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Abstract: Over the years, there has been a consistent increase in the amount of data collected by
systems and processes in many different industries and fields. Simultaneously, there is a growing
push towards revealing and exploiting of the information contained therein. The chemical processes
industry is one such field, with high volume and high-dimensional time series data. In this paper,
we present a unified overview of the application of recently-developed data visualization concepts to
fault detection in the chemical industry. We consider three common types of processes and compare
visualization-based fault detection performance to methods used currently.
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1. Introduction

The advent of data historian systems has turned the chemical industry into a prime generator
and depository of large-scale datasets, typically in a time series format. In chemical manufacturing
facilities, data historians collect and store measurements from potentially hundreds or thousands of
sensors and actuators, often with sub-minute frequency. In many cases, these “big data” sets cover
several years or even decades, and their sheer volume is often mentioned as a major obstacle towards
extracting the valuable and actionable information contained therein.

Indeed, process operators thus frequently find themselves “drowning in data” [1], citing, amongst
others, the lack of time and human resources required to analyze (“mine”) these data, as well as the
lack of appropriate tools, as a significant impediment.

In light of this, the development of new mechanisms and frameworks to better understand
and analyze data collected in the course of routine process operations and, more importantly, during
process upsets has become an important research field. A key direction in this area is monitoring process
operations and, by extension, the identification and isolation of process faults. There has been significant
progress made in the literature for the monitoring of multivariate processes. Available methods can be
broadly classified into model-based and data-based methods. In the context of this paper, we will focus
on the latter and refer the reader to the thorough review by Venkatasubramanian et al. [2] for more
information on model-based methods.

In the data-based method space, tools such as principal component analysis (PCA) and partial
least squares (PLS) regression have been successfully used to detect and isolate faults pertaining
to individual process variables and units. These ideas have been extended to account for process
dynamics and nonlinearity via, e.g., dynamic PCA [3], kernel PCA [4] and multiway PCA [5]). Other
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approaches based on similar principles include independent component analysis [6] and statistical
pattern analysis (SPA) [7]. Both in silico test cases and real-life industrial problems have been examined
in the literature (see, e.g., the reviews in [8–11]). Dimensionality reduction, a common result of many
of the above-mentioned methods, has proven to be valuable, forming the basis for score and square
prediction error (SPE) plots.

Most front-line control room operators rely on visual data representations for process monitoring
and fault detection; the difficulty of this approach is ever-increasing given the large number of variables
representing the state of a complex process. In this sense, the dimensionality reduction afforded by
PCA-like methods could be quite convenient, lowering the number of plots and charts requiring
an operator’s attention. However, while many of these methods have been implemented for use by
control operators, they are often applied “behind the scenes,” with the operators being informed of
their outcome, but not their workings. The main reason is that the coordinate transformations involved
in, e.g., PCA result in a new set of data values that have no physical meaning and cannot be used by
operators to obtain physical insights concerning the operation of the process.

In order to break this “curse of dimensionality” and display multivariate information effectively,
the use of parallel coordinates proposed by Inselberg [12] has been explored as a method of data
representation. In a parallel coordinate plot, each (multivariate) data sample is represented by an
open line that connects the values of each variable in the respective sample. The variables are plotted
on a set of parallel axes (Figure 1), each corresponding to the ordinate of the Cartesian plot of the
respective variable; there are no abscissae.
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Figure 1. Data visualization in parallel coordinates for a five-dimensional dataset. Each coordinate can
be regarded as the ordinate of a regular time series plot. Data samples are added to the plot as they are
acquired, in the form of a set of linear segments. As time progresses (a–d), current data are typically
shown along with previously-plotted information to capture trends.

While parallel coordinate plots have the significant advantage of allowing a large number of
variables to be shown on the same plot, they do have two shortcomings that are particularly important
in the context of chemical processes: first, the time series nature of chemical processes cannot be
captured explicitly, and second, it is difficult to define multivariate confidence intervals for the purpose
of fault detection (an issue that will be discussed in more detail later in the paper).

Motivated by this, in our past work [13–15], we introduced a new framework, time-explicit Kiviat
diagrams, as a class of multivariate plots with an explicit time dimension. In this paper, we review
the development of these diagrams and discuss fault detection applications of time-explicit Kiviat
diagrams to three common types of chemical processes: continuous, batch and periodic processes.

