
processes

Article

A General State-Space Formulation for
Online Scheduling

Dhruv Gupta ID and Christos T. Maravelias * ID

Department of Chemical and Biological Engineering, University of Wisconsin-Madison,
Madison, WI 53706, USA; dgupta6@wisc.edu
* Correspondence: christos.maravelias@wisc.edu; Tel.: +1-608-265-9026

Received: 2 October 2017; Accepted: 2 November 2017; Published: 8 November 2017

Abstract: We present a generalized state-space model formulation particularly motivated by an online
scheduling perspective, which allows modeling (1) task-delays and unit breakdowns; (2) fractional delays
and unit downtimes, when using discrete-time grid; (3) variable batch-sizes; (4) robust scheduling
through the use of conservative yield estimates and processing times; (5) feedback on task-yield
estimates before the task finishes; (6) task termination during its execution; (7) post-production
storage of material in unit; and (8) unit capacity degradation and maintenance. Through these
proposed generalizations, we enable a natural way to handle routinely encountered disturbances
and a rich set of corresponding counter-decisions. Thereby, greatly simplifying and extending the
possible application of mathematical programming based online scheduling solutions to diverse
application settings. Finally, we demonstrate the effectiveness of this model on a case study from the
field of bio-manufacturing.

Keywords: state-space model; uncertainty; mixed-integer linear programming; model predictive control;
bio-manufacturing

1. Introduction

Scheduling plays an important role in all industrial production facilities [1]. Contingent on
the scale of operation, optimization based scheduling methods can even achieve multi-million
dollars increase in profits [2]. Thus, considerable effort has been devoted towards developing
optimization models that accurately represent the decision making flexibility in these facilities [3].
Maravelias (2012) [4] provides a unified notation and a systematic framework for the description
of chemical scheduling problems. Further, significant advances in solution methods, now enable
us to solve small size scheduling problems. For example, a highly constrained scheduling instance
over a network of 8 processing units, 19 tasks, and 26 materials, with a realistic scheduling horizon
of 2 weeks, was shown to be solved to optimality in less than 1 min on an ordinary office computer [5].
Thus, being able to generate and revise schedules in an online fashion, so as to account for new
information and disturbances, is very much a reality now. The Dow Chemical Company has already
adopted online scheduling in many of its production facilities [6–8].

Scheduling models, as have been developed till now, were not necessarily designed with an
emphasis on being natively ready for implementation in an online scheduling setting. Thus, the
online framework utilizing a model had to be tailored to that specific model, and required many
ad-hoc (heuristic) adjustments to be able to represent and resolve a disturbance to the schedule [9–23].
The introduction of the state-space idea to chemical production scheduling alleviated many of these
issues that arose from having to make ad-hoc adjustments [24].

In this work, we present a generalized and extended state-space model which is suitable for
implementation in an online scheduling setting. Further, we propose a new scheme for updating the state

Processes 2017, 5, 69; doi:10.3390/pr5040069 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-4039-0416
https://orcid.org/0000-0002-4929-1748
http://dx.doi.org/10.3390/pr5040069
http://www.mdpi.com/journal/processes

Processes 2017, 5, 69 2 of 31

of the process, as well as an overall formulation to enforce constraints (through parameter/variable
modifications), based on feedback information, on future decisions. Although here, we focus on
expanding the modeling scope, it is important to point out that once a model has been adopted, there
are still many other factors which influence the performance of an online scheduling method [25].
These factors are: the online optimization horizon length, the re-computation trigger and its frequency
if periodic, allowable changes from one online iteration to the next, any added constraints (e.g., terminal
constraints), and the modeling of uncertainty (deterministic vs. stochastic optimization) [8].

This paper is structured as follows. In Section 2, we present a brief background on chemical
production scheduling and discuss the state-space model of Subramanian et al. [24]. In Section 3,
we present a reformulated state-space model, based on a new convention, and showcase the
generalizations on it one at a time. In Section 4, we present the final integrated model, with all
generalizations present simultaneously, which requires more than simply concatenating all the
individual generalizations together. Finally, in Section 5, we demonstrate the applicability of our
proposed new model to a case study taken from the field of bio-manufacturing. Throughout the text,
we use lower case Latin characters for indices, uppercase Latin bold letters for sets, uppercase Latin
characters for variables, and Greek letters for parameters.

2. Background

In this section, we present the necessary background to be able to follow through the new general
state-space model that we propose in this paper. Here, first, we layout the general problem statement,
a standard problem representation framework, and briefly describe model classification, and solution
methods. For a detailed discussion, the reader is referred to the following review papers [1,3,4,26].
Second, we show a mixed integer linear programming (MILP) based widely adopted scheduling
model. Third, we describe the typical state-space formulation adopted in model predictive control
(MPC) technology. Finally, we provide a short overview of the state-space based scheduling model
pioneered by Subramanian and co-workers [24,27,28].

2.1. Chemical Production Scheduling

2.1.1. General Problem Statement

The general scheduling problem can be stated as follows. Given:

(i) Production facility data (e.g., unit capacities and connectivity),
(ii) Production recipes (e.g., processing times and mixing rules),
(iii) Production costs (e.g., material holding costs),
(iv) Material availability (e.g., raw materials delivery amounts and dates),
(v) Resource availability (e.g., maintenance schedule and utility levels), and
(vi) Production targets or orders with due-times;

scheduling seeks to find:

(i) Number and the associated processing-sizes of the needed tasks,
(ii) Assignment of these tasks to processing units, and
(iii) Timing (or just the sequence) of these tasks on the assigned units;

so as to meet production targets at minimum cost, or to maximize profit if production beyond the
given target is allowed. Apart from minimization of cost, or maximization of profit, the objective can
also be minimization of makespan, or minimization of earliness, or any other suitable objective for
the considered application. In general, several processing characteristics and constraints could also
be present such as sequence dependent changeovers, setup times, storage constraints, time-varying
utility costs, etc. [1,3].

Processes 2017, 5, 69 3 of 31

2.1.2. Problem Representation

Before a scheduling problem can be solved, we need an abstract framework to represent the
different elements of the problem, viz., the production facility, the associated production recipe, etc.
The state task network (STN) enables this representation [29]. Under this representation, tasks are
carried out on units (equipment), and they transform materials (states) from one to another. Apart from
the material to be processed and the equipment to process these materials on, these tasks can also
require resources, such as, utilities, manpower etc. Another popular framework, is the resource task
network (RTN) [30]. In contrast to STN, in which materials, units, and utilities are treated as different
from one another, in RTN, these are treated at par, all termed together as resources. We use the STN
representation in this paper, but the general modeling ideas presented are also easily adaptable to the
RTN representation.

The STN representation primarily comprises of tasks i ∈ I, units j ∈ J, and materials k ∈ K.
The set of tasks producing/consuming material k are denoted by I+k /I−k ; task i consumes/produces
material k equivalent to ρik/ρ̄ik mass fraction of its batch-size (ρik < 0 for consumption and ρ̄ik > 0 for
production). The subset of tasks that can be carried out on unit j are denoted by Ij; The processing
time of task i, when executed on unit j, is denoted by τij. On any given unit, only one task can be
performed at a time with its batch-size between lower (βmin

ij) and upper capacities (βmax
ij); the associated

fixed and proportional production costs of carrying out task i on unit j are αF
ij and αP

ij respectively.

Feed, intermediate, and product materials are denoted by k ∈ KF/KI/KP; there are possible incoming
deliveries (ζkt) and outgoing orders (ξkt) at certain times for selected materials; the selling price,
inventory cost, and backlog cost of material k are γk, γINV

k , and γBO
k , respectively.

In Figure 1, we see a process network’s STN representation comprising of 4 material nodes
(circular) labeled M0-M3 and 4 task nodes (rectangular) labeled T1-T4. Arcs connect task nodes with
corresponding input/output material nodes. Tasks can be carried out in compatible units and could
require utilities. Task-unit mapping and task batch-size capacities (βmin/βmax) are also shown here.
Material prices (γ) are shown adjacent to the material nodes.

T1
τ = 2

M0 M1

γ = 5γ = 1

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚= 0
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=20

U1

T3
τ = 3

M3

γ = 50
U3

T2
τ = 5

M2

γ = 20
U2

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=0
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=10

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚= 0
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=20

T4
τ = 1
U2

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=0
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚=20

Figure 1

Figure 1. STN representation of a process network. This network, for a bio-manufacturing process,
is described in detail in Section 5. It has three steps (tasks) for production of a pharmaceutical ingredient
(material M3). T1 is the task of preparing the cell cultures in lab-size beakers. T2 denotes the task of
having the cell culture grow and produce the pharmaceutical active ingredient, on a feed of sugars,
in a bio-reactor. T3 is a purification task, which is carried out in chromatograph columns. Finally, T4 is
a dummy task to model storage of material M2 inside unit U2. ρik/ρ̄ik values (not shown in the figure)
are either −1 or +1 depending on whether the task is consuming the material or producing it.

2.1.3. Model Classification

Scheduling models can be classified on the basis of (i) optimization decisions; (ii) modeling elements;
and (iii) modeling of time [4]. Models that employ a time-grid are either continuous time or discrete
time models. In discrete time models, the fixed time-grid spacing is denoted by δ. Events can take

Processes 2017, 5, 69 4 of 31

place only at these grid time-points. Thus, all time-related parameters are rounded in a conservative
direction, such that the resulting schedule computed using these new parameter values is feasible
even for the original parameter values. Hence, processing times and raw material delivery dates are
rounded up, while due dates are rounded down so as to match with an integer multiple of δ.

Even though, having a discrete time-grid introduces the above approximation error, discrete time
models have several advantages over continuous time-grid models. For example, accounting for
utility consumption, inventory and backlog costs, time varying prices, or time-dependent resource
availability introduces non-linearities in continuous time models, but not so in discrete time models [26].
Furthermore, discrete time models are, in general, at least as effective as continuous time models,
and in fact are better suited for large scale problems with several additional processing features [31].
In this work, we employ a discrete time-grid for our state-space model.

2.1.4. Solution Methods

To tackle the computational challenge of MILP scheduling models, several solution
methods have been proposed: (1) tightening methods based on preprocessing algorithms and
valid inequalities [32–38]; (2) reformulations [5,37,39–41]; (3) decomposition methods [42–47];
(4) heuristics [19,48–50]; and (5) hybrid methods [51–55]. Finally, parallel computing has been utilized
to obtain faster solutions [56–58].

2.2. Scheduling MILP Model

The discrete time STN MILP scheduling model modified from Shah et al. (1999) [59] comprises of
Equations (1)–(6). Time is represented by index t ∈ T. Binary variable Wijt, when 1, implies task i is
starting on unit j at time t. Variable Bijt ∈ [βmin

ij , βmax
ij] denotes its batch-size. The assignment constraint

(Equation (1)) ensures only one task can be executed on a unit at a time.

∑
i∈Ij

Wijt + ∑
i∈Ij

τij−1

∑
n=1

Wij(t−n) ≤ 1 ∀ j, t (1)

Equation (2) ensures that the batch-size of a task, if initiated, is within its upper and lower bounds.

βmin
ij Wijt ≤ Bijt ≤ βmax

ij Wijt ∀ j, i ∈ Ij, t (2)

Skt, which is the variable denoting inventory of material k during time-period (t − 1, t],
is calculated in Equation (3) as a balance of production/consumption and outgoing (Vkt)/incoming
(ζkt) shipments.

Sk(t+1) = Skt+∑
j

∑
i∈Ij∩I+k

ρ̄ikBij(t−τij)
+ ∑

j
∑

i∈Ij∩I−k

ρikBijt −Vkt + ζkt ∀ k, t (3)

Equation (4) couples the outgoing shipment variable Vkt with demand, ξkt, for material k at time t.
Backlog variables, BOkt, denote pending demand during time-period (t− 1, t], and are penalized in
the cost minimization objective function (Equation (5)).

BOk(t+1) = BOkt −Vkt + ξkt ∀ k, t (4)

zcost = min ∑
k

∑
t
(γINV

k Skt + γBO
k BOkt) + ∑

j
∑
i∈Ij

∑
t
(αF

ijWijt + αP
ijBijt) (5)

Finally, the domain of all the variables is restricted via Equation (6):

Wijt ∈ {0, 1}; Bijt, Vkt, Skt, BOkt ≥ 0 (6)

Processes 2017, 5, 69 5 of 31

2.3. Standard form of State-Space Models

State-space model formulations have been useful, alongside frequency domain models, in process
control [60–64]. Now, as optimization based control and economic MPC are becoming the new standard,
state-space models have become ubiquitous [65,66]. In the most general form, a state-space based
model can be written as dx

dt = f (x, u, d); where x are the states, u are the manipulated inputs, and d
are the disturbances. The function f (·) is not theoretically restricted to the class of linear functions,
but is typically approximated as linear due to computational tractability considerations. The linear
difference equation form for f (·) yields the model as:

x(t + 1) = Ax(t) + Bu(t) + Bdd(t) (7)

where, A, B, and Bd are state-space matrices and t is the index for time. The states x need not be
associated with a physically identifiable entity in the plant. Some can have a direct physical meaning,
while others can be artificial (e.g., augmented) constructs so as to enable the modeling exercise.
The output (measurements y) is related to the states and inputs as y = h(x, u), where h(·) can be
non-linear, but is typically linear (e.g., y(t) = Cx(t) + Du(t), where C and D are coefficient matrices).
The control optimization model has to follow the plant physical constraints and any other imposed
constraints due to operational strategy (e.g., for environmental concerns) or those that enable better
closed-loop properties (e.g., economics and stability). These constraints, when linear, can take the
general form:

Exx(t) + Euu(t) + Edd(t) ≤ 0 (8)

where, Ex, Eu, and Ed are the coefficient matrices of the states, inputs, and disturbances, respectively.
If there are any equality constraints, these can also be represented as two opposite inequality
constraints, so as to conform to the general form (Equation (8)). For example, the following constraints
are equivalent:

(Exx(t) + Euu(t) + Edd(t) = 0)⇔
([

Ex

−Ex

]
x(t) +

[
Eu

−Eu

]
u(t) +

[
Ed
−Ed

]
d(t) ≤ 0

)
(9)

Thus, any equality constraints that we propose from here on, can be easily converted to the general
inequality form through the use of the above trick. Finally, the objective function takes the form:

zcost = min
u(0),u(1),...,u(N−1)

VN(x(0), u(0), x(1), u(1), ..., x(N − 1), u(N − 1)) (10)

where N is the number of discrete time-points in the online optimization horizon.
A wealth of literature focuses on the closed-loop properties of the aforementioned iterative control

methods, with novel and most recent results, specifically, in presence of discrete inputs, discussed in
Rawlings and Risbeck (2017) [67].

2.4. Scheduling State-Space Model

Motivated by process control approaches, Subramanian et al. (2012) [24] proposed a state-space
model (Equations (5) and (11)–(16)) for the chemical production scheduling problem. For brevity,
we present the formulation for constant batch-sizes (βmin

ij = βmax
ij = βij). There are two distinct features

of this model. First, the “complete status” of the plant can be interpreted solely from the variables
(states) at that moment in time. This is made possible by lifting past actions/inputs (the task start
binary variables, Wijt) which have a lagged effect on the “current status" of the plant. Second, observed
uncertainties are treated as disturbances, and represented as parameters in the model equations.
These two features, together, allow for the model to be kept identical in each online scheduling
iteration without any ad-hoc adjustments (due to observation of uncertainty). Thus, the model is in
“online ready” form. In addition, due to the use of the state-space formulation, which is popular in

Processes 2017, 5, 69 6 of 31

process control models, this model also happens to be a very suitable candidate for integration of
scheduling and control [68].

To enable lifting of inputs, new task-states (variables) W̄n
ijt are defined. Although this increases

the number of variables in the model, it is matched by an equal increase in the number of equations
(the lifting equations, Equations (11) and (12)). Thus, no new degrees of freedom are introduced.
When the task starts, n is zero (n = 0, Equation (11)), and when the task finishes, n equals the
processing time of the task (n = τij). To express task delay and unit breakdown disturbances,
new parameters Ŷn

ijt and Ẑn
ijt are defined, respectively. Ŷn

ijt, when 1, denotes a delay of δ h in task i during
time-period [t− δ, t), where δ, as defined in Section 2.1.3, is the granularity of the discrete time-grid.
Ẑn

ijt, when 1, denotes break-down of unit j while executing task i during time-period [t− δ, t). For ease
of presentation, we assume from here on that δ = 1 h.

W̄0
ijt = Wijt ∀j, i ∈ Ij, t (11)

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt + Ŷn

ijt − Ẑn−1
ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (12)

In the absence of delays or breakdowns, the lifting equations effectively represent the relation:
W̄n

ijt = Wij(t−n) ∀j, i ∈ Ij, n. The lifted variables are defined only till n = τij, because a “look-back”
beyond that value of n is not needed. The effect of past inputs, for n > τij, is already, indirectly,
contained in the inventory and backlog variables Skt and BOkt. The lifted states, W̄n

ijt, are augmented
to the future states (see Figure 2).

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

�𝑊𝑊6
3

�𝑊𝑊6
2

�𝑊𝑊6
1

�𝑊𝑊6
0

�𝑊𝑊7
3

�𝑊𝑊7
2

�𝑊𝑊7
1

�𝑊𝑊7
0

�𝑊𝑊8
3

�𝑊𝑊8
2

�𝑊𝑊8
1

�𝑊𝑊8
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5 𝑊𝑊6 𝑊𝑊7 𝑊𝑊8

t'=0 1 2 3 4 5 6 7 8

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

�𝑊𝑊6
3

�𝑊𝑊6
2

�𝑊𝑊6
1

�𝑊𝑊6
0

�𝑊𝑊7
3

�𝑊𝑊7
2

�𝑊𝑊7
1

�𝑊𝑊7
0

�𝑊𝑊8
3

�𝑊𝑊8
2

�𝑊𝑊8
1

�𝑊𝑊8
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5 𝑊𝑊6 𝑊𝑊7 𝑊𝑊8

t=0 1 2 3 4 5 6 7 8

Iteration σ-1

Iteration σ

Figure 2

Figure 2. Task-states are shown for two online iterations – numbered σ− 1 and σ. Each iteration uses
its own local time-grid which is reset to start from 0. Here, τij for the tasks is assumed to be 3. Lifting
of past inputs enables knowing the complete status of the plant by looking at the states (variables)
only at that moment in time. In the absence of delays or breakdowns, the lifting equations effectively
represent the relation: W̄n

ijt = Wij(t−n) ∀j, i ∈ Ij, n. Arrows show which variables are equal due to the
lifting equations (Equations (11) and (12), with no delays or breakdowns). Variables in green or red
have a value of 1, rest have value 0. Information is carried over from one iteration to the next through
the update step (Equations (17)–(19)).

Processes 2017, 5, 69 7 of 31

In the assignment constraint (Equation (13)), parameters Ŷ
τij
ijt and Ẑ

τij
ijt are included, to ensure that

the unit appears to be busy, and no new tasks can be started, when there is a delay or breakdown
observed at a time when a task is about to finish. Additionally, for multi-period breakdowns,
parameter Ẑ

τIT,j
IT,jt is made 1, where IT is a fictitious “idle task”, with τIT,j = 1, that keeps the unit

busy through the duration of the multi-period breakdown.

∑
i∈Ij

Wijt + ∑
i∈Ij

τij−1

∑
n=1

W̄n
ijt + ∑

i∈Ij

(Ŷ
τij
ijt + Ẑ

τij
ijt) ≤ 1 ∀ j, t (13)

In inventory balance (Equation (14)), β̂C
ijkt and β̂P

ijkt are parameters that denote material handling
loss during consumption and production of material k, respectively. When a delay or breakdown is
observed at the end of a task, the terms Ŷ

τij
ijt and Ẑ

τij
ijt , which are subtracted from W̄

τij
ijt , prevent erroneous

multiple counting of the material amount produced by that task.

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ikβij(W̄
τij
ijt − Ŷ

τij
ijt − Ẑ

τij
ijt) + β̂P

ijkt) (14)

+ ∑
j

∑
i∈Ij∩I−k

(ρikβijWijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

In the backorder balance (Equation (15)), ξ̂kt denotes demand disturbance.

BOk(t+1) = BOkt −Vkt + ξ̂kt ∀ k, t (15)

Finally, Equation (16) shows the bounds on the variables present in the model.

Wijt, W̄n
ijt ∈ {0, 1}; Skt, BOkt, Vkt ≥ 0 (16)

Next, we describe the online update step, i.e., how information is carried over from one online
iteration to the next. Since the scheduling horizon is advanced by 1 h (the model is kept identical),
the state at t = 0 (initial condition) for the next iteration is matched with the state at t′ = 1
of the previous iteration. This is shown in Figure 2, and achieved through the online “update
equations” (Equations (17)–(19)), in which σ denotes the iteration number. Variables σSk(t=0), σBOk(t=0),
and σW̄n

ij(t=0) for n ≥ 1 which represent lifted task-states, are assigned fixed values through the

update step. But, σW̄0
ij(t=0), which represents degrees of freedom to start new tasks at t = 0, is not

fixed. This is identical to how the online updates are performed for the no disturbance case [25].
However, since, here we are dealing with the case where disturbances can be present, the disturbance
parameters (ξ̂kt, Ŷn

ijt, Ẑn
ijt, β̂P

ijkt, and β̂C
ijkt) are also assigned appropriate values to reflect the observed

disturbances. However, these parameters do not participate in the update equations. These influence
the prediction of states, for t ≥ 1, in the online iteration σ.

σW̄n
ij(t=0) = (σ−1)W̄

n
ij(t′=1) ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij} (17)

σSk(t=0) = (σ−1)Sk(t′=1) ∀k (18)

σBOk(t=0) = (σ−1)BOk(t′=1) ∀k (19)

Figure 3A,B, show the evolution of task-states when a 2 h delay is observed right after a task
starts and just before a task is about to finish, respectively. The 2 h duration of this multi-period
delay is known immediately in iteration σ. However, the model formulation also does allow for
representing the observation of consecutive, possibly independent, 1 h single-period delays, one at a
time in succeeding iterations. These collectively, in hindsight, appear to be a single multi-period delay,
but are actually not.

Processes 2017, 5, 69 8 of 31

It is quite evident, that n, now in the presence of delays, loses its physical meaning of denoting
how much progress has been made on the task. For example, for the task in Figure 3A (iteration σ),
due to the 2 h delay, the task-states evolve as W̄1

(t=0) = W̄1
(t=1) = W̄1

(t=2) = W̄2
(t=3) = W̄3

(t=4) = 1,

instead of the more intuitive W̄0
(t=0) = W̄0

(t=1) = W̄1
(t=2) = W̄2

(t=3) = W̄3
(t=4) = 1. Similarly, in Figure 3B

(iteration σ), the task-states evolve as W̄3
(t=0) = W̄3

(t=1) = W̄3
(t=2) = 1, instead of the more intuitive

W̄2
(t=0) = W̄2

(t=1) = W̄3
(t=2) = 1. All that can be said now is that when W̄0

ijt = 1, the task has just started

at time t, and when W̄
τij
ijt = 1 and Ŷ

τij
ijt = 0 simultaneously, then the task has finished. As we will

show in Section 3.1, we overcome this limitation by introducing a new convention to map observed
disturbances to the disturbance parameters, and hence, are able to preserve the physical meaning of n,
even when disturbances are present (see Figure 4).

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�𝑌𝑌01 �𝑌𝑌11

2 h
delay

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�𝑌𝑌03 �𝑌𝑌13

2 h
delay

(A) (B)

Figure 3

Figure 3. When a 2 h delay is observed, through the lifting equations, W̄n
ijt evolve over the green

trajectory, leading to the task correctly finishing 2 h late in iteration σ. Here, τ for the task is 3.
Arrows show which variables are enforced as equal by the lifting equations (Equations (11) and (12),
with delays present). Variables and parameters in green have a value of 1, rest have value 0. (A) The
task now finishes at t = 4, instead of at t = 2. (B) The task now finishes at t = 2, instead of at
t = 0. Through Equation (13), the unit is kept busy at t = 0 and 1, by the inclusion of the terms Ŷτ=3

(t=0)

and Ŷτ=3
(t=1), and hence a new task is prevented from starting at these times. In addition, these terms

in Equation (14), prevent the task’s produce from erroneously contributing to inventory (Sk,(t=1)
and Sk,(t=2)).

Figure 5A,B, show the evolution of task-states when a breakdown just before t = 0 is observed
and is known to have a 2 h unit downtime (for repairs), right after a task starts and just before a task
is about to finish, respectively. Given the observation of breakdown, we would expect intuitively,
and unlike what is shown in Figure 5A,B, that none of the task-states W̄n

ijt are active for the green task
at t = 0. We show how this is achieved through the new model discussed in Section 3.1 (see Figure 6).

Processes 2017, 5, 69 9 of 31

𝑊𝑊3
𝑋𝑋3

𝑊𝑊2
𝑋𝑋2

𝑊𝑊4
𝑋𝑋4

𝑊𝑊5
𝑋𝑋5

𝑊𝑊0
𝑋𝑋0

𝑊𝑊1
𝑋𝑋1

𝑊𝑊3
𝑋𝑋3

𝑊𝑊2
𝑋𝑋2

𝑊𝑊4
𝑋𝑋4

𝑊𝑊5
𝑋𝑋5

𝑊𝑊0
𝑋𝑋0

𝑊𝑊1
𝑋𝑋1

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

𝑊𝑊3
𝑋𝑋3

𝑊𝑊2
𝑋𝑋2

𝑊𝑊4
𝑋𝑋4

𝑊𝑊5
𝑋𝑋5

𝑊𝑊0
𝑋𝑋0

𝑊𝑊1
𝑋𝑋1

𝑊𝑊3
𝑋𝑋3

𝑊𝑊2
𝑋𝑋2

𝑊𝑊4
𝑋𝑋4

𝑊𝑊5
𝑋𝑋5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�̇�𝑌0 �𝑌𝑌00

2 h
delay

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

t'=0 1 2 3 4 5

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�̇�𝑌2 �𝑌𝑌02

2 h
delay

(A) (B)

𝑊𝑊0
𝑋𝑋0

𝑊𝑊1
𝑋𝑋1

Figure 4

Figure 4. When a 2 h delay is observed, through the lifting equations, W̄n
ijt evolve over the green

trajectory, leading to the task correctly finishing 2 h late in iteration σ. Here, τ for the task is 3.
Arrows show which variables are enforced as equal by the lifting equations (Equations (22)–(24),
with delays present). Variables and parameters in green have a value of 1, rest have value 0. (A) The
task now finishes at t = 4, instead of at t = 2. Due to the update step, parameters Ẏ, Ŷ0

0 and variable
X0 are 1, hence, in iteration σ, due to the optimization model, W̄0

0 , X1, and W̄0
1 are also 1. (B) The task

now finishes at t = 2, instead of at t = 0. The update step ensures that the true progress, n, of the task
is reflected in the task-states at t = 0, i.e., n = 2.

3. Modeling Generalizations

In Section 3.1, we present a new state-space model formulation that differs, from the state-space
model of Subramanian et al. (2012) [24], in the convention that is followed for mapping observed
disturbances to the disturbance parameters. Although both models are accurate, this new convention
ensures that the task-states, in the presence of disturbances, follow a more intuitive notation.
Specifically, the meaning of n as the progress of a task, is maintained. In addition, we define several
new parameters to systematically account for disturbances.

In Section 3.2, we show how to handle fractional delays and unit downtimes (due to unit
breakdowns). In Section 3.3, we expand the scope of the model to account for variable batch-sizes.
Thereafter, in Sections 3.4–3.9 we present generalizations that can be applied to the state-space model,
one at a time. Afterwards, in Section 4, we present the final model equations with all generalizations
present simultaneously. As we will see in that section, for all the generalizations to work in the presence
of each other, a few more modifications are necessary.

3.1. New Basic Formulation

The new state-space model relies on a comprehensive update step of the task-states, in between
the online iterations, to promptly reflect the delays and breakdowns in the task-states. The inventory
and backorder update stay the same (Equations (18) and (19)) as in the model of Subramanian et al.
(2012) [24]. The task-states update is modified from Equation (17) to Equations (20) and (21).

Processes 2017, 5, 69 10 of 31

σW̄n
ij(t=0) = (σ−1)W̄

n−1
ij(t′=0) − Ẏn−1

ij + Ẏn
ij − Żn−1

ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij} (20)

σXij(t=0) = Ẏ0
ij ∀j, i ∈ Ij (21)

The parameters Ẏn
ij which, if 1, represent a 1 h delay in task with progress status n. Note the dot (·)

instead of the hat (∧) on the symbols of these parameters. Since these parameters are exclusively for
the update step, and do not directly participate in the optimization model, these need not be indexed
by time—neither t′ (iteration σ − 1) nor t (iteration σ). Similarly, Żn

ij denotes a breakdown of unit
j on which task i with progress status n was running. Xijt is a new binary variable, defined for all
time-points, which, when 1, captures the information about delays in a task with progress status n = 0,
i.e., when the task gets delayed right after it starts. The use of this variable, in Equations (22) and (23),
will become clear when we discuss the optimization model. We also define a new parameter Λ̂jt,
which, when 1, denotes the unit is unavailable for the time-period [t, t+ 1). This parameter participates
in Equation (25).

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�̂�𝑍01 �̂�𝑍IT,1
1

2 h
break-
down

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

2 h
break-
down

(A) (B)

�̂�𝑍03 �̂�𝑍IT,1
1

Figure 5

Figure 5. When a breakdown is observed, further evolution of the task-states for the task (the green
trajectory), running on the unit that broke, stops. Here, τ for the task is 3 and the unit downtime
(blue) is 2 h. Arrows show which variables are enforced as equal by the lifting equations
(Equations (11) and (12), with breakdown present). Variables and parameters in green, blue, or red
have a value of 1, rest have value 0. The green task is suspended at t = 0. A new task (red) can only
start at t = 2, once the unit downtime is over. (A) Through Equation (13), the unit is kept busy at
t = 0 and 1, due to the terms W̄1

t=0 and Ẑ1
IT,1, respectively. (B) Through Equation (13), the unit is kept

busy at t = 0 and 1, due to the terms Z̄τ=3
t=0 and Ẑτ=1

IT,1 , respectively. Additionally, the term Ẑτ=3
(t=0) in

Equation (14), prevents the green task-state (W̄
τij=3
t=0) from erroneously contributing to the inventory.

Processes 2017, 5, 69 11 of 31

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

�̇�𝑍0�Λ0 �Λ1

2 h
break-
down

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t'=0 1 2 3 4 5

�𝑊𝑊0
3

�𝑊𝑊0
2

�𝑊𝑊0
1

�𝑊𝑊0
0

�𝑊𝑊1
3

�𝑊𝑊1
2

�𝑊𝑊1
1

�𝑊𝑊1
0

�𝑊𝑊2
3

�𝑊𝑊2
2

�𝑊𝑊2
1

�𝑊𝑊2
0

�𝑊𝑊3
3

�𝑊𝑊3
2

�𝑊𝑊3
1

�𝑊𝑊3
0

�𝑊𝑊4
3

�𝑊𝑊4
2

�𝑊𝑊4
1

�𝑊𝑊4
0

�𝑊𝑊5
3

�𝑊𝑊5
2

�𝑊𝑊5
1

�𝑊𝑊5
0

𝑊𝑊0 𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5

t=0 1 2 3 4 5

Iteration σ-1

Iteration σ

2 h
break-
down

(A) (B)

�̇�𝑍2 �Λ0 �Λ1

Figure 6

Figure 6. When a breakdown is observed, further evolution of the task-states for the task (the green
trajectory), running on the unit that broke, stops. Here, τ for the task is 3 and the unit downtime (blue)
is 2 h. Arrows show which variables are enforced as equal by the lifting equations (Equations (22)–(24)).
Variables and parameters in green, blue, or red have a value of 1, rest have value 0. The green task
is suspended at t = 0. A new task (red) can only start at t = 2, once the unit downtime is over.
Through Equation (25), the unit is kept busy at t = 0 and 1, by the inclusion of the terms Λ̂t=0

and Λ̂t=1. (A) The parameter Ż0, through Equation (20), prevents the task-state from evolving from

(σ−1)W̄
0
0 to σW̄1

0 . (B) The parameter Ż2, through Equation (20), prevents the task-state from evolving

from
(σ−1)W̄

2
0 to σW̄3

0 .

For a multi-period delay of φ h, in task i on unit j, in addition to Ẏn
ij , parameters Ŷn

ijt are activated
for t = 0, t = 1, ..., t = φ− 2. For unit breakdowns with downtime duration of φ h, in addition to Żn

ij,

parameters, Λ̂jt are activated for t = 0, t = 1, ..., t = φ− 1. Thus, single-period delays do not result in
activation of any Ŷn

ijt parameters, but single-period breakdowns require activation of Λ̂j(t=0).
Having described the update step, we now describe the optimization model. In this model,

the lifting equations consist of Equations (22)–(24).

Xij(t+1) = Ŷ0
ijt ∀j, i ∈ Ij, t (22)

W̄0
ijt = Wijt + Xijt ∀j, i ∈ Ij, t (23)

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt + Ŷn

ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (24)

When there is a φ h multi-period delay in a task with progress n = 0, the update step assigns
Xij(t=0) = 1 and Ŷ0

ijt = 1 ∀t ∈ {0, 1, ..., φ− 2}. This ensures that W̄0
ijt stays activated for next (φ−1) h,

but with Wijt = 0, i.e., the task is not erroneously interpreted as a new task start. If there are no
delays, then, through Equations (21) and (22), Xijt = 0 and any new task that starts with Wijt = 1,
through Equation (23), results in W̄0

ijt = 1. Equation (23) is a constraint that we impose on the inputs

(Wijt) given the states (Xijt and W̄0
ijt), and if needed can be converted to inequality form through use

Processes 2017, 5, 69 12 of 31

of Equation (9). Variables Xijt are either fixed (t = 0) by the update step or are equated to the delay
parameters in the optimization model, hence, can be declared as free variables with no explicit bounds.

The assignment constraint (Equation (25)) includes the parameter Λ̂jt to account for unit downtime.
Additionally, it contains the variable W̄0

ijt on the left-hand side, and not variable Wijt, to correctly
account for the unit being busy, specifically, when a delay in a task with progress n = 0 is observed.

∑
i∈Ij

W̄0
ijt + ∑

i∈Ij

τij−1

∑
n=1

W̄n
ijt ≤ 1− Λ̂jt ∀ j, t (25)

The inventory balance, Equation (26), in contrast to Equation (14), does not require any corrective
delay or breakdown terms. This is because, for any task, the states Wijt (task-start) and W̄

τij
ijt (task-end),

even if delays or breakdowns are observed, are active only at most once.

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ikβijW̄
τij
ijt + β̂P

ijkt) (26)

+ ∑
j

∑
i∈Ij∩I−k

(ρikβijWijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

The complete optimization model consists of Equations (5), (15), (16), and (22)–(26). Figures 4 and 6,
respectively, show the evolution of task-states when delays or breakdowns are observed.

3.2. Fractional Delays and Unit Downtimes

In Figures 4 and 6, we showed the cases where delays and unit downtime are integer
multiples of time-grid spacing δ. Additionally, the unit breakdown was assumed to take place
at almost the time-point t, i.e., very close to an integer multiple of δ. However, if δ is not very
small, then these assumptions may not be good. Given any fractional delays (πdelay), downtimes
(πdown), or unit breakdown time (πbreak), we need an appropriate scheme for the (online iterations)
update step, to ensure realistic rounding of these to integer values, so as to keep the task-finish
and unit-availability times, in sync with the discrete time-grid. A single task can have multiple
separate delays, hence, we index the delay time with index r (recurrence), i.e., πr

delay. A breakdown,
however, can occur only once, at πbreak, following which, the unit downtime, πdown, starts.

For the first delay, a rounded up value is applied in the update steps, i.e., the delay is assumed to be
dπ1

delay/δe. For every additional ψth delay, the difference, φ = d(∑ψ
r=1 πr

delay)/δe − d(∑ψ−1
r=1 πr

delay)/δe,
dictates how much additional, integer φ, delay is applied in the update steps. Figure 7A shows a
numerical example for fractional delays.

When a unit breaks down, the parameter Żn is always activated, so as to suspend the running
task. The key challenge is to identify, for how many next time-points the unit would be unavailable.
This dictates, if, and how many, Λ̂t parameters are activated. This is done as follows. On breakdown,
the unit becomes unavailable from πbreak to πbreak + πdown (in iteration σ, πbreak < 0). Hence, all Λ̂t

that span integer multiple of δ, t ∈ (πbreak, πbreak + πdown] are activated. This also means, if (πbreak −
bπbreak/δcδ + πdown) < δ, none of the Λ̂t are activated, i.e., the unit breaks down and comes back
online before the immediate next time-point. This is illustrated in Figure 7B.

3.3. Variable Batch-Sizes

To account for variable batch-sizes, we define variables, Bijt which denotes the batch-size of the
task that just starts, B̂n

ijt for lifted task batch-size states, and BXijt to represent batch-size of task that is

delayed with progress status n = 0. We define parameters BẎij and BŻn
ij that participate in the update

steps and these denote the batch-size of the task delayed and suspended due to unit break-down,
respectively. Further, we define parameter BŶn

ijt for the optimization model.

Processes 2017, 5, 69 13 of 31

t=0 1 2 3 4 5
(A)

t=0 1 2 3 4 5
(B)

Iteration σ

Iteration σ+1

Iteration σ+2

Iteration σ+3

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Delays Breakdowns

Figure 7

Figure 7. The task has a nominal processing time τ = 3. Time-grid spacing is δ = 1 h. Here, for ease
of discussion, the time-grid is global, i.e., it is not reset for each iteration. (A) A delay (shown as
oblique green pattern) of 0.66 h in time-period (0, 1) is observed. Since, d0.66e = 1, a delay of 1 h
is applied at t = 1. This would ensure that the task finish is aligned with t = 4, even if the task
actually ends at t = 3.66. The horizontal green pattern represents the fictitious extra task runtime
to align with the discrete time-grid. Next, another delay of 0.2 h is observed in time-period (1, 2).
Since, d0.66 + 0.2e − d0.66e = 0, no additional delay is applied in the update steps. This makes sense,
because, the task finishes at t = 3.86 in reality. Since, the previous delay was applied as 1 h, the task
is now still thought to finish at t = 4, in alignment with the time-grid. Finally, when another delay
of 0.66 h is observed in time-period (2, 3). Since, d0.66 + 0.2 + 0.66e − d0.66 + 0.2e = 1, a 1 h delay is
applied in the update step. This correctly ensures that the task is now thought to end at t = 5, which is
the round up of the true end time of t = 4.52 h. (B) A break-down is observed at t = 0.2. Thus, Ż0 = 1
for the update step between the iterations starting at t = 0 and t = 1. If the downtime (blue) is 0.66 h,
then the unit actually becomes available at t = 0.86. Thus, Λ̂(t=1) is not activated. This is indeed
the case from our mathematical procedure as well, since, t ∈ (0.2, 0.86] does not include any integer
time-point. If πdown = 1.5 h, then t ∈ (0.2, 1.7] does span t = 1, and consequently Λ̂(t=1) = 1. Finally,
if πdown = 2.25 h, then t ∈ (0.2, 2.45] spans t = 1 and t = 2, which results in Λ̂(t=1) = 1 and Λ̂(t=2) = 1.

The additional update steps, Equations (27) and (28), due to variable batch-sizes, are as follows:

σ B̄n
ij(t=0) = (σ−1)B̄

n−1
ij(t′=0) −

BẎn−1
ij + BẎn

ij − BŻn−1
ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij} (27)

B
σXij(t=0) =

BẎ0
ij ∀j, i ∈ Ij (28)

The optimization model now requires Equations (29)–(31) for lifting the batch-size:

BXij(t+1) =
BŶ0

ijt ∀j, i ∈ Ij, t (29)

B̄0
ijt = Bijt +

BXijt ∀j, i ∈ Ij, t (30)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt + BŶn
ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (31)

It might appear in Equation (30) that when BXijt > 0, nothing prevents Bijt from also erroneously
taking on a positive value. This was not an issue in Equation (23) because the Wijt and W̄0

ijt variables
there were binary. However, Equation (2) ensures that Bijt can only take a non-zero value when
Wijt = 1. Since, through Equation (23), Wijt = 0, whenever Xijt = 1, Bijt also takes value 0. The update
steps ensure that Xijt and BXijt can only be non-zero simultaneously.

The inventory balance (Equation (32)) now incorporates the new batch-size variables, Bijt and B̄n
ijt,

rather than the task-state binary variables (Wijt and W̄n
ijt) which was the case in Equation (26).

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik B̄
τij
ijt + β̂P

ijkt) + ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t (32)

Processes 2017, 5, 69 14 of 31

Finally, the variable bounds are as follows:

Wijt, W̄n
ijt ∈ {0, 1}; Bijt, B̄n

ijt, Skt, BOkt, Vkt ≥ 0 (33)

The update step comprises of Equations (18)–(21), (27) and (28), and the optimization model
consists of Equations (2), (5), (15), (22)–(25) and (29)–(33).

Remark: In principle, we can completely avoid defining the new parameters BẎij, BŻn
ij,

BŶijt, and

variable BXijt by reformulating Equations (27)–(31), so as to only use parameters Ẏij, Żn
ij, Ŷijt, and

variable Xijt. For example, Equation (31) can be reformulated to Equation (34).

B̄n
ij(t+1) = B̄n−1

ijt (1− Ŷn−1
ijt + Ŷn

ijt) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (34)

Since, Equation (34) entails the multiplication of variables with parameters, by itself, it is an acceptable
alternate linear formulation. However, when task termination is allowed as a scheduling decision
(Section 3.7), this reformulation results in bi-linear terms which are undesirable. Thus, we indeed
define the new parameters BẎij, BŻn

ij,
BŶijt, and variable BXijt, and use Equations (27)–(31) in their

native form without the simplifying reformulation discussed in this remark.

3.4. Robust Scheduling: Batch-Sizes

In many applications, it can be prudent to schedule batches bigger than what are needed to just
satisfy the nominal demand. This can be, for example, due to the possibility of seeing a demand spike,
or to pro-actively compensate for typical material handling losses when a batch finishes. To do so,
the parameter ρ̄ik in material inventory balance (Equation (35b)) can be substituted by a scaled down
value (ρ̄r

ik), where ρ̄r
ik < ρ̄ik. This results in bigger batches starting, since the model now under-predicts

the yield of materials from any given batch-size. In order to, however, correctly account for the
actual inventory resulting from the finishing of a task, the nominal value of ρ̄ik is used at t = 0,
along with any yield-loss or material handling loss disturbance (Equation (35a)). As it can be seen
in Figure 8, which is a simple illustration of this modeling generalization, as the iterations progress,
a task-finish-state eventually hits t = 0, yielding the large yield proportionate to the true (nominal)
value of ρ̄ik. Now, if there are any material handling losses (β̂P

ijk(t=0)), they can be subtracted from

the true yield (in Equation (35a)). It is worth noting that, although β̂P
ijkt and β̂C

ijkt are defined for
all time-points, they are possibly active only at t = 0, if the corresponding uncertainty is observed.
Hence, these parameters can be, in principle, dropped from Equation (35b).

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik B̄
τij

ijt + β̂P
ijkt) + ∑

j
∑

i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t ∈ {0} (35a)

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄r
ik B̄

τij

ijt + β̂P
ijkt) + ∑

j
∑

i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t ∈ {1, 2, 3, ...} (35b)

We can write the above two equations, compactly together, as follows:

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(θ
ρ̄
ikt B̄

τij
ijt + β̂P

ijkt) (36)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

where

θ
ρ̄
ikt =

{
ρ̄ik ∀k, t = {0};
ρ̄r

ik ∀k, t = {1, 2, 3, ...}
(37)

Processes 2017, 5, 69 15 of 31

t'=0 1 2 3 4 5 6 7 8

t=0 1 2 3 4 5 6 7 8

Iteration σ-1

Iteration σ

Demand

Demand
=�̅�𝜌𝑘𝑘 �𝐵𝐵𝑡𝑡=02

=�̅�𝜌𝑘𝑘𝑟𝑟 �𝐵𝐵𝑡𝑡′=1
2 =�̅�𝜌𝑘𝑘𝑟𝑟 �𝐵𝐵𝑡𝑡′=6

2

�̅�𝜌𝑘𝑘𝑟𝑟 = �̅�𝜌𝑘𝑘/2

(A) (B)

t'=0 1 2 3 4 5 6 7 8

t=0 1 2 3 4 5 6 7 8

Iteration σ-1

Iteration σ

Demand

Demand
=�̅�𝜌𝑘𝑘 �𝐵𝐵𝑡𝑡=02 + �̂�𝛽𝑘𝑘, 𝑡𝑡=0

𝑃𝑃

=�̅�𝜌𝑘𝑘𝑟𝑟 �𝐵𝐵𝑡𝑡′=1
2 =�̅�𝜌𝑘𝑘𝑟𝑟 �𝐵𝐵𝑡𝑡′=6

2

�̅�𝜌𝑘𝑘𝑟𝑟 = �̅�𝜌𝑘𝑘/2

=�̅�𝜌𝑘𝑘𝑟𝑟 �𝐵𝐵𝑡𝑡=52

𝑆𝑆𝑘𝑘𝑡𝑡

𝑆𝑆𝑘𝑘𝑡𝑡

𝑆𝑆𝑘𝑘𝑡𝑡

𝑆𝑆𝑘𝑘𝑡𝑡

Figure 8

Figure 8. In iteration σ− 1, the green task (τ = 2) with a “large batch” is finishing at t′ = 1, but, due
to the use of ρ̄r

k, is anticipated to produce only half of what the demand is. Thus, another identical
green task is scheduled to start at t′ = 4, to satisfy the demand. With the use of ρ̄r

k, if the demand could
be still be satisfied with a single “large” batch, a second batch wouldn’t be scheduled. In iteration σ,
the earlier green task yields a large amount of material, in line with its large batch-size due to the true
value of ρ̄ik used at t = 0. (A) Since, here, there was no material handling loss, thus the second green
task need not run now, as the demand was satisfied by the first batch itself. (B) Although the green
task results in a large yield at t = 0, a small material handling loss (βP

k(t=0) < 0) at t = 0, requires the
second green task to still be scheduled in order to meet the demand, but now with a smaller batch-size.
If there are no further material handling losses, there would be a small excess inventory of material
produced by the second green task, since its batch-size was decided assuming the yield to be lower (ρ̄r

k)
but would in reality by higher (ρ̄k).

3.5. Robust Scheduling: Processing Times

Uncertainty in the processing times is very common in scheduling [69]. A popular approach to
proactively manage this uncertainty is to robustify the schedule by adding a delay buffer to each task’s
processing time [70]. Once this robust schedule has been computed, it is advantageous to adjust it
online, by taking into account the feedback on actual finish times of the tasks [71]. In discrete-time
models, this has been typically done using ad-hoc adjustments in between the online iterations. To the
best knowledge of the authors, there is not yet a systematic way to be able to naturally handle this
adjustment within an optimization model.

We show here how we can extend the state-space model to produce robust schedules,
from a processing time point of view, and yet seamlessly allow for tasks to finish, after they have
been running for their nominal processing times plus the delays. We define a new parameter τr

ij,
which denotes the conservative processing time of the tasks (τr

ij > τij). Thereafter, we modify the lifting
(Equation (24) modified to Equations (38a), (38b) and (31) modified to Equations (39a) and (39b)),
assignment (Equation (25) modified to Equations (40a) and (40b)), and inventory balance equations
(Equation (32) modified to Equations (41a) and (41b)), such that the nominal value of processing times
(τij) is employed at t = 0, and the conservative value (τr

ij) is employed for t > 0. No other model or
update equations are modified. An illustration is given in Figure 9.

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt + Ŷn

ijt ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij}, t ∈ {0} (38a)

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt + Ŷn

ijt ∀j, i ∈ Ij, n ∈ {1, 2, ..., τr
ij}, t ∈ {1, 2, 3, ...} (38b)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt + BŶn
ijt ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij}, t ∈ {0} (39a)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt + BŶn
ijt ∀j, i ∈ Ij, n ∈ {1, 2, ..., τr

ij}, t ∈ {1, 2, 3, ...} (39b)

Processes 2017, 5, 69 16 of 31

∑
i∈Ij

W̄0
ijt + ∑

i∈Ij

τij−1

∑
n=0

W̄n
ijt ≤ 1− Λ̂jt ∀ j, t ∈ {0} (40a)

∑
i∈Ij

W̄0
ijt + ∑

i∈Ij

τr
ij−1

∑
n=0

W̄n
ijt ≤ 1− Λ̂jt ∀ j, t ∈ {1, 2, 3, ...} (40b)

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik B̄
τij
ijt + β̂P

ijkt) (41a)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t ∈ {0}

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik B̄
τr

ij
ijt + β̂P

ijkt) (41b)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t ∈ {1, 2, 3, ...}

t'=0 1 2 3 4 5 6

t=0 1 2 3 4 5 6

Iteration σ-1

Iteration σ

(A) (B)

t'=0 1 2 3 4 5 6

t=0 1 2 3 4 5 6

Iteration σ-1

Iteration σ

Bufferτ

τ

Next task can start at t’=2

Next task can start at t=0

�𝑊𝑊1
2 �𝑊𝑊2

3

�𝑊𝑊0
2

�𝑊𝑊0
1

t''=0 1 2 3 4 5 6

Iteration σ-2 𝜏𝜏𝑟𝑟 = 𝜏𝜏 + 1

t‘’=0 1 2 3 4 5 6

Iteration σ-2
Bufferτ Next task can start at t’’=3
�𝑊𝑊2
2 �𝑊𝑊3

3�𝑊𝑊1
1�𝑊𝑊0

0

𝜏𝜏𝑟𝑟 = 𝜏𝜏 + 1
Next task can start at t’’=2

�𝑊𝑊1
2 �𝑊𝑊2

3�𝑊𝑊0
1

Bufferτ

Buffer Next task can start at t’=2
�𝑊𝑊1
2 �𝑊𝑊2

3�𝑊𝑊0
1

Delay

0.5τ

Next task can start at t=0
�𝑊𝑊0
2

0.5τ

0.5τ

0.5τ

Figure 9

Figure 9. For the green task (τ = 2), a delay buffer of 1 h is chosen, i.e., τr
ij = τij + 1. (A) In iteration

σ− 1, the model predicts that the green task will finish at t′ = 2. In the next iteration σ, when there is
no delay in the green task, having run for 2 h, it correctly finishes at t = 0. No ad-hoc model changes
are required in between the iterations to make this possible. Consequently, to take advantage of this
nominal finish time of the green task, the red task, now starts 1 h earlier than what it was scheduled
for in the previous iteration. (B) The green task, with conservative processing time, is scheduled to
finish at t′′ = 2 in iteration σ− 2. In iteration σ− 1, a delay of 1 h is observed. The processing time
delay buffer is maintained, and now the task is anticipated to finish at t′ = 2. In the next iteration (σ),
the task correctly finishes at t = 0, accounting for the 1 h delay. The red task can now start on time at
t = 0, or equivalently t′′ = 2. Thus, having a delay buffer was useful, since it predicted a realistic start
time for the red task in iteration σ− 2 itself.

The lifting equations, Equations (38b) and (39b), contain variables Wn
ij(t=1), Bn

ij(t=1) ∀j, i ∈ Ij, n ∈
{τij + 1, τij + 2, ..., τr

ij}, which are not coupled back to any variables at t = 0. These variables must be fixed

Processes 2017, 5, 69 17 of 31

to zero, otherwise, the optimization can assign these variables a spurious value so as to erroneously

generate inventory (in Equation (41b) through variables B
τr

ij
ijt ∀j, i ∈ Ij, t ∈ {1, 2, ..., τr

ij − τij}).
We can write the above equations, compactly together, as follows:

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt + Ŷn

ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., θτ
ijt} (42)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt + BŶn
ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., θτ

ijt} (43)

∑
i∈Ij

W̄0
ijt + ∑

i∈Ij

θτ
ijt−1

∑
n=0

W̄n
ijt ≤ 1− Λ̂jt ∀ j, t (44)

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik B̄
θτ

ijt
ijt + β̂P

ijkt) (45)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

where

θτ
ijt =

{
τij ∀j, i ∈ Ij, t = {0};
τr

ij ∀j, i ∈ Ij, t = {1, 2, 3, ...}
(46)

Finally, please note that in this approach, as can be seen in Figure 9B (iteration σ− 1), an a priori
fixed buffer time (τr

ij − τij) is added to the task duration, irrespective of whether delays have already
been observed (during the execution of the current task). It can be argued that the buffer was meant to
absorb the actual delays, and hence, should be cut back for tasks that actually get delayed. This is a fair
critique. However, owing to feedback, the true task-finish is accounted for (see Figure 9A iteration σ),
and there is no wasted equipment time due to the unused buffer, which otherwise results in idle time
in static robust scheduling approaches.

3.6. Feedback on Yield Estimates

The material handling loss (β̂C
ijkt/β̂P

ijkt) disturbance parameters can be used to represent yield
losses as well, but these parameters are assigned a value only at t = 0, i.e., when a task actually ends
and a material handling loss is observed. In many applications, the actual yield of a task can, in fact,
be estimated during the task’s execution, and does not always come as a surprise when the batch
finishes. To incorporate the information about anticipated yield loss in future, these parameters can be
assigned values for t > 0. However, this information has to be then carried over from one iteration
to the next, with corresponding decrement in the t index of these parameters to reflect the shifting
time-grid, till the task finishes. In addition, if the task is delayed, these parameter values also have
to be delayed. This requires cumbersome mechanisms to handle this information in between the
online iterations.

Adapting the state-space model to lift the yield-loss information forward provides a much more
natural way to handle this feedback. Thus, we define a new free variable L̄n

ijt, which is analogous
to the batch-size variable B̄n

ijt, but, as we can see in Equation (47), when the task finishes, instead of
adding to, it subtracts from the inventory.

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(ρ̄ik(B̄
τij
ijt − L̄

τij
ijt) + β̂P

ijkt) (47)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

Thus, in a way, this new variable can be thought to be the negative counterpart of the batch-size variable.
The yield loss can also be delayed by use of the parameters LẎn

ij and LŶn
ijt so as to stay in sync with the

Processes 2017, 5, 69 18 of 31

task-finish time, or nullified in case of a unit breakdown through the parameter LŻn
ij. This is achieved

using the update steps (Equations (48) and (49)) and the model lifting equations (Equations (50)–(52)).

σ L̄n
ij(t=0) = (σ−1) L̄

n−1
ij(t′=0) + λ̇n−1

ij − LẎn−1
ij + LẎn

ij − LŻn−1
ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij} (48)

L
σXij(t=0) =

LẎ0
ij ∀j, i ∈ Ij (49)

λ̇n
ij is a parameter the denotes the “additional” yield loss observed (anticipated) in that iteration (σ).

When delays and yield losses are observed simultaneously, then the parameters LẎn
ij and LŶn

ij take the

value (σ−1) L̄
n−1
ij(t′=0) + λ̇n−1

ij , i.e., the total yield loss up to and including in iteration σ.

LXij(t+1) =
LŶ0

ijt ∀j, i ∈ Ij, t (50)

L̄0
ijt =

LXijt ∀j, i ∈ Ij, t (51)

L̄n
ij(t+1) = L̄n−1

ijt −
LŶn−1

ijt + LŶn
ijt ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (52)

Please note that there are no Lijt variables in Equation (51). If these variables were to be present,
they would have to be fixed to zero. Otherwise the optimization itself can spuriously assign non-zero
values to these variables, such that the intended true batch-size is Bijt − Lijt.

3.7. Task Termination

In the update step (Equations (20), (21), (27) and (28)) we made an implicit assumption that past
decisions (task-states with n > 0 at t = 0) are fixed. In general, more decisions from the previous
iteration can be considered fixed or the deviation from them penalized in the current iteration. This has
been suggested in the literature to reduce schedule nervousness [23,72,73].

However, to the best knowledge of the authors, no model to date considers canceling/terminating
tasks already underway, as an optimization decision. This is surprising, given that whenever is needed,
this would be a natural decision for a human scheduler. For example, to prioritize processing for
a new rush order, an unfinished process unrelated to this rush order may need to be terminated.
Other routine possibilities for task termination are excessive delays or yield losses, as is commonly
the case in bio-manufacturing [74,75]. This decision to terminate should be an outcome of the online
optimization so as to best react to the observed disturbances or new information. We define task
termination as a “willful” decision to discontinue a task. This is in contrast with task suspension,
which is a “forced” discontinuation of a task as a result of a unit breakdown or loss of utility support.
Since, preemption is not customary in chemical processes, we assume a total loss of output of a task
that is terminated. This is in agreement with how the output of task suspensions is treated.

This termination of tasks can be achieved by “softening” the initial conditions (task-states at t = 0)
in an online iteration. We introduce a new binary variable, Tn

ij , which, when 1, denotes termination
of task i, on unit j, which has run-index n. Since, all variables values for iteration σ− 1 are now a
parameter for iteration σ, we can write the following linear equations to achieve this softening:

σW̄n
ij(t=0) = ((σ−1)W̄

n−1
ij(t′=0) − Ẏn−1

ij)(1− Tn−1
ij) (53)

+ Ẏn
ij (1− Tn

ij)− Żn−1
ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij}

σXij(t=0) = Ẏ0
ij(1− T0

ij) ∀j, i ∈ Ij (54)

σ B̄n
ij(t=0) = ((σ−1)B̄

n−1
ij(t′=0) −

BẎn−1
ij)(1− Tn−1

ij) (55)

+ BẎn
ij (1− Tn

ij)− BŻn−1
ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij}

B
σXij(t=0) =

BẎ0
ij(1− T0

ij) ∀j, i ∈ Ij (56)

Processes 2017, 5, 69 19 of 31

Hence, the update equations (Equations (20), (21), (27) and (28) modified to (53)–(56)) now become
part of the model. The update equations for inventory (Equation (18)) and backlog (Equation (19))
stay unmodified, and are not softened.

If we had no disturbances, just softening the initial task-states would have sufficed. However,
when we have delays, we have to also ensure that we appropriately nullify the effect of delay
parameters, which have been already assigned a value at the start of an iteration (optimization). Thus,
wherever the delay parameters Ŷn

ijt appear, we multiply these with (1− Tn
ij). Since the coefficients of

the (1− Tn
ij) terms are the delay parameters, when there is no delay, these terms are also, consequently,

absent. Parameters Ẏ
τij
ij , BẎ

τij
ij , Ŷ

τij
ijt , and BŶ

τij
ijt are always zero, hence, variables T

τij
ij do not participate

in the model. A unit breakdown implicitly disrupts a task, hence, in such a situation, the question
of termination does not arise. Overall, the lifting equations are modified to Equations (57)–(60) with
Equations (23) and (30) remaining unchanged.

Xij(t+1) = Ŷ0
ijt(1− T0

ij) ∀j, i ∈ Ij, t (57)

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt (1− Tn−1

ij) + Ŷn
ijt(1− Tn

ij) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (58)
BXij(t+1) =

BŶ0
ijt(1− T0

ij) ∀j, i ∈ Ij, t (59)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt (1− Tn−1
ij) + BŶn

ijt(1− Tn
ij) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., τij} (60)

We do not index variable Tn
ij with time (t), because it serves no purpose to terminate a task

in future (t > 0). If a task is already under execution and has to be terminated in the future for
some reason, it is always better to terminate it right away (t = 0).

In addition to including a cost associated with task termination, ∑j ∑i∈Ij ∑
τij−1
n=0 αT

ijT
n
ij ,

in the objective, we can also enforce a pre-specified unit downtime (τT
j) following every task

termination, by including a summation term in the assignment constraints for that many time-points:

∑
i∈Ij

τij−1

∑
n=0

W̄n
ijt + ∑

i∈Ij

τij−1

∑
n=0

Tn
ij ≤ 1− Λ̂jt ∀ j, t ∈ {0, 1, 2, ..., τT

j − 1} (61a)

∑
i∈Ij

τij−1

∑
n=0

W̄n
ijt ≤ 1− Λ̂jt ∀ j, t ∈ {τT

j , τT
j + 1, ...} (61b)

We can write the above two equations, compactly together, as follows:

∑
i∈Ij

τij−1

∑
n=0

W̄n
ijt + ∑

i∈Ij

τij−1

∑
n=0

θT
ijtT

n
ij ≤ 1− Λ̂jt ∀ j, t (62)

where

θT
ijt =

1 ∀t = {0, 1, 2, ..., τT
ij − 1};

0 ∀t = {τT
ij , τT

ij + 1, τT
ij + 2, ...}

(63)

An added advantage of the compact form, is that the unit downtime can now be a function of the task
that was terminated, i.e., τT

ij is indexed by i as well, and not just j.
To systematically account for unit downtime resulting from task-termination in a previous

iteration, i.e., if (σ−1)T
n
ij = 1 ∀j, i ∈ Ij, n ∈ {1, 2, 3, ..., τij − 1}, the parameter Λ̂jt has to be activated

for t ∈ {0, 1, 2, ..., τT
j − 2} in iteration σ. Thereafter, in each subsequent iterations, the downtime is

decremented by 1, and the parameter Λ̂jt appropriately activated for the corresponding time-points.
Alternatively, we can define a new binary variable and lift it, to keep the unit deactivated for the
remaining downtime in subsequent iterations. The new variable, which would be subtracted on

Processes 2017, 5, 69 20 of 31

the right hand side of Equations (61a) and (61b), in lieu of Λ̂jt, can be thought of as the unit
unavailability variable.

3.8. Post-Production Storage in Unit

Kondili et al. (1993) [29] proposed a formulation for “hold” tasks, which are dummy tasks that
can be used to model storage of materials in a processing unit, while waiting to be unloaded. This is
especially important for production facilities that follow a no intermediate storage (NIS) policy for
certain materials. In the network shown in Figure 1, task T4 is a hold task. The purpose of this task is
to keep material M3 residing in unit U3. So as to ensure that the hold task can only store material in
a unit that it was originally produced in, we write the state-space version of the original constraint
proposed by Kondili et al. (1993) [29] in Equation (64).

Bi′ ,jt ≤ B̄
τi′ ,j
i′ ,jt + ∑

i∈Ij

B̄
τij
ijt ∀i′ ∈ IHOLD, j ∈ Ji′ , t (64)

where IHOLD is the set of hold tasks. When multiple materials are produced in a unit, here we assume
that the corresponding hold task emulates the simultaneous storage of all these materials in the unit.
The ρ̄HOLD,k mass-coefficient then dictates in what proportion are the materials released from the
unit. If only a certain individual material is held, and the others unloaded, the term ∑i∈Ij

ρ̄ik B̄
τij
ijt is

substituted with ∑i∈I+k ∩Ij
ρ̄ik B̄

τij
ijt , and the constraint is written only for that material k which is held.

Further, for a perishable material, ρ̄HOLD,k < ρHOLD,k; that is, a fraction of the material is lost (perishes
or deactivates) when held.

3.9. Unit Capacity Degradation and Maintenance

In many processes, such as polymerization reactions, or purification processes, it is not uncommon
for the unit capacity to “degrade” after a task has been processed on that unit [76–81]. This can be,
for example, due to residue formation (e.g., scaling) or impurity accumulation (e.g., membrane pore
blockages). Some degradation is gradual and predictable, while some degradation may occur suddenly
and unexpectedly.

To model unit degradation, we define a new non-negative variable, Cijt, which denotes the
capacity of the unit j, to perform task i that starts at time t. For an un-degraded unit, Cijt is initialized
to the value βmax

ij . This variable value is passed over from one iteration to another, through the
update equation:

σCij(t=0) = (σ−1)Cij(t′=1) + µ̇ij ∀j ∈ JMT, i ∈ Ij (65)

A new disturbance parameter, µ̇ij, which when negative, represents extent of sudden (unexpected)
partial loss in unit capacity. Conversely, a positive value represents renewal of unit capacity.
This positive value could be, for example, a result of installing a new repaired unit in place of
an old unit that broke down.

Through Equation (66), we define a balance on the unit capacity. ρC
ii′ j is a parameter that denotes

the gradual degradation in capacity of unit j to perform task i, due to execution of task i′ on that unit.
ρC

ii′ j is either negative or zero.

Cij(t+1) = Cijt + ∑
i′∈Ij

τi′ j

∑
n=1

ρC
ii′ j

τi′ j
B̄n

i′ jt + M̄
τMT,j
ijt ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (66)

The degraded unit can be typically restored to its full capacity through a maintenance task
(e.g., cleaning), which we denote with the abbreviation MT. We define IMT as a set of maintenance tasks,
and JMT as a set of units which can degrade, and consequently, need a corresponding maintenance
task. Further, we add the maintenance task (MT) to the set of tasks Ij that can be performed on

Processes 2017, 5, 69 21 of 31

unit j. The value of M̄
τMT,j
ijt , the variable which we define below, dictates the restored capacity due to

completion of a maintenance task.
Like any conventional task, the maintenance task has a start binary (WMT,jt) associated with it,

which is appropriately lifted. The assignment equation (Equation (25)) ensures that the maintenance
task can only run when the unit is not running any other task. Since the maintenance task does not
consume or produce materials, the conventional batch-size of this maintenance task, BMT,jt is fixed to
zero. Instead, we define a new type of batch-size, M̄n

ijt, specific to the purpose of this task, which we
term as the maintenance-size. Since we assume that only one kind of a maintenance task exists for
every unit, the index i in this maintenance-size variable is not MT. This variable denotes, how much
capacity to perform task i is restored, when maintenance is performed on unit j. This variable is
also lifted, similar to the batch-size variable, and can be delayed or suspended due to breakdowns.
Similarly, the parameters MẎn

ij ,
MŶn

ijt, and MŻn
ij denote the maintenance-sizes of the maintenance

task corresponding to capacity restored to perform task i. The update equations associated with this
variable are:

σ M̄n
ij(t=0) = (σ−1)M̄n−1

ij(t′=0) −
MẎn−1

ij + MẎn
ij −

MŻn−1
ij ∀j ∈ JMT, i ∈ {Ij \ IMT}, n ∈ {1, 2, ..., τMT,j} (67)

M
σXij(t=0) =

MẎ0
ij ∀j ∈ JMT, i ∈ {Ij \ IMT} (68)

The model equations, for lifting, are:

MXij(t+1) =
MŶ0

ijt ∀j ∈ JMT, i ∈ {Ij \ IMT}, t (69)

M̄0
ijt = Mijt +

MXijt ∀j ∈ JMT, i ∈ {Ij \ IMT}, t (70)

M̄n
ij(t+1) = M̄n−1

ijt −
MŶn−1

ijt + MŶn
ijt ∀j ∈ JMT, i ∈ {Ij \ IMT}, t, n ∈ {1, 2, ..., τMT,j} (71)

The batch-size of new tasks is upper bounded by the unit capacity variable (Equation (72)).
This ensures that only smaller batches can now be processed if Cijt < βmax

ij . If a task just finishes,
the restored or degraded capacity due to that is also accounted for while upper bounding the
task-batchsize Bijt.

Bijt ≤ Cijt + ∑
i′∈Ij

ρC
ii′ j

τi′ j
B̄

τi′ j
i′ jt + M̄

τMT,j
ijt ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (72)

We define the maintenance task with fixed processing time (τMT,j), and assume that whenever
performed, the unit is restored to its full capacity (i.e., Cijt = βmax

ij). This requires the maintenance-size,
Mijt, to be the difference between the deteriorated unit capacity (Cijt), before the maintenance starts,
and the upper capacity limit (βmax

ij), to which the unit has to be restored to. This is achieved using
Equation (73):

βmax
ij WMT,jt − Cijt ≤ Mijt ≤ βmax

ij WMT,jt ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (73)

Finally, we specify the lower and upper bounds for variable Cijt:

0 ≤ Cijt ≤ βmax
ij ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (74)

and define a new parameter αM
ij , which denotes the proportional cost of maintenance of a unit.

The cost term, in the objective, for a maintenance task is ∑j∈JMT ∑t(α
F
MT,jWMT,jt + ∑i∈{Ij\IMT} αM

ij Mijt).

4. Integrated Model

In this section, we present the complete model with all generalizations present simultaneously.
For brevity, we write index σ in only those equations, where σ− 1 is also present. Everywhere else,
all variables are those of the current iteration σ.

Processes 2017, 5, 69 22 of 31

The update equations are Equations (18), (19), and (65). The softened update equations, which are
part of the model, are Equations (53)–(56) and (75)–(78).

σ L̄n
ij(t=0) = ((σ−1) L̄

n−1
ij(t′=0) + λ̇n−1

ij − LẎn−1
ij)(1− Tn−1

ij) (75)

+ LẎn
ij (1− Tn

ij)− LŻn−1
ij ∀j, i ∈ Ij, n ∈ {1, 2, ..., τij}

L
σXij(t=0) =

LẎ0
ij(1− T0

ij) ∀j, i ∈ Ij (76)

σ M̄n
ij(t=0) = (σ−1)M̄n−1

ij(t′=0) −
MẎn−1

ij (1− Tn−1
MT,j) (77)

+ MẎn
ij (1− Tn

MT,j)− MŻn−1
ij ∀j ∈ JMT, i ∈ {Ij \ IMT}, n ∈ {1, 2, ..., τMT,j}

M
σXij(t=0) =

MẎ0
ij(1− T0

MT,j) ∀j ∈ JMT, i ∈ {Ij \ IMT} (78)

The lifting equations are Equations (23), (30), (51), (57), (59), (70), and (79)–(84).

W̄n
ij(t+1) = W̄n−1

ijt − Ŷn−1
ijt (1− Tn−1

ij) + Ŷn
ijt(1− Tn

ij) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., θτ
ijt} (79)

B̄n
ij(t+1) = B̄n−1

ijt −
BŶn−1

ijt (1− Tn−1
ij) + BŶn

ijt(1− Tn
ij) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., θτ

ijt} (80)
LXij(t+1) =

LŶ0
ijt(1− T0

ij) ∀j, i ∈ Ij, t (81)

L̄n
ij(t+1) = L̄n−1

ijt −
LŶn−1

ijt (1− Tn−1
ij) + LŶn

ijt(1− Tn
ij) ∀j, i ∈ Ij, t, n ∈ {1, 2, ..., θτ

ijt} (82)
MXij(t+1) =

MŶ0
ijt(1− T0

MT,j) ∀j ∈ JMT, i ∈ Ij, t (83)

M̄n
ij(t+1) = M̄n−1

ijt −
MŶn−1

ijt (1− Tn−1
MT,j) (84)

+ MŶn
ijt(1− Tn

MT,j) ∀j ∈ JMT, i ∈ {Ij \ IMT}, t, n ∈ {1, 2, ..., θτ
MT,jt}

where please note the use of parameter θτ
ijt in Equations (79), (80), (82), and (84).

The assignment constraint is:

∑
i∈Ij

θτ
ijt−1

∑
n=0

Wn
ijt + ∑

i∈Ij

θτ
ijt−1

∑
n=0

θT
ijtT

n
ij ≤ 1− Λ̂jt ∀ j, t (85)

The backlog, inventory, and unit capacity balance are Equations (15), (86), and (87), respectively.

Sk(t+1) = Skt + ∑
j

∑
i∈Ij∩I+k

(θ
ρ̄
ikt(B̄

θτ
ijt

ijt − L̄
θτ

ijt
ijt) + β̂P

ijkt) (86)

+ ∑
j

∑
i∈Ij∩I−k

(ρikBijt + β̂C
ijkt)−Vkt + ζkt ∀ k, t

Cij(t+1) = Cijt + ∑
i′∈Ij

θτ
i′ jt

∑
n=1

ρC
ii′ j

θτ
i′ jt

B̄n
i′ jt + M̄

θτ
MT,jt

ijt ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (87)

Batch-size, post-production storage, and maintenance-size constraints are Equations (2), (88), and
(73) and (89).

Bi′ ,jt ≤ B̄
θτ

i′ ,jt
i′ ,jt + ∑

i∈Ij

B̄
θτ

ijt
ijt ∀i′ ∈ IHOLD, j ∈ Ji′ , t (88)

Bijt ≤ Cijt + ∑
i′∈Ij

ρC
ii′ j

θτ
i′ j

B̄
θτ

i′ j
i′ jt + M̄

θτ
MT,j

ijt ∀ j ∈ JMT, i ∈ {Ij \ IMT}, t (89)

Processes 2017, 5, 69 23 of 31

Bounds on the variables are enforced by Equations (74) and (90)–(92).

Wijt, W̄n
ijt, Tn

ij ∈ {0, 1}; Bijt, Mijt, B̄n
ijt, Skt, BOkt, Vkt ≥ 0; (90)

W̄n
ij(t=1), B̄n

ij(t=1), L̄n
ij(t=1) = 0 ∀n = {τij + 1, τij + 2, ..., τr

ij} (91)

M̄n
ij(t=1) = 0 ∀n = {τMT,j + 1, τMT,j + 2, ..., τr

MT,j} (92)

Variables Xijt, BXijt, LXijt, MXijt are free variables, however, through the update and model equations,
they are always equated to a parameter value, hence, are not degrees of freedom. The decision
variables, or in other words—the inputs from a systems perspective [24], are Wijt, Bijt, Tn

ij , Mijt, and Vkt.
The objective is:

min ∑
k

∑
t
(γINV

k Skt + γBO
k BOkt) + ∑

j
∑
i∈Ij

∑
t
(αF

ijWijt + αP
ijBijt) (93)

+ ∑
j

∑
i∈Ij

τij−1

∑
n=0

αT
ijT

n
ij + ∑

j∈JMT

∑
i∈{Ij\IMT}

∑
t

αM
ij Mijt

5. Case Study

Bio-manufacturing is a type of manufacturing in which molecules of interest, such as,
metabolites, drugs, enzymes, etc., are produced through the use of biological systems such as living
micro-organisms [82]. Several commercial sectors, rely on these, for example, pharmaceuticals, food
and beverage processing, agriculture, waste treatment, etc. Furthermore, there is an increasing thrust
towards finding biological routes for production of bulk chemicals [83]. The use of live systems in
bio-manufacturing, however, introduces several operational challenges. These include batch-to-batch
variability, parallel growth of both, the desired product as well as undesired toxic byproducts in the
same batch, and possible random shocks that can lead to complete failure of a batch [75]. This makes
it an interesting area for application of scheduling methods. In this section, we present an example,
motivated from bio-manufacturing, to demonstrate all modeling generalizations discussed in Section 3,
using the integrated model equations outlined in Section 4.

In general, bio-manufacturing processes can be divided into an upstream bio-reaction
(e.g., fermentation) stage and a downstream purification stage [74]. The upstream stage typically
consists of two steps: cell culture preparation in the lab and the bio-reaction. These two steps are
task T1 and T2, respectively, in the network in Figure 1. The downstream purification stage typically
consists of three steps: centrifugation, chromatography, and filtration. Among these three steps,
chromatography takes the longest and the chromatograph columns are prone to unpredictable failures.
Hence, we assume that chromatography, being the dominant step, is representative of the complete
purification stage. This is task T3 in the network in Figure 1. Overall, we choose this simplified system
(network) for an easier illustration of the capabilities of our general state-space model.

In our example, as features, we allow for possible delays in the cell culture preparation (T1),
and small yield losses in the bio-reaction (T2), including possible substantial yield losses due to sudden
cell death. Thus, we carry out robust scheduling, using a conservative processing time (τr) for task T1
and a conservative mass-conversion coefficient (ρ̄r), against small yield losses, for task T2. Further,
in the downstream stage, we assume that the chromatograph column (U3) loses capacity with usage,
part of which is predictable. Executing a maintenance task can restore capacity on the chromatographs.
To enforce the no-intermediate storage (NIS) policy for material M2, the inventory variable SM2,t is
fixed to zero for all time-points. Raw material, M0, is assumed to be available in an unrestricted
supply, as needed. Selected instance parameter values, other than the ones already shown in Figure 1,
are outlined in Table 1.

Processes 2017, 5, 69 24 of 31

Table 1. Parameter values for the case study.

γINV
k = 0.15γk γBO

k = 1.5γk αF
ij = 1 αP

ij = 0 αT
ij = 2 αM

ij = 0
τT

U3 = 2 τr
T1,U1 = 3 τMT,U3 = 2 ρ̄r

M2,T2 = 0.9 ρC
T3,T3,U3 = −0.2 δ = 1

Iteration 0
U1
U2
U3

Iteration 1
U1
U2
U3

Iteration 3
U1
U2
U3

Iteration 4
U1
U2 5 5 5
U3 5

Iteration 6
U1
U2
U3

Iteration 9
U1
U2
U3

Iteration 11
U1
U2
U3

Iteration 13
U1
U2
U3

0 1 2 43

5 6 7

11 12 13 14 15 165 6 7 8 9 10

8 18 19 20

16.67

0 1 2 3 4 15 16 179 10 11 12 13 14

8.7516.67 8.75 8.75
6.25 8.75

16.67

8765432

16.67

8.75 8.75

0 9

5 5 5
10

10 111

2 3 4 5 13 14

16.67
16.67 8.75

6.25 8.75

0 1 8 9 10 11 126 7

16.67
16.67

10

16.67

13 14 157 8 9 10 11 120 1 2 3 4 5 6

16.67

0 1 2 3 4 5

16.67
16.67

10

6 7 8 9 10 11

5
5 5 5

3.5 3.5 3.5
10 3.5

8 9 10 11 12 132 3 4 5 6 7

16.67

0 1

16.67 16.67
16.67

10

1.66
1.66

1.5

21 22

16.67 16.67

12 13 14 15 16

16.67 16.67
16.67

10

5 5 5

5 5 5 5 5

5

7 8 9 10

16

15 16

15 16

5

12 13 14

0 1 2 3 4 5 6

6 87

5MT

0 1 2 3 4 5 9

11

Delay (0.5 h)

�𝜌𝜌𝑟𝑟 �𝐵𝐵𝑡𝑡=85 = 0.9 × 16.67 = 15

90% yield-loss detected; task terminated 𝑇𝑇0 = 1

Order due (15 kg M3)

Clock-time

�𝑊𝑊𝑡𝑡=0
𝑚𝑚=𝜏𝜏=2=1

�𝑊𝑊𝑡𝑡=0
𝑚𝑚=𝜏𝜏=2=1; T2 starts early

10% yield-loss detected; �𝐿𝐿03 = 1.67

New train of tasks starts to
compensate for yield-loss

�𝜌𝜌(�𝐵𝐵𝑡𝑡=05 − �𝐿𝐿𝑡𝑡=05) = 1 × (16.67 − 1.67) = 15

In addition to predictable gradual loss due to
usage, sudden loss in unit capacity; �̇�𝜇T3,U3 = −8

𝑀𝑀T3,U3,𝑡𝑡=1 = 9.34

Figure 10

Figure 10. Selected online scheduling iterations for the case study. The color of the tasks corresponds
to their color in Figure 1. Executed schedule, with respect to each iteration, is shown in lighter (fainted)
colors. The clock-time is the global time. Each iteration has its own local discrete time-grid.

An order for 15 kg of M3 is due at the 14th hour of the day. To meet this order, online scheduling is
carried out, with a horizon of 16 h, and re-optimization every 1 h, starting at the 0th hour. All optimizations

Processes 2017, 5, 69 25 of 31

are solved to optimality using default solver options in CPLEX 12.6.1 (IBM Corporation, North Castle,
NY, USA) via GAMS 24.4.3 (GAMS Development Corporation, Fairfax, VA, USA), installed on an Intel
Xeon (E5520, 2.27 GHz, 8 core processor) machine (Intel Corporation, Santa Clara, CA, USA), with 16 GB
of RAM and Linux CentOS 7 operating system (Red Hat Inc., Raleigh, NC, USA). The schedules obtained
in selected online scheduling iteration are shown in Figure 10. For the remaining online iterations,
the predicted schedule is identical to the respective previous iteration (but with time-grid shift).

The nominal makespan, without any disturbances or robustification, to meet this order is 13 h.
However, in iteration 0 (see Figure 10), T1 is started at t = 0, instead of t = 1, since a conservative
processing time, τr = 3 h is in use. Further, the batch-sizes for T1 and T2 are 16.67 kg, since a
conservative yield parameter (ρ̄r = 0.9) is in use for T2. This predicts production of 15 kg of M2,
which through the two T3 batches, of 6.25 kg and 8.75 kg, makes 15 kg of M3.

In the next iteration, a fractional delay of 0.5 h is observed. Due to the use of a discrete time-grid
with granularity δ = 1 h, and being the first delay for this task, this is rounded up to 1 h. Since, now
the order is predicted to be late, the batch-sizes of T3 are revised so as to meet as much of the order as
possible on time (βmax = 10). Going forward, no more delays are observed in T1, hence, it finishes
at t = 0 in iteration 3. This is because the nominal τ is in use at t = 0 in Equations (85) and (86).
Consequently, the downstream tasks are all scheduled earlier now, matching up with the initial
predicted schedule in iteration 0. Thus, the conservative processing time was useful, in making T1
start earlier at 0th hour.

In iteration 4, due to sudden cell death, 90% yield loss in T2 is observed (anticipated at task
finish). Hence, T2 is terminated. T1 is restarted (with conservative processing time). Since, no delays
are observed through the execution of this new task T1, in iteration 6, it finishes after the nominal
processing time of 2 h. Thus the start times of the downstream tasks are pulled forward by 1 h.

In iteration 9, 10% yield loss is observed (anticipated at task finish). Since, this is not substantial,
T2 is not terminated. Instead, a new train of tasks is scheduled to start at t = 2 to compensate for the
lost yield. In iteration 11, when T2 finishes, it results in nominal yield (ρ̄) minus the 10% anticipated
yield loss. Hence, 15 kg of M2 is produced. Thus, the new train of tasks previously scheduled, but not
yet started, in iteration 9 are canceled.

In iteration 11, in addition to the gradual decline in chromatograph capacity due to usage
(ρC

T3,T3,U3 < 0), which does not affect starting the next 5 kg T3 task, a sudden loss in capacity is observed
(µ̇T3,U3 = −8). Hence, a maintenance task (MT) is scheduled with maintenance-size MT3,T3,t=1 = 9.34.
Once this maintenance is over, the pending task T3 can start. No further disturbances are observed.
Consequently, the order is fully met at the 19th hour.

If task termination, conservative processing time, and conservative yield were not used, the order
would have been fully met only at the 27th hour (Gantt chart not shown). Hence, using the general
state-space model enabled a richer set of decision making, resulting in an overall better schedule.

6. Conclusions

We developed a general state-space model, particularly motivated by an online scheduling
perspective, that allows modeling (1) task-delays and unit breakdowns with a new, more intuitive
convention over that of Subramanian et al. (2012) [24]; (2) fractional delays and unit downtimes,
when using discrete-time grid; (3) variable batch-sizes; (4) robust scheduling through the use of
conservative yield estimates and processing times; (5) feedback on task-yield estimates before the
task finishes; (6) task termination during its execution; (7) post-production storage of material
in unit; and (8) unit capacity degradation and maintenance. Further, we propose a new scheme
for updating the state of the process, as well as an overall formulation to enforce constraints
(through parameter/variable modifications), based on feedback information, on future decisions.
We demonstrate the effectiveness of this model on a case study from the field of bio-manufacturing.
Through this new state-space model, we have enabled a natural way to handle routinely encountered
processing features and disturbance information in online scheduling. The general features that we

Processes 2017, 5, 69 26 of 31

address are found in several industrial sectors, namely, pharmaceuticals, fine chemicals, pulp and
paper, agriculture, steel production, oil and gas, food processing, bio-manufacturing, etc. The proposed
model, therefore, greatly extends and enables the possible application of mathematical programming
based online scheduling solutions to diverse application settings. Finally, it is important to note,
that although here we presented the model using STN based representation, these generalizations can
also be adapted to RTN based representation.

Acknowledgments: The authors acknowledge support from the National Science Foundation under grants
CMMI-1334933 and CBET-1264096, as well as the Petroleum Research Fund under grant 53313-ND9.
Further, the authors thank Ananth Krishnamurthy for fruitful discussions on bio-manufacturing.

Author Contributions: D.G. conceived the model and prepared the manuscript under the supervision of C.T.M.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript
MILP mixed integer linear program
MPC model predictive control
RTN resource task network
STN state task network
HOLD hold (storage) task
MT maintenance (cleaning) task

Nomenclature

Indices/sets
i ∈ I tasks
j ∈ J units (equipment)
k ∈ K materials
t ∈ T time-points/periods
I ⊇ Ij tasks that can be carried out in unit j
I ⊇ I+k tasks producing material k
I ⊇ I−k tasks consuming material k
I ⊇ IHOLD hold (storage) tasks
I ⊇ IMT maintenance tasks
J ⊇ Ji units suitable for carrying out task i
J ⊇ JMT units which can degrade, and consequently, need a corresponding maintenance task
K ⊇ KF feed (raw) materials
K ⊇ KI intermediates
K ⊇ KP final products

Parameters
αF

ij fixed cost of running task i on unit j
αP

ij proportional cost of running task i on unit j
αT

ij cost of terminating task i on unit j
αM

ij proportional cost of maintenance task i on unit j
βij fixed batch-size of task i executed on unit j
βmin

ij /βmax
ij min/max capacity on batch-size of task i executed on unit j

β̂P
ijkt/β̂C

ijkt material unloading/loading loss during production/consumption of material k

γk selling price of material k
γINV

k inventory cost of material k
γBO

k backlog cost of material k
δ discretization of time-grid; length of time-periods
ζkt incoming shipment of material k at time t

Processes 2017, 5, 69 27 of 31

Żn
ij disturbance parameter denoting unit breakdown

BŻn
ij batch-size of task suspended due to unit breakdown

LŻn
ij yield-loss size of task suspended due to unit breakdown

MŻn
ij maintenance-size of maintenance task suspended due to unit breakdown

θτ
ijt dummy parameter as defined in Equation (46)

θ
ρ̄
ikt dummy parameter as defined in Equation (37)

θT
ijt dummy parameter as defined in Equation (63)

λ̇n
ij yield loss in task i running on unit j, with run status n

Λ̂jt binary parameter, when 1, denotes unit j unavailable during time [t, t + 1)
µ̇ij when negative, represents extent of sudden partial loss in unit capacity
ξkt demand for material k at time t
ξ̂kt demand disturbance for material k at time t
πbreak actual (fractional) time at which a unit breaks down
πdown fractional downtime in a unit
πdelay fractional delay in a task
πr

delay rth delay in a task

ρik mass-conversion coefficient (material consumption)
ρ̄ik mass-conversion coefficient (material production)
ρ̄r

ik conservative mass-conversion coefficient for production (ρ̄r
ik < ρ̄ik)

ρC
ii′ j deterioration in unit capacity to perform task i, due to performing task i′ on that unit j.

σ online iteration number
τij processing time of task i on unit j
τr

ij conservative processing time of task i (τr
ij < τij) on unit j

τT
j task independent unit j downtime after terminating a task

τT
ij task dependent unit j downtime after terminating task i

Ẏn
ij ,Ŷ

n
ijt single-/multi-period disturbance parameters denoting delay

BẎn
ij ,

BŶn
ijt single-/multi-period disturbance parameters denoting batch-size of a delayed task

LẎn
ij ,

LŶn
ijt single-/multi-period disturbance parameters denoting yield-loss size of a delayed task

MẎn
ij ,

MŶn
ijt single-/multi-period disturbance parameters denoting maintenance-size of delayed maintenance task

φ duration of delay or breakdown, in multiples of δ

ψ recurrence count of delay for a task

Variables
Bijt batch-size of task i on unit j
B̄n

ijt lifted batch-size

BOkt backlog level of material k during period (t− 1, t]
Cijt capacity of unit j to perform task i during period (t− 1, t]
L̄n

ijt lifted yield-loss variables

Mijt maintenance-size of the maintenance task
M̄n

ijt lifted maintenance-size

Skt inventory level of material k during period (t− 1, t]
Tn

ij binary variable, when 1, denotes termination of task i, with run-status n, on unit j
Vkt outgoing shipment to meet demand for material k at time t
Wijt binary variable, when 1, denotes task i starts on unit j at time-point t
W̄n

ijt lifted task-start variables

Xijt when 1, captures the information about delays in a task with progress status n = 0
BXijt the batch-size of delayed task with progress status n = 0
LXijt yield-loss of delayed task with progress status n = 0
MXijt maintenance-size of delayed maintenance task with progress status n = 0

Processes 2017, 5, 69 28 of 31

Reference

1. Harjunkoski, I.; Maravelias, C.T.; Bongers, P.; Castro, P.M.; Engell, S.; Grossmann, I.E.; Hooker, J.;
Méndez, C.A.; Sand, G.; Wassick, J.M. Scope for industrial applications of production scheduling models
and solution methods. Comput. Chem. Eng. 2014, 62, 161–193.

2. Kelly, J.D.; Mann, J. Crude oil blend scheduling optimization: An application with multimillion dollar
benefits. Hydrocarb. Process. 2003, 82, 47–54.

3. Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I.; Fahl, M. State-of-the-art review of optimization
methods for short-term scheduling of batch processes. Comput. Chem. Eng. 2006, 30, 913–946.

4. Maravelias, C.T. General framework and modeling approach classification for chemical production
scheduling. AIChE J. 2012, 58, 1812–1828.

5. Velez, S.; Maravelias, C.T. Reformulations and branching methods for mixed-integer programming chemical
production scheduling models. Ind. Eng. Chem. Res. 2013, 52, 3832–3841.

6. Wassick, J.M.; Ferrio, J. Extending the resource task network for industrial applications. Comput. Chem. Eng.
2011, 35, 2124–2140.

7. Nie, Y.; Biegler, L.T.; Villa, C.M.; Wassick, J.M. Discrete Time Formulation for the Integration of Scheduling
and Dynamic Optimization. Ind. Eng. Chem. Res. 2015, 54, 4303–4315.

8. Gupta, D.; Maravelias, C.T.; Wassick, J.M. From rescheduling to online scheduling. Chem. Eng. Res. Des.
2016, 116, 83–97.

9. Cott, B.J.; Macchietto, S. Minimizing the effects of batch process variability using online schedule
modification. Comput. Chem. Eng. 1989, 13, 105–113.

10. Kanakamedala, K.B.; Reklaitis, G.V.; Venkatasubramanian, V. Reactive schedule modification in multipurpose
batch chemical plants. Ind. Eng. Chem. Res. 1994, 33, 77–90.

11. Huercio, A.; Espuña, A.; Puigjaner, L. Incorporating on-line scheduling strategies in integrated batch
productioncontrol. Comput. Chem. Eng. 1995, 19, 609–614.

12. Kim, M.; Lee, I.B. Rule-based reactive rescheduling system for multi-purpose batch processes.
Comput. Chem. Eng. 1997, 21, S1197–S1202.

13. Ko, D.; Na, S.; Moon, I.; Oh, M.; Dong-Gu Samsung, T.S. Development of a Rescheduling System for the
Optimal Operation of Pipeless Plants. Comput. Chem. Eng. 1999, 23, S523–S526.

14. Huang, W.; Chung, P.W.H. A constraint approach for rescheduling batch processing plants including pipeless
plants. Comput. Aided Chem. Eng. 2003, 14, 161–166.

15. Henning, G.P.; Cerdá, J. Knowledge-based predictive and reactive scheduling in industrial environments.
Comput. Chem. Eng. 2000, 24, 2315–2338.

16. Palombarini, J.; Martínez, E. SmartGantt—An interactive system for generating and updating rescheduling
knowledge using relational abstractions. Comput. Chem. Eng. 2012, 47, 202–216.

17. Elkamel, A.; Mohindra, A. A rolling horizon heuristic for reactive scheduling of batch process operations.
Eng. Optim. 1999, 31, 763–792.

18. Vin, J.; Ierapetritou, M.G. A new approach for efficient rescheduling of multiproduct batch plants. Ