvi, formate acetyltransferase; xvii, lactate
dehydrogenase; xviii, alanine dehydrogenase; xix, sucrose phosphate synthase and sucrose phosphate
phosphatase; xx, formyltetrahydrofolate deformylase. Other abbreviations: αkg, α-ketoglutarate.

Finally, the transcriptomic data [33] showed upregulation of genes involved in both nitrate and
sulfate uptake and assimilation under high irradiance conditions (Table A2 in Appendix C). Tradeoff
curve analysis of the EFMs under high irradiance and O2/CO2 competition predicted increased use of
the nitrate uptake reaction for strategies that secreted amino acids; conversely, no change in use of
the sulfate uptake reaction was predicted. Reduction of nitrate to ammonia for amino acid synthesis
represents an effective strategy for using excess electrons from the photosynthetic electron transport
chain, consuming 8 moles of electrons per mole of nitrate reduced. Thus, at high irradiance and O2

production, secretion of amino acids represents an economical stress acclimation strategy. Similarly,
sulfate reduction also consumes 8 moles of electrons per mole of sulfate reduced to hydrogen sulfide,
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which is used in synthesis of cysteine and methionine. Permitting secretion of cysteine or methionine in
the computational model would lead to predictions of increased sulfate uptake. Altogether, comparison
of the predicted competitive strategies with transcriptomic data under high irradiance (Table 3)
suggests overall consistency of the computational model with photobioreactor observations.

3.5. Stress Acclimation and Photoautotrophic-Heterotrophic Interactions

BP-1 acclimation to a variety of culturing stresses was predicted to result in secretion of
reduced carbon byproducts including organic acids and amino acids (Figures 3a and A2a,b;
illustrated in Figure 7a). These byproducts represent a nutritional niche for heterotrophs.
Photoautotrophic-heterotrophic cross-feeding could represent a mutually beneficial mechanism for
buffering a photoautotroph from environmental stresses. Consumption of reduced carbon byproducts
by the heterotroph would relieve potential inhibitory organic acid stress, as well as maximize the
efficiency of total resource usage by the community (illustrated in Figure 7b). Cross-feeding of
byproducts could also promote growth of the photoautotroph through consumption of O2 by an aerobic
heterotroph, thus decreasing local O2 concentrations and lowering O2/CO2 competition. The amount
of heterotroph able to be supported by secreted byproducts was predicted as a function of stress
using published heterotrophic biomass per byproduct yields [76–82] (Figure 7c, see File S5 in the
Supplementary Materials for calculations). The predicted amount of heterotrophic biomass that can be
supported by BP-1 through cross-feeding of byproducts increased as stress increased due to higher
byproduct yields at higher stress levels, as well as the varying heterotrophic biomass yields on different
byproducts (Table A4 in Appendix C). The cross-feeding was also predicted to reduce local O2 levels,
which was calculated based on heterotrophic biomass O2 requirements (Figure 7d, File S5 in the
Supplementary Materials).

The predicted ratio of heterotroph to photoautotroph as a function of stress acclimation
was compared to published photobioreactor co-culture data of BP-1 with the aerobic heterotroph
Meiothermus ruber strain A [33]. Experiments reported heterotroph to photoautotroph ratios of
~1:10 [33]. This ratio, with some variation accounting for cell size differences between the two
populations, falls within the range of heterotroph to photoautotroph ratios predicted at modest
culturing stress (Figure 7c). These predictions considered autotrophic-heterotrophic interactions based
on secreted carbon and not necessarily nitrogen source. Additional analysis of potential cross-feeding
based on nitrogen or iron limitation can be found in Appendix B (Figure A2c–f).
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Figure 7. Byproduct secretion generates a heterotrophic niche and stimulates a mutually beneficial 

relationship. (a) Cyanobacterium BP-1 produces O2 and reduced carbon compounds as metabolic 
Figure 7. Byproduct secretion generates a heterotrophic niche and stimulates a mutually beneficial
relationship. (a) Cyanobacterium BP-1 produces O2 and reduced carbon compounds as metabolic
byproducts during environmental stress, both of which are inhibitory to BP-1 growth. (b) The presence
of reduced byproducts and O2 forms a nutritional niche for heterotrophic organisms, which relieves
inhibition for BP-1. (c) Heterotrophic biomass yield per BP-1 biomass (Cmol Cmol−1) is presented
as a function of O2/CO2 competition at RuBisCO (mol O2 (mol CO2)−1 consumed) for the EFMs
forming the optimal tradeoff with irradiance-induced stress. (d) Presence of a heterotroph lowers net
O2 production per Cmol BP-1 biomass as a function of O2/CO2 competition (mol O2 (mol CO2)−1

consumed) for the EFMs forming the optimal tradeoff with irradiance-induced stress, which reduces
O2 inhibition. The distinct phenotypic regions defined by the tradeoff between O2/CO2 competition
and irradiance-induced stress are labeled according to byproduct secretion patterns as in Figure 3a.

4. Discussion

Computational modeling was integrated with photobioreactor analyses to identify and interpret,
from a systems perspective, the inferred mechanisms that underpin cyanobacterial acclimation to
irradiance-associated stress. The combined results of this study show how different cyanobacterial
systems, such as the photosynthetic apparatus and central carbon metabolism, can respond to
environmentally induced stresses. Photobioreactor steady state growth of BP-1 showed decreased
biomass production efficiency at high irradiance (Figure 4b), indicating that electrons were partitioned
into non-biomass-producing alternative metabolic routes. Examination of transcriptomic data [33]
comparing high to low irradiance conditions identified upregulation of genes involved in PSII
operation, photorespiration, organic acid synthesis, and amino acid synthesis, among other pathways
(Figure 6, Tables A2 and A3). Interrogation of BP-1 metabolic pathways with EFMA and resource
allocation theory under conditions of high irradiance, high O2, and limited nutrient availability
provided a theoretical explanation for utilization of these pathways. Evolution has selected phenotypes
which allocate limiting resources competitively. The origin of the stresses is the imbalance in resource
acquisition which is manifested as a resource limitation. Acclimation to the resource stresses resulted
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in the secretion of reduced byproducts in a behavior analogous to classic overflow metabolism in
heterotrophs. The byproduct-secreting phenotypes represent a competitive and economical response
to the stress [1]. It is worth noting that photobioreactor observations and computational predictions
for BP-1 are in general agreement with the transcriptional patterns and physiological trends observed
in the closely related Synechococcus sp. PCC 7002 [83]. The predicted byproduct secretion profiles
furthermore control nutrient niches for proximal heterotrophic partners (Figure 7). In some cases,
heterotrophic consumption of the byproducts represents a mutually beneficial interaction in that
byproduct removal prevents accumulation of byproducts to a degree that represents an additional
stress. This mutually beneficial interaction template likely plays a significant role in the many reported
occurrences of photoautotrophic-heterotrophic consortia [84–86]. In fact, cross-feeding between BP-1
and the aerobic heterotroph M. ruber strain A has been both predicted by genome-scale modeling and
observed in a laboratory setting [14,33].

The computational analyses investigated several metabolic acclimations to photosynthesis-
associated stresses that apply broadly to photoautotrophs, including photosystem utilization and
photorespiration strategies, the nature of reduced carbon byproducts, and the severity of O2/CO2

competition at RuBisCO. PSII was predicted to increase in photon absorption relative to PSI as
irradiance increased (Figure 3), supported by transcriptomic data [33] (Tables 3 and A2). Increased
relative photon absorption of PSII under higher irradiance is also reported in the literature from
studies with the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and is hypothesized to aid in
reducing overall electron transport [68]. Additionally, increased utilization of the C2 photorespiration
cycle at high irradiances may intersect with byproduct secretion strategies and contribute to amino
acid synthesis as a resource-efficient strategy at high irradiances. Photorespiration permits salvage
of carbon from unusable RuBisCO oxygenation byproducts; this carbon may be directed toward
other byproduct pathways. The C2 photorespiration cycle requires more enzymatic steps and thus
more biosynthetic resources (e.g., nitrogen) than the glycerate pathway, but links into glycine-serine
interconversion and amino acid synthesis pathways.

Formate is the least reduced organic byproduct considered in the model (Table 1). It is predicted
to be a more competitive byproduct secretion strategy at intermediate irradiance-induced stress
and O2/CO2 competition, releasing a minimal quantity of electrons in the form of reduced carbon
byproducts and retaining the remaining electrons for biomass (Figure 3). Alanine is predicted to be
a competitive byproduct at high stress levels due to its high degree of reduction (Table 1). At high
electron load (supported by high rates of oxygenic photosynthesis) and high O2/CO2 competition,
alanine synthesis consumes more electrons per Cmol, resulting in a more efficient redox sink (Figure 3).
Alanine was selected in this study as a representative amino acid; however, amino acids with higher
nitrogen content, such as arginine, histidine, or lysine, would serve as even more effective electron
sinks when nitrate is the nitrogen source. Genes involved in synthesis pathways for several amino
acids beside alanine (Table A3 in Appendix C) were identified as upregulated under high irradiance
conditions in the transcriptomic data [33]. Additionally, qualitative measurements from BP-1 steady
state cultures have previously identified a variety of amino acids in the extracellular environment,
including glutamate, isoleucine, leucine, lysine, phenylalanine, serine, threonine, and valine [33].

Experimental assessment of O2/CO2 competition and actual concentrations of O2 and CO2 at the
active site of RuBisCO in vivo is challenging. The specificity factor, a kinetic constant describing the
relative affinity of RuBisCO for CO2 versus O2 (vc/vo = SF[CO2]/[O2]) [87], has been measured for
a variety of phototrophs and is typically obtained from enzyme extracts. Falkowski and Raven [88]
compiled a list of specificity factors from a variety of organisms, including cyanobacteria, algae, and
plants, and estimated vo/vc ratios under assumptions of air equilibrium at 25 ◦C. These experimental
estimates were compared with the predicted vo/vc values from the BP-1 model irradiance tradeoff
curve (Figure 8a(A)). The variation in values within and among different types of organisms highlights
the diversity of RuBisCO enzyme properties, which organisms are thought to have optimized over time
based on different selective pressures [89,90]. However, the experimental estimates do not account for



Processes 2017, 5, 32 17 of 31

the optimal temperature environment of the organism, the confounding influence of photosynthetic O2

evolution, or effects of the carbon-concentrating mechanism, which may also be influenced by pH [91].
The specificity factor can be used to convert predicted O2/CO2 competition values to local

relative O2/CO2 concentrations around RuBisCO [87], thereby permitting extension of stoichiometric
modeling into the kinetic realm. Equivalent relative O2/CO2 competition values convert to different
relative concentrations depending upon the magnitude of the specificity factor. Values for mesophilic
cyanobacteria range from 45 to 70, and higher plants have an average value around 100 [87].
Figure 8a(B–D) shows the effect of varying the specificity factor on the O2/CO2 concentrations
necessary to achieve the predicted vo/vc values along the irradiance tradeoff curve in Figure 3a;
relative concentrations are lowered with a smaller specificity factor and raised with a higher
specificity factor. A higher specificity factor indicates a greater tolerance to stress from O2/CO2

competition. In vivo measurements of oxygenation and carboxylation rates are sparse in the literature,
particularly for microbial species; Taffs et al. [20] calculated a range of 3–7% oxygenation based on
measurements of extracellularly secreted glycolate [92], but these values are likely an underestimate
considering glycolate may be salvaged through the complete photorespiration pathway rather than
excreted (Figure 3). Isotopic labeling studies of cyanobacteria also provide experimental data, but
extrapolation of vc/vo ratios should be exercised with caution. Studies have shown operation of
photorespiration even under high CO2 (5%) conditions [93]. Another study has presented both
modeling and experimental validation of the necessity of photorespiration even under saturating
CO2 conditions, positing that high CO2 stimulates high photosynthetic rates to provide adequate
energy for carbon fixation, which thereby leads to increased O2 production levels [94]. Additionally,
elevated temperatures have been shown to enhance oxygenation due to both changes in the specificity
of RuBisCO and the different solubilities of O2 and CO2 [95] (Figure 8b). Experimental data on
vo/vc. values is variable and dependent on the conditions under which the measurements were
made. However, an environmental scenario with low O2/CO2 ratios may indicate that greater
priority is placed on minimizing O2/CO2 competition than on minimizing photon absorption cost
particularly under high irradiance conditions, e.g., O2/CO2 competition is a stronger driver of stress
acclimation. Byproduct production and existence of heterotrophic partners is observed in experimental
cyanobacterial systems, suggesting that byproduct production is an effective strategy for managing
electrons from excess photon absorption. Instead, the cell may be simultaneously optimizing for other
stresses such as biosynthetic nutrient investment like nitrogen or iron (Figure A2).

The systems-level analysis provided by this study indicated that the suite of metabolic carbon
and electron sinks (i.e., secreted byproducts and biomass) is dependent upon environmental
stressors. Pathway utilization and resource investments were co-dependent upon irradiance,
O2/CO2 competition at RuBisCO, and DIC, nitrogen, and iron levels. These results provided novel
insight into ecologically competitive metabolic strategies that cyanobacteria use to acclimate to
environmental conditions. Physiological and transcriptomic [33] data paralleled the predictions,
providing an additional level of support to the stoichiometric modeling predictions. It is noted
that the stoichiometric model does not account for kinetic constraints, regulatory effects, or other
aspects of thermodynamics beside reaction reversibilities [97,98], which may account for some of
the differences between predictions and data and represents an avenue for further development.
Finally, analysis of predicted optimal growth phenotypes was extended to make inferences about the
nature of photoautotrophic-heterotrophic interactions and provide a theoretical basis for examining
community composition. Taken holistically, this work presents a synergistic experimental and
theoretical approach for understanding metabolic acclimation and provides a new level of insight
into how different cyanobacterial systems, such as the photosynthetic apparatus and central carbon
metabolism, coordinate and respond to environmental stresses that influence resource allocation.
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Figure 8. Comparison of computational and experimental O2/CO2 competition and concentrations
at RuBisCO. (a) Predicted O2/CO2 competition values (mol O2 (mol CO2)−1 consumed at RuBisCO)
from the irradiance tradeoff curve in Figure 3a are shown in gray (A). Experimental O2/CO2 values for a
variety of organisms calculated at air equilibrium and 25 ◦C [88] are overlaid in color. Predicted O2/CO2

competition values (gray points) were converted to relative O2/CO2 concentrations around RuBisCO
by multiplying by the specificity factor (SF). The experimentally measured SF for BP-1 of 82 [87] was
used for conversion in (B). Experimental data points from Falkowski and Raven (colored points) were
converted to O2/CO2 concentrations via the respective SF of each organism [88]. Comparison of
the BP-1 SF with lower and higher SF values is visualized using a lower SF of 41 (representative of
Synechococcus sp.) (C) and a higher SF of 129 (representative of a red alga) (D). A lower SF indicates that
lower relative O2/CO2 concentrations result in higher O2/CO2 competition ratios, whereas a higher SF
indicates that an organism is more tolerant of higher relative O2/CO2 concentrations. (b) Temperature
affects the relative propensity of RuBisCO for oxygenation. Dashed and dotted blue curves represent O2

and CO2 concentrations in aqueous phase at equilibrium with atmospheric concentrations, calculated
using Henry’s law constants from Sander [96]. The black curve represents the ratio of the [O2] to [CO2]
curves, showing that the relative proportion of O2 increases with elevated temperature. Calculations
are provided in File S6.
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Appendix A. Biomass Composition Analytical Methods

Appendix A.1. DNA, After Downs and Wilfinger [38]

50 µL of frozen cell pellet equivalent to approximately 1.5 mg of biomass (dry weight) was
re-suspended in 50 µL of alkali extraction solution (1 N NH4OH, 0.2% Triton X-100 with nuclease-free
water) in 2-mL Eppendorf tubes. Tubes were incubated at 37 ◦C for 10 min in a block heater.
After 10 min, samples were diluted to 2 mL total volume with assay buffer (100 mM NaCl, 10 mM
EDTA, 10 mM Tris, pH 7.0 with HCl, nuclease-free water) and transferred to 15-mL Falcon tubes
for centrifugation (2500× g, 30 min, 4 ◦C). Calf thymus DNA standards were prepared by making a
DNA stock solution in nuclease-free water about 300 µg/mL (stored at 4 ◦C). Exact concentration was
measured with a NanoDrop 1000 spectrophotometer. The standard solution was diluted to a working
stock of 100 µg/mL with standard buffer (assay buffer containing the same concentration of alkali
extraction solution as the diluted samples (100 mM NaCl, 10 mM EDTA, 10 mM Tris, pH 7.0 with HCl,
0.025 N NH4OH, 0.005% Triton X-100)). The DNA working stock was then diluted into a standard series
with standard buffer (1–5 µg/mL). 50 µL of sample or standard were added to a black polystyrene
96-well plate with clear bottom (Corning 3603). 295 µL of Hoechst working reagent was added to each
well. Hoechst working reagent was prepared fresh daily from an intermediate stock of 200 µg/mL by
diluting to 1 µg/mL with assay buffer. The intermediate stock was prepared from a 10 mg/mL stock
solution by diluting to 200 µg/mL with nuclease-free water. Stock solutions and working stocks were
stored at 4 ◦C wrapped in aluminum foil to protect from light. The wells were then read in a Synergy
fluorescent plate reader using the following settings: (plate type) 96 well plate; (set temperature)
setpoint 30 ◦C, preheat before moving to next step; (shake) double orbital 30 s, frequency 180 cpm;
(read) fluorescence endpoint, 352 nm excitation, 461 nm emission, bottom optics, gain 100, Xenon flash
light source, high lamp energy, normal read speed, 100 ms delay, 10 measurements/data point. Three
reaction wells of sample or standard were performed for each sample or standard. The concentration
of the samples was determined based on the average of the three standard calibration curves.

Appendix A.2. Glycogen, After Del Don et al. [39]

Anthrone reagent was prepared fresh daily according to Herbert et al. [99] and stored at 4 ◦C.
Frozen cell pellet (−80 ◦C) was thawed and divided into three equal parts by mass in 2-mL Eppendorf
tubes, approximately 0.5 mg dry weight. Each aliquot was re-suspended in 200 µL 2% sodium sulfate
(w/v). Eppendorf tubes were sealed with parafilm and heated for 10 min at 70 ◦C in a block heater.
After heating, 1 mL methanol was added to each tube and vortexed to co-precipitate glycogen and
sodium sulfate. The precipitate was pelleted by centrifuging for 15 s at 10,000 rpm. The precipitate
was washed with 1 mL methanol, until the pellet was white, to remove impurities. Pellets were then
re-suspended in 1 mL reverse osmosis water and transferred to clean glass test tubes and placed on ice
to chill. 5 mL of ice-cold anthrone reagent was added to each test tube. After adding reagent, tubes
were chilled on ice for 5 min, vortexed gently to homogenize the solution, and transferred to a boiling
water bath for 10 min. Tubes were then returned to ice for 5–10 min until cool, vortexed gently to mix
contents, and absorbance at 625 nm was read with a Genysys spectrophotometer using a reagent blank.
A glucose standard curve (10–190 µg/mL) was treated identically with anthrone reagent.

For total carbohydrate quantitation, the cell pellet aliquot was re-suspended in 1 mL reverse
osmosis water and transferred to a clean glass test tube, and the anthrone procedure detailed above was
followed. For quantitation of other cellular carbohydrates, the residual methanol from the extraction
and washings were collected in an aluminum pan and evaporated, re-suspended in 1 mL reverse
osmosis water, and the anthrone procedure detailed above was followed.
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Appendix A.3. Lipid, After Bligh and Dyer [40]

Frozen cell pellet (10 mg) was re-suspended to 0.6 mL using Milli-Q water in a 15-mL
polypropylene centrifuge tube. Chloroform (0.75 mL) and methanol (1.5 mL) were sequentially added,
adhering to the 1:2:0.8 chloroform:methanol:water volume ratio recommended by Bligh and Dyer.
The mixture was vortexed 15 min at speed setting 3 using a VWR vortex mixer. Chloroform (0.75 mL)
and Milli-Q water (0.75 mL) were sequentially added, vortexing 10–15 seconds at speed setting 7 after
each addition. Upon centrifugation (4000 rpm, 15 min, 20 ◦C), the lower chloroform phase, containing
lipids, chlorophyll, and pigments, was transferred via micropipette to an aluminum pan that had
been pre-dried at room temperature and pre-weighed. The liquid was evaporated in a fume hood
and weighed at three different time intervals following evaporation. Weights were measured with
a Mettler Toledo MT5 microbalance with accuracy to 0.001 mg and recorded as an average of three
measurements. It was noted that chloroform may leach compounds from polypropylene materials;
thus a blank reaction using 0.6 mL Milli-Q water was used and its weight was subtracted from the
biological sample weight.

Appendix A.4. Protein and Amino Acid Distribution, After Henderson et al. [39]

Amount approximately equivalent to 3 mg of frozen cell pellet was transferred to borosilicate
HPLC vials with PTFE/silicone caps. 50 µL 6 M HCl per mg biomass was added to each vial. The vials
were tightly capped and hydrolyzed at 105 ◦C for 24 h using a block heater. After 24 h, the samples
were then neutralized with 6 M NaOH to pH 7.0 and filtered with 0.22 µm PES spin filter in microfuge
for 5 min at 10,000 rpm. Samples were then placed at −80 ◦C to freeze before lyophilizing for 24 h
(VirTis benchtop lyophilizer). After lyophilization samples were placed at −80 ◦C until HPLC analysis.
HPLC analysis was performed according to the following protocol validated and published by Agilent
Technologies [41] using an Agilent 1100 HPLC equipped with fluorescence detector. Borate buffer was
0.4 N borate, pH 10.2 with NaOH; o-phthalaldehyde (OPA) reagent, 9-fluorenylmethylchloroformate
(FMOC) reagent, and amino acid standards were obtained from Agilent. OPA and FMOC reagents
were replaced daily in amber vials. Upon opening a vial of reagent, analyses were performed within
10 days. Solvent A was 40 mM sodium phosphate buffer (using 1:1 ratio of NaH2PO4 and Na2HPO4),
pH 7.8 with NaOH, 0.2 µm filtered. Solvent B was 45:45:10 acetonitrile:methanol:water (v/v/v), 0.2 µm
filtered. The pump rate was 1 mL/min, 47 min per injection, with gradient settings as follows:

Time (Min) % Solvent B

0 0
3.8 0

36.2 57
37.2 100
44.6 100
46.4 0
47 0

The flow rate was halved and the timing was doubled from the procedure reported in the Agilent
technical note to improve resolution and reduce wear on equipment. The column thermostat was set
at 40 ◦C, and the autosampler thermostat was set at 4 ◦C. The fluorescence detector settings were as
followed, to switch from OPA- to FMOC-derivatized amino acids:

Time (Min) Ex/Em (nm) PMT Gain

0 340/450 10
30 266/305 9
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The injection program was as follows:

Step Instruction

Step 1 Draw 2.5 µL from vial 1 (borate buffer)
Step 2 Draw 0.5 µL from sample
Step 3 Mix 3 µL in air, max speed, 2×
Step 4 Wait 0.5 min
Step 5 Draw 0 µL from vial 2 (needle wash)
Step 6 Draw 0.5 µL from vial 3 (OPA)
Step 7 Mix 3.5 µL in air, max speed, 6×
Step 8 Draw 0 µL from vial 2 (needle wash)
Step 9 Draw 0.5 µL from vial 4 (FMOC)
Step 10 Mix 4 µL in air, max speed, 6×
Step 11 Draw 32 µL from vial 5 (water)
Step 12 Mix 18 µL in air, max speed, 2×
Step 13 Inject

Auxiliary settings Drawspeed = 200 µL/min
Ejectspeed = 600 µL/min
Draw position = 0.0 mm

The integration parameters for collecting the data were set according to the following parameters.

Parameter Value

Slope Sensitivity 1
Peak Width 0.04
Area Reject 1

Height Reject 0.4
Shoulders OFF

Appendix A.5. RNA, After Benthin et al. [43]

Samples were thawed and washed three times with 3 mL 0.7 M HClO4 for degradation of cell
walls, vortexing to re-suspend in between washing and centrifuging at 4000 rpm for 10 min at 4 ◦C.
The pellet was then re-suspended in 3 mL 0.3 M KOH to lyse the cells and was incubated in a 37 ◦C
water bath for 1 h, shaking at 15-min intervals. After 1 h, samples were cooled and 1 mL 3 M HClO4

was added for neutralization. The solution was centrifuged at the same specifications as before, and
the supernatant was poured off into a new centrifuge tube. The pellet was washed twice with 4 mL
0.5 M HClO4, centrifuged, and supernatant added to the new tube. 0.5 M HClO4 extracts the RNA,
while DNA, which is stable even in strong alkali, and protein, which does not solubilize in the alkali,
remain in the precipitate. The collection of extracts was made up to a volume of 15 mL by adding 3
mL 0.5 M HClO4 and was centrifuged once more to remove any non-visible precipitates of KClO4.
Upon final centrifugation, absorbance was measured at 260 nm against a 0.5 M HClO4 blank using
disposable UV cuvettes rated to 220 nm. Linearity of the spectrophotometer was confirmed within
that range by successively diluting the sample twice with 0.5 M HClO4 and confirming a linear fit to
the three measured absorbances at 260 nm. Calculation of RNA quantity was performed by assuming
1 unit of absorbance at 260 nm corresponds to 38 µg/mL RNA on average [100].
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Figure A1. BP-1 amino acid distribution. Correlation between the predicted amino acid distribution
(based on protein-coding gene sequences) and the experimentally measured distribution. Cysteine,
methionine, and tryptophan are excluded from the correlation due to degradation during hydrolysis of
the biomass samples to extract the protein. The equation of the best-fit linear trendline is y = 0.79x + 1.29
with R2 = 0.79.
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Figure A2. Computational analysis of nutrient availability and O2/CO2 competition at RuBisCO in
cyanobacterium BP-1. (a) Nitrogen availability. O2/CO2 competition (mol O2 (mol CO2)−1 consumed
at RuBisCO) as a function of nitrogen investment (nitrogen atoms per EFM) for biomass-producing
EFMs. The tradeoff curve defining competitive strategies between O2/CO2 competition and nitrogen
limitation was divided into three distinct phenotypic regions based on byproduct secretion, labeled
accordingly (intensity of shading increases with increasing stress levels). Points in the plot area are
representative of 1,430,252 EFMs. (b) Iron availability. O2/CO2 competition (mol O2 (mol CO2)−1

consumed at RuBisCO) as a function of iron investment (iron atoms per EFM, considering only
photosynthetic and central metabolism reactions) for biomass-producing EFMs. The tradeoff curve
defining competitive strategies between O2/CO2 competition and iron limitation was divided into two
distinct phenotypic regions based on byproduct secretion, labeled accordingly (intensity of shading
increases with increasing stress levels). Color scale represents the photon absorption at PSII relative to
PSI for EFMs on the tradeoff curve (mol photons absorbed at PSII (mol photons absorbed at PSI)−1).
Each point represents a unique EFM. Modeled biomass production did not include maintenance energy
requirements. Points in the plot area are representative of 4,615,500 EFMs. (c,d) Heterotrophic biomass
yield per BP-1 biomass (Cmol Cmol−1) is presented as a function of O2/CO2 competition at RuBisCO
(mol O2 (mol CO2)−1 consumed) for the EFMs forming the optimal tradeoffs with nitrogen and iron
availability, respectively. (e,f) Presence of a heterotroph lowers net O2 production per Cmol BP-1
biomass as a function of O2/CO2 competition (mol O2 (mol CO2)−1 consumed) for the EFMs forming
the optimal tradeoffs with nitrogen and iron availability, respectively, which reduces O2 inhibition.
The distinct phenotypic regions defined by the tradeoff between O2/CO2 competition and nutrient
availability stress are labeled according to byproduct secretion patterns as in panels (a,b).
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Figure A3. Analysis of influence of nitrogen source on photon requirement. Comparison of the impact
of various nitrogen sources on the theoretical specific photon absorption rate necessary for biomass
production. Photon absorption rates (mol photons absorbed (g CDW)−1 h−1) were calculated using the
BP-1 experimentally measured biomass composition. Ammonia is a completely reduced form of nitrogen,
whereas and molecular nitrogen and nitrate are less reduced forms and require successively more energy for
reduction to be assimilated into biomass, causing an increase in the specific photon absorption rate. Nitrate
serves as the most effective sink for excess electrons from the photosynthetic electron transport chain.
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Appendix C. Supplemental Tables

Table A1. Experimentally measured amino acid distribution from OPA/FMOC derivatization and HPLC
fluorescence detection. Amino acids are abbreviated according to IUPAC 1-letter convention; average
mole percent of two separately hydrolyzed samples and percent relative standard deviation are reported.

Amino Acid Mole % % RSD

Q/E 13.1 0.16
N/D 10.1 0.07

L 9.4 0.08
A 9.2 0.24
R 8.5 0.96
V 6.1 0.97
I 5.4 0.29
G 5.0 0.02
F 4.9 0.15
T 4.9 0.07
K 4.5 1.96
Y 4.1 0.01
S 4.0 0.08
P 3.4 1.21
H 1.5 0.14

Table A2. Upregulated BP-1 genes under high versus low irradiance conditions (2000 versus 200 µmol
photons m−2 s−1) [33] involved in photosystem II (PSII), carbon-concentrating mechanism (CCM),
Calvin cycle carbon fixation, glycolysis, TCA cycle, oxidative phosphorylation (OP), and nitrate and
sulfate uptake and assimilation. For each pathway, upregulated genes are listed in the left column with
corresponding fold change in the right column.

PSII CCM Calvin Glycolysis

psbA3 42.0 ccmK1 2.5 gap2 5.3 eno 4.6
psbP 4.3 ccmK2 2.1 gapA 4.5 gap2 5.3
psbX 3.3 ccmK3 2.6 glpX 6.6 gapA 4.5
psbQ 2.7 ccmM 2.5 pgk 2.1 gmpA 6.4
psb29 2.6 tlr0311 2.4 prkB 13.4 gpmI 5.4
psb32 4.1 rpiA 16.2 pfkA 2.3

tpiA 5.2 pgk 2.1
pyk 3.5
tpiA 5.2

TCA OP Nitrate Sulfate

acnB 2.2 atpC 2.2 narM 2.3 cysA 2.5
fumC 3.2 atpD 5.2 nirA 3.4 cysC1 3.9
gltA 4.7 atpE 2.2 ntcB 4.9 cysH 4.6
idh3 6.3 atpF 2.9 nrtA 2.2 cysQ 3.1
sdhC 2.0 atpG 3.2 nrtD 2.5 met3 8.5

atpH 2.8 tll1357 3.1
cydB 3.6
ndh 2.0

ndhA 6.3
ndhB 4.4
ndhC 6.1

ndhD3 13.2
ndhE 4.7
ndhF3 2.4
ndhG 3.0
ndhH 2.2
ndhI 4.9
ndhJ 6.6
ndhK 3.1
ndhL 4.9
ndhM 13.1
ndhN 9.8
ppa 3.6

sdhC 2.0
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Table A3. Genes involved in amino acid synthesis pathways found to be upregulated under high irradiance conditions (2000 versus 200 µmol photons m−2 s−1) [33].
Amino acids are abbreviated according to IUPAC 1-letter convention and number of nitrogen atoms follows in parentheses. For each amino acid, upregulated genes
are listed in the left column with corresponding fold change in the right column.

R (4) N/D (2/1) C (1) Q (2) H (3) I/L/V
(1/1/1) K (2) M (1) F/W/Y

(1/2/1) P (1) S (1) T (1) Transporters

argB 3.0 asnB 2.5 cysE 4.0 glnA 3.6 hisA 3.4 avtA 2.8 dapA 2.9 metE 12.9 aroA 9.2 proB 6.7 glyA 4.5 thrA 2.6 tlr1046 2.2
argC 4.8 ansA2 3.0 hisB 3.9 cimA 2.5 dapB 4.5 aroB 4.3 serA 7.8 thrB1 3.7 tlr1067 3.4
argD 2.5 aspB 2.7 hisIE 6.7 ilvE 5.6 dapF 4.1 aroC 4.3 thrCII 6.3 tll1105 2.4
argG 14.0 hisG 2.3 leuB 6.0 dapL1 4.0 aroE 2.4 tlr1120 16.5
argH 4.4 hisF 2.0 leuC 2.9 lysA 3.3 trpA 2.6 tlr1121 3.6
argJ 4.0 lysC 2.1 trpB 2.5 tlr1151 2.3

trpC 2.2 tll1318 2.7
trpE 4.1 tlr1592 2.1
trpF 2.3
tyrAa 2.4

Table A4. Byproduct yields with respect to BP-1 biomass for pathways that secreted byproducts along the tradeoff curve for irradiance-induced stress and O2/CO2

competition and the corresponding yield of heterotroph biomass. Heterotroph yield was obtained via substrate consumption costs estimated from the literature for the
respective byproducts (Cmol per Cmol heterotroph biomass): 4.53 for formate [77], 2.66 for alanine [78], and 2.61 for acetate [76]. Photons absorbed per BP-1 are
reported in mol Cmol−1, O2/CO2 competition is reported in mol mol−1, and yields are reported in Cmol Cmol−1.

Photons Absorbed Per
BP-1 Biomass O2/CO2 Competition Formate Per BP-1

Biomass
Alanine Per BP-1

Biomass
Acetate Per BP-1

Biomass
Heterotroph Biomass Per

BP-1 Biomass

33.26 0.86 0.13 NA NA 0.03
51.36 1.01 NA 0.30 NA 0.11
52.44 1.02 NA 0.31 0.01 0.12
100.05 1.10 NA 0.84 0.36 0.45
105.55 1.11 NA 0.90 0.40 0.49



Processes 2017, 5, 32 26 of 31

Appendix D. Nitrogen and Iron Limitation

Nitrogen is a major component of protein but is often scarce in the environment [101].
Ecologically competitive acclimation to increased O2/CO2 competition as a function of pathway
nitrogen requirement is shown in Figure A2a in Appendix B; the tradeoff surface defines three
phenotypic regions according to byproduct secretion. The EFM at the lower left corner of the
plot represents nitrogen-limited cyanobacterial growth under low O2/CO2 competition; byproduct
secretion is predicted even at the lowest nitrogen stress. With increasing O2/CO2 competition and
nitrogen investment, BP-1 is predicted to secrete a number of reduced carbon compounds along the
tradeoff surface, including acetate, formate, glycolate, and under the highest stress, the amino acid
alanine. Production of byproducts is predicted to achieve the most efficient nitrogen utilization
while simultaneously minimizing O2/CO2 competition. EFMs on the nitrogen tradeoff surface
exclusively use the C2 photorespiration cycle whereas the glycerate pathway is not used (Figure A2a
in Appendix B), similar to the result for irradiance-induced stress in Figure 3a. Also similar to the
result for irradiance-induced stress, relative PSII/PSI photon absorption increases along the tradeoff
surface, with greater relative photon absorption at PSII at higher O2/CO2 competition and higher
nitrogen investment (Figure A2a in Appendix B).

Biologically available iron is often limiting in microbial habitats due to low solubility, which is
exacerbated at elevated pH [102]. Figure A2b in Appendix B predicts acclimation to increased O2/CO2

competition as a function of pathway iron investment. Two phenotypic regions of byproduct secretion
were defined by the tradeoff surface, including combinations of ethanol, formate, and acetate, and
finally alanine under the highest stress. Under low iron, relative PSII/PSI photon absorption decreases
along the tradeoff surface as O2/CO2 competition and iron investment increase, showing a reversed
trend compared with irradiance-induced stress and nitrogen investment. Analogous to the result for
irradiance-induced stress in Figure 3a, the C2 cycle is the predominant photorespiration strategy as
O2/CO2 competition increases. At low O2/CO2 competition, the relative PSII/PSI photon absorption
is nearly twice that at high O2/CO2 competition (the scale shows greater variability than the scale
for light stress or nitrogen investment in Figures 3a and A3a) and again indicates higher gross O2

and ATP production. Additionally, as compared to the tradeoff surface in Figure 3a, the responses to
nitrogen and iron limitation are less robust; fewer suboptimal pathways exist in close proximity to the
tradeoff surface.

Appendix E. Biomass Yield Comparison

The physiological light response experiments allowed for comparison of photon costs for
synthesizing BP-1 biomass with results reported in previously published studies for Cyanothece sp.
ATCC 51142 and the green alga Chlamydomonas reinhardtii [30,103]. This comparison is of interest
because experimental photon requirement values are relatively uncommon. The photon cost per
biomass for BP-1 was about three times higher than the costs for these two organisms. This result
may be due to the thermophilic nature of the organism and/or higher maintenance costs incurred
by alkaline habitats. The nonlinear increase observed in the overall experimental photon absorption
rate as growth rate increases (Figure 5) may correspond to increased cellular stress with higher
maintenance energy requirements or greater thermal dissipation at higher irradiances. For example,
higher irradiance may necessitate increased repair of photosystem proteins or a greater proportion of
light may be lost to inefficiency [88]. These experiments and simulations demonstrate the wide range
of irradiances under which BP-1 is capable of growing, stimulating interest in the metabolic strategies
microbes such as this thermophilic cyanobacterium use to manage the daily fluctuations in irradiance
and the accompanying stresses.
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