2. Framework

Kiviat diagrams [16] can be considered as an evolution of the parallel coordinates plot described
above. In Kiviat diagrams, axes are placed radially around a center point; this differs from both
score plots and parallel coordinate plots, where axes are normal and, respectively, parallel to one
another. Like parallel coordinate plots, Kiviat diagrams allow for plotting multivariate (normalized
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and mean-centered) data. However, unlike parallel coordinates, where a multivariate data sample is
represented as an open (set of) linear segment(s), a data sample in Kiviat diagrams is presented as
a closed (but not necessarily regular or convex) polygon. Using an additional coordinate, normal to
the plotting plane, the time dimension can be explicitly captured [17] (Figure 2a).
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Figure 2. Representing multi-dimensional time series data using Kiviat diagrams. The same
five-dimensional dataset as in Figure 1, with one-minute sampling time, is used for illustration purposes.
The first sample is plotted (a) on the Kiviat plot having a time axis that is normal to the plot plane. The
next samples are added as additional Kiviat plots whose planes are parallel to the plane of the first
and spaced along the time axis according to the sampling time (b–d). The diagram can be updated by
adding such “data slices” in a first-in, first-out manner.

The result of plotting a multivariate time series dataset in this framework is a three-dimensional
figure resembling a cylinder (Figure 2b,c). The two-dimensional polygon of the Kiviat diagram at
a given sample time can therefore be considered a “data slice” that corresponds to the same time
sample in the time series data. We note that similar three-dimensional Kiviat diagrams have been
previously used in computer science for the visualization of software performance [18,19].

2.1. Fault Detection

We begin by examining how fault detection can be conducted in parallel coordinates. Recent research
in parallel coordinates has focused on process monitoring and fault detection. Initial efforts [20–22]
explored plotting the raw variables or leading PCA components (as a form of dimensionality reduction).
A common feature of these methods is the use of univariate control limits to define the region of normal
operation. Unfortunately, univariate control limits are not amenable to the monitoring of a complex process
with many interactions between variables, as demonstrated, e.g., by Kourti and MacGregor [23] (see
Figure 3).

Later work by Dunia et al. [24,25], Albazzaz et al. [26] and Gajjar and Palazoglu [27] expanded
the set of variables to plot to include PCA-based statistical tests, such as Hotelling’s T2 and the SPE,
as well as improved definitions of the confidence regions.

Turning now to the proposed time-explicit Kiviat diagrams, we note that this representation
allows for the definition of centroids [13] as the geometric center of a polygon corresponding to a data
sample. The centroid locations are computed in a 2D Cartesian coordinate system whose (0,0) point is
located at the center of the Kiviat diagram corresponding to each data sample.

For an n-dimensional dataset with m samples, the locations of the n polygon vertices translate
to {Xi, Yi}, i ∈ {1, . . . , n}, and the coordinates of the centroid for data sample j ∈ {1, . . . , m} can be
determined as:

Xcentroid,j =

n
∑

i=1
Xi,j

n
(1)

Ycentroid,j =

n
∑

i=1
Yi,j

n
(2)
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Figure 3. Univariate control limits suffer from “blind spots” in a multivariate setting: a data sample
(marked in red) can be within the control limits from the perspective of every variable on the respective
univariate control charts, but fall outside the multivariate confidence region. LCL and UCL represent
univariate lower and upper control limits, respectively.

In this way, we are able to represent every polygon, and consequently, every sample, by its
corresponding centroid. This allows us to visualize the state of a process as a point (the centroid)
and immediately translates into a useful representation to changes in the process: process fluctuations
cause variations in sample measurements, which in turn results in a change in the shape of a polygon,
which leads to a corresponding change of the centroid positions [13] (Figure 4).
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corresponding centroids

Figure 4. The centroid of each slice constitutes a single-point, multivariate representation of each data
slice. (b) is a “top-down” view of (a), with the centroids shown as diamonds.

Furthermore, the data are pre-processed using normalization prior to plotting, so the centroids of
data collected from a process operating at its nominal steady state will be located near the center of the
Kiviat diagram, and any deviation from the center would indicate a deviation in the process.

However, due to noise in process measurements, this ideal “steady state region” is not restricted
to a single point in the plot. Therefore, it is necessary to create and visualize a “normal operating
region” in Kiviat diagrams to distinguish between normal and abnormal operation of a process.
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Due to the different characteristics of the types of processes, the method by which a “normal
operation region” is defined varies according to the type of process. In the following sections,
we describe the definition of the normal operating region and the associated fault detection approaches
for three common types of processes: continuous, batch and periodic. The approaches described below
are based on previous work by the authors [13–15].

Remark 1. While the use of principal components guarantees that the data plotted in the Kiviat diagrams are
orthogonal, the order of axes remains a factor in the calculation of centroids when plotting physical variables
and in the subsequent fault detection activities. The optimal sequencing of variables in the Kiviat diagram
remains an area of active research.

3. Applications

3.1. Continuous Processes

For the purpose of the present work, we define a continuous process as a system that operates at or
close to a steady state the majority of the time. We note that continuous processes can feature multiple
steady states; for simplicity, we consider systems with a single steady state. Moreover, we assume
that data are available for this steady state and represent a period of “good” operation, with any
deviation of the steady state being the result of the presence of a fault in the system. Thus, our goal is
to, (i) statistically define this steady state in our geometric framework and (ii) establish a statistically
meaningful fault detection framework on this basis. In our presentation, we follow closely the
developments in [13]: using the centroids described above, a confidence region in the shape of
an ellipse can be established (the reader is referred to [13] for a complete description of this process);
this region defines the nominal “steady state” of the process. The confidence ellipse is computed using
the centroids as follows:

Step 1 Assume that matrix X ∈ Rm×n (which contains m samples of n process variables) represents
a period of operation where the steady state process performance is considered to be optimal
(a “golden period” [28]). We compute its eigenvalues λ and eigenvectors vi, i ∈ {1, . . . , n} of
the data covariance matrix Σ = XXᵀ, i.e.,

λv = Σv (3)

Step 2 Using the λ and v values, we define an n-dimensional confidence ellipsoid around the steady
state operating region. The coordinates X̄ = [x̄1, . . . , x̄n] of the center of the ellipsoid are
calculated from:

(x− x̄)ᵀΣ−1(x− x̄) = 1 (4)

In the n-dimensional hyperspace, the orientation of the axes of the ellipsoid is provided by
the eigenvectors v, while the length of each axis is determined by the eigenvalues of the
covariance matrix. The lengths of the confidence ellipsoid radii are scaled using the critical
value κ of the χ2 distribution that corresponds to the desired confidence level of the ellipsoid:

li = 2
√

κλi ∀i ∈ {1 . . . n} (5)

Step 3 The extremes of the n-dimensional ellipsoid can be represented on the Kiviat diagram
(Figure 5a) via a projection, which then allows us to define an appropriate confidence region
for the centroids.
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Figure 5. (a) Limits in time-resolved Kiviat diagram. Black arrows indicate limits for each variable.
Blue and green lines are the extrema of the confidence ellipsoid. (b) Sampled points within the annular
region (in red) are used to generate the confidence ellipse.

Step 4 The annular region between the extremes of the n-dimensional ellipsoid projected on the
Kiviat diagram is sampled to generate random data points using values uniformly distributed
within the bounds of each variable (Figure 5b).

Polygons situated close to the edges of the annular region could in fact lie outside the
confidence ellipsoid. To prevent this, each random polygon is verified to correspond to a point
inside the confidence ellipsoid in the n-dimensional ellipsoid by reversing the projection
from the Kiviat diagram to n-dimensional space. To to so, we follow two simple steps:

(a) Apply the transformation matrix W−1 to the coordinates Y of the randomly-generated
polygon, to obtain the transformed coordinates Z:

Z = YW−1 (6)
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where

W = v
√

λ (7)

(b) Compare the norm D = ‖Z‖ with the radius of the unit sphere. Then, if D ≤ 1,
the randomly-generated polygon is indeed associated with a point within the
confidence ellipsoid. The polygon is otherwise discarded, and a new polygon
is generated.

Step 5 The procedure is repeated until the prescribed number of random polygons (typically, 5000)
is reached. Then, the calculation of the minimum-area enclosing ellipse [29], of center c,
(X− c)ᵀA(X− c) = 1, is an optimization problem formulated as:

min
A,c

log(det(A))

s.t. (Pi − c)ᵀA(Pi − c) ≤ 1 i = 1, 2.
(8)

where P is the matrix of centroid locations.

Fault detection is then performed in the following manner:

1. Calculate the corresponding polygon and centroid in the Kiviat diagram for every new
data sample.

2. Assess if the centroid lies outside of the confidence region.
3. Flag the sample as a faulty sample if it lies outside of the confidence region. A separate criterion

(e.g., two consecutive samples are identified as faulty) can be implemented to raise a process fault.

To demonstrate its effectiveness, we applied the procedure described above to the Tennessee
Eastman Process (TEP) simulator [30]. The Tennessee Eastman Process simulator is a benchmarking
tool widely used in process control and monitoring literature involving continuous processes. We used
the MATLAB version of the simulation [31] to obtain the data discussed below.

Training data (representing steady state operation of the process) are obtained by running the
process simulator for 12 (simulation, rather than “wall clock”) hours. For each fault, the process was
simulated for 12 h (720 min) of operation, and faults were imposed at t = 300 min. Random noise
was overlaid on the data for every run. Principal component analysis (PCA) was used to reduce the
dimensionality of the data; nine principal components were used to capture 70.1% of the variance in
the training data. The confidence level used to calculate the confidence ellipse is 95%.

Below, we compare the fault detection delay (amount of time required to detect the fault after it
has been introduced) of our method against regular PCA T2 and Q, as well as dynamic PCA T2 and
Q metrics. As an added challenge, we choose combinations of faults as our test cases, noting that in
our previous work, we only consider individual faults. The choice of multiple fault events was made
taking care to avoid (based on our physical judgment) simultaneously imposing errors that would
“cancel each other out.” The list of relevant faults is presented in Table 1, while the fault detection
results are shown in the sequel.
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Table 1. Faults that can be implemented in Tennessee Eastman Process simulator, reproduced with
permission from [32]. Copyright Elsevier, 2004.

Fault No. Description Type

1 A/C feed ratio, B Composition constant (Stream 4) Step
2 B Composition, A/C ratio constant (Stream 4) Step
3 D feed temperature (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
8 A, B, C feed composition (Stream 4) Random variation

10 C feed temperature (Stream 4) Random variation
14 Reactor cooling water valve Sticking

The results in Table 2 show that our proposed method is comparable to other methods in
terms of fault detection delay. We also examined the missed detection and false detection rates
(in Tables 3 and 4 respectively) of the different methods using the definition proposed by Zhang [33].
Zhang defines “false detection” as data that fall outside of the defined confidence level (95%) before
the fault has occurred and “missed detection” as data that fall inside of the defined confidence level
(95%) after the fault has occurred.

Table 2. Fault detection delay for the Tennessee Eastman Process.

Fault Detection Delay (Minutes) (Lower Is Better)

Fault Numbers Proposed Method PCA T2 PCA Q DPCA T2 DPCA Q

1 3 3 9
3 17 2 6 6

1 and 3 3 3 9
2 8 6 91 24 94
4 2 6 138 2 94

2 and 4 2 2 104 6 107
5 2 2 145 3 131

10 52 41 106 47 117
5 and 10 2 2 3

8 46 21 116 65 119
14 8 3 8

8 and 14 4 2 113 6 119

Blank cells indicate that no fault was detected.

Based on the results in Tables 2–4, our method has a comparable missed detection rate and
improved detection delay times, while providing lower false detection rates when compared against
conventional PCA and DPCA methods.
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Table 3. Missed detection rates for the Tennessee Eastman Process.

Missed Detection Rates (Lower Is Better)

Fault Numbers Proposed Method PCA T2 PCA Q DPCA T2 DPCA Q

1 0.0179 0.0179 0.0714
3 0.542 0.0095 0.9786

1 and 3 0.0174 0.0174 0.0696
2 0.018 0.0103 0.9205 0.059 0.9282
4 0.040 0.0024 0.9786 0.399 0.9406

2 and 4 0.0124 0.0025 0.9208 0.0025 0.9282
5 0.002 0.0024 0.981 0.0356 0.9477

10 0.138 0.095 0.9287 0.1093 0.9145
5 and 10 0.0024 0.0024 0.0048

8 0.102 0.0784 0.9121 0.152 0.9192
14 0.040 0.0048 0.0166

8 and 14 0.0261 0.0024 0.905 0.0119 0.9192

Blank cells indicate that no fault was detected.

Table 4. False detection rates for the Tennessee Eastman Process.

False Detection Rates (Lower Is Better)

Fault Numbers Proposed Method PCA T2 PCA Q DPCA T2 DPCA Q

1 0.0267 0.0533 0
3 0.03 0.03 0.0133

1 and 3 0.0033 0.0533 0
2 0.03 0.04 0 0 0
4 0.0367 0.05 0.0167 0 0

2 and 4 0 0.04 0 0 0
5 0.0367 0.0333 0.02 0 0

10 0.04 0.0333 0 0 0
5 and 10 0 0.03 0

8 0.0333 0.06 0 0 0
14 0.0267 0.0467 0

8 and 14 0.0033 0.05 0 0 0

Blank cells indicate that no fault was detected.

3.2. Batch Processes

Batch processes differ fundamentally from continuous ones in that they never reach a steady state.
A batch is defined in terms of a starting point and and end point, with the state of the process changing
continuously between the two. Thus, an alternate method is proposed for defining confidence regions
in 3D Kiviat diagrams for batch systems. The presentation below follows closely the developments
in [14].

Specifically, we propose the use of multiple confidence regions, such that the entire trajectory of
the batch is captured, describing the expected “normal” performance of the process at each time point
in the course of the batch. To this end, batch data (with dimensions I batches×J samples×K variables)
are unfolded into a J × IK two-dimensional array using time-wise unfolding, as seen in Figure 6. As in
the case of continuous processes, we assume that multiple datasets corresponding to several “good”
batches are available as training data. Each training batch is plotted on the same radial plot, and the
centroids for every sample in the batch are computed. The centroids for the same sample time, but
for multiple batches are used to compute a confidence region specifically for that sample time (i.e., all
samples at t = 1 are used to calculate the confidence region for t = 1), using the procedure described
above for continuous processes.
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The confidence ellipses are stacked (similar to the way polygons in Kiviat diagrams can be stacked)
to allow for better visualization of the trajectory of the batch, as seen in Figure 7. Fault detection is
performed by comparing the centroids of new batch samples against the confidence regions at each
sample time.

This mechanism can identify the moment in time at which a fault occurs in a batch run, enabling
operators to diagnose potential issues in the batch process; the mechanism can be used both in real
time, as well as an analysis tool after the completion of the batch.

To demonstrate this fault detection mechanism, we use the PenSim [34] bioreactor simulator.
The fault detection performance is compared against conventional multiway PCA (MPCA) T2 and Q
statistics [5] as described below. A schematic of the process is provided in Figure 8.

Batch (I)

T
im

e
 (J)

Variable (K)

(a)

Batch (I)

Variable (K)

Time (J)

T = 1 T = 2 T = 3 T = 4 T = 5

(b)

Time (J) Batch 1

Variable (K)

Batch (I)

Batch 2 Batch 3 Batch 4 Batch 5

(c)

Figure 6. Unfolding of batch data. (a) Batch data in three dimensions; (b) batch-wise unfolding;
(c) time-wise unfolding.
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Figure 7. The confidence region at every data point drawn (green) for an illustrative batch process data
set resembles a funnel or tube in 3D.

Acid

Base

Cold 

Water

Hot 

Water

Substrate

Air

Figure 8. Schematic of the the PenSim process, reproduced with permission from [34]. Copyright
Elsevier, 2002.
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Table 5. List of process variables, reproduced with permission from [34]. Copyright Elsevier, 2002.

Variable Number Variable Description

x1 Aeration rate (L/h)
x2 Agitator power (W)
x3 Substrate feed rate (L/h)
x4 Substrate temperature (K)
x5 Substrate concentration (g/L)
x6 Dissolved oxygen concentration (g/L)
x7 Biomass concentration (g/L)
x8 Penicillin concentration (g/L)
x9 Culture volume (L)
x10 Carbon dioxide concentration (g/L)
x11 pH
x12 Temperature (K)
x13 Generated heat (cal)
x14 Acid flow rate (mL/h)
x15 Base flow rate (mL/h)
x16 Cooling/heating water flow rate (L/h)

The input variables are the aeration rate, agitator power and glucose feed rate. The model
predicts the concentrations of biomass, glucose, penicillin, dissolved oxygen and carbon dioxide.
Culture volume, acid flow rate, base flow rate, reactor temperature, generated heat, pH value and
cooling/heating water flow rate are also computed in the simulation [34]. Sixteen process variables
(listed in Table 5) are assumed to be measured and used for data-driven process monitoring and fault
detection. Two control loops are used to maintain the temperature and pH of the reactor. Nine faults
(Table 6) can be imposed, consisting of step/ramp changes in the inputs.

For this case study, a set of twenty batches run normally are used as a “reference” of good
performance and used to establish the sample-wise confidence ellipses. Subsequent simulations are
run with the faults specified in Table 6, occurring at t = 100 h and lasting till t = 130 h. We implemented
the fault detection methodology described above, along with online multiway PCA (MPCA) [5] for
comparison purposes.

Table 6. Faults simulated by PenSim.

Fault No. Description Type

1 10% increase in aeration rate Step
2 20% increase in aeration rate Step
3 1.5 L h−1 increase in aeration rate Ramp
4 20% increase in agitation power Step
5 40% increase in agitation power Step
6 0.015 W increase in agitator power Ramp
7 20% increase in substrate feed Step
8 40% increase in substrate feed Step
9 0.12 L h−1 increase in substrate feed Ramp

Table 7 shows a comparison of the fault detection speeds, and Table 8 presents the false
detection rates (defined as normal data samples being flagged as faulty before a fault occurs) for
the visualization-based and MPCA-based methods.
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Table 7. Fault detection delay for the PenSim data. MPCA, multiway PCA.

Fault Detection Delay (Hours) (Lower Is Better)

Dataset # Proposed Method MPCA T2 MPCA Q

1 0.5 4 3.5
2 0.5 9.5 9.5
3 13 13 13
4 1.5 2.5 3
5 9 7 7.5
6 15.5 11.5 12.5
7 20 1.5 2
8 14.5 6
9 12.5 10.5

Blank cells indicate that no fault was detected.

Table 8. False detection rates for the PenSim data.

False Detection Rates (Lower Is Better)

Dataset # Proposed Method MPCA T2 MPCA Q

1 0.11 0.075 0.1
2 0.025 0.07 0.085
3 0.01 0.095 0.07
4 0.03 0.105 0.07
5 0.16 0.11 0.07
6 0 0.105 0.035
7 0.07 0.105 0.02
8 0.085 0.105
9 0.07 0.105

Blank cells indicate that no fault was detected.

The data presented above demonstrate that the proposed framework allows for detecting faults
occurring in batch processes at a speed comparable to that of MPCA, while reducing the number of
false alarms raised. Our approach also offers an intuitive way for visualizing batch data, either in real
time or as a post-operational analysis.

3.3. Periodic Processes

As a third class of chemical processes, we consider systems under periodic operation.
The operation of such processes consists of cycles whose beginning and end points in the state
space typically coincide during normal operation. Their steady state is cyclical, rather than point-wise
(as the case of continuous processes). While such systems are, strictly speaking, neither batch nor
continuous, a number of interesting parallels can be drawn between the system classes considered in
this paper:

• Periodic processes resemble to some extent batch processes, in that each cycle can be considered
to be a “batch.” Thus, “normal” operation can be defined in terms of repeatability, with all such
“batches” being the same in a statistical sense. Note, however, that during normal operation, each
cycle typically begins and ends in the same state; this is not the case for batch systems, where the
start and end point are typically very different.

• The observation above hints at a potential similarity between periodic processes and continuous
processes; a periodic process can be construed as “continuous” in the sense that it is desired that
the cycles be reproducible and each cycle be statistically the same as its predecessor.

These similarities allowed us to develop [15] a fault detection mechanism for periodic processes
that relies on the concepts presented above for continuous and batch processes. Specifically, we divide
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the fault detection activity into two steps: a inter-cycle fault detection step that uses the oscillatory
steady state to identify problematic cycles and an intra-cycle fault detection step that identifies where
in the problematic cycles the deviation occurs.

In the inter-cycle step, we define a feature called the cyclic centroid [15] that characterizes a
full cycle of the process in the aggregate. Since there are multiple cycles in the process, multiple
cyclic centroids are obtained from the data. By then defining a confidence ellipse around cyclic
centroids corresponding to the cycles of normal operation, we are able to identify problematic cycles
by monitoring the cyclic centroids. We note that this step is very similar to the fault detection approach
proposed earlier for continuous processes.

The following, intra-cycle step seeks to identify exactly when in the cycle the problem or fault
has occurred. This is done by defining confidence ellipses for every sample across cycles of normal
operation; this creates a cycle trajectory that corresponds to the dynamics of a normal operating cycle.
By comparing the samples of a problematic cycle against the corresponding sample confidence ellipse,
the moment when deviation begins to occur in the problematic cycle can be identified, as seen in
Figure 9. This step is based on the principles for fault detection in batch systems, outlined above.
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Figure 9. Intra-cycle fault detection is carried out on a problematic cycle. Each sample in the problematic
cycle is compared against the intra-cycle confidence region (in red); samples that lie inside the region
are colored in blue, whereas samples that lie outside the confidence region are colored in black.

This two-step method is applied on an air separation system, aimed at separating oxygen from air
via pressure swing adsorption (PSA). As a high purity oxygen product is desired for an air separation
system, being able to detect faults quickly is important to prevent penalties associated with delivering
off-spec products.

The PSA system was simulated using the gPROMS gML Separations-Adsorption model
library [35]. The model represents a two-bed, four-step isothermal process (Figure 10), whose periodic
operation follows the switching strategy described in Table 9.
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Table 9. Switching strategy for the pressure swing adsorption (PSA) process.

Duration (s) Bed 1 State Bed 2 State

2 Pressurization Blowdown
60 Adsorption Desorption
2 Pressure Equalization Pressure Equalization
2 Blowdown Pressurization
60 Desorption Adsorption
2 Pressure Equalization Pressure Equalization

Bed 1 Bed 2

Air

N2, O2

O2

Figure 10. Schematic of the PSA system; the solid lines denote the flow pathway of the gas, while the
dashed lines represent inactive piping in the cycle. As shown in the figure, Bed 1 is the active bed (flow
denoted in blue), while Bed 2 is being regenerated.

The parameters for the PSA model (the model captures radial and axial transport, as well as the
reactions in the beds) are provided in Table 10.

Table 10. Parameters for the PSA model.

Parameter Parameter Value

Feed flow rate 0.00364 mol/s
Temperature of feed 298.15 K

Length of bed 0.35 m
Radius of bed 0.0175 m
Particle radius 0.003175 m

ε (void fraction) 0.4
Pf eed 300,000 Pa
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A total of 26 variables relating to the flow rate of the feed, as well as pressures and concentrations
in and across both beds were used for observation. White noise with a signal-to-noise ratio of 30 was
added to the simulated data. The observed period of a single cycle is 150 s.

The temperature and pressure of the feed flow into the beds were modified to simulate faults in the
process. These faults were implemented at t = 5000 s, and the process ran for 10,000 s total. Similar to
the previous case studies, the detection delay is the metric used to evaluate fault detection performance.

Due to the dearth of research regarding fault detection in periodic processes, two conventional
methods of fault detection used in continuous and batch processes were adapted for our purposes.
The two methods selected were dynamic principal component analysis (DPCA) and multiway principal
component analysis (MPCA). MPCA, as described above, is a PCA model used when dealing with
batch data, and DPCA is a locally updating PCA model used for continuous datasets. For MPCA, each
cycle is treated as one batch run in the data, while for DPCA, the moving window size used is set to
the observed period of the data; this means that the model would be updated after every cycle.

As seen from Table 11, our method performs better than the adapted methods for the majority of
the cases. The two adapted PCA-based methods perform comparably to one another.

Table 11. Fault detection delay for the PSA system data.

Fault Detection Delay (Seconds) (Lower is Better)

Case Fault Description Proposed Method DPCA [3] T2 DPCA [3] Q MPCA [5] T2 MPCA [5] Q

1 Increased temperature feed by 89 120 115 118 74
5K in Bed 1 and Bed 2

2 Decreased temperature feed by 99 51 54 116 54
5K in Bed 1 and Bed 2

3 Pressure drop in Bed 1 by 10% 59 52 103 118 116

4 Pressure rise in Bed 2 by 10% 61 122 116 116 173

4. Conclusions

In this paper, we provide an overview of recently-developed visualization techniques for process
data. The concept underpinning these techniques is a time-explicit Kiviat diagram, which allows
for plotting multivariate time series data collected during the operation of chemical processes.
On this cornerstone, we developed specific visualization and fault detection techniques for three
major classes of chemical processes: continuous, batch and periodic. On the visualization front,
these techniques allow for plotting and presenting large amounts of data on a unified plot. Furthermore,
using simulation case studies, we compared the fault detection performance of the proposed methods
with that of conventional methods used in the literature and in practice. Of particular interest is the
application of these ideas to carrying out fault detection for periodic processes, where the available
literature is rather scarce in spite of the relatively widespread practical use of such systems, especially
in the separations realm.
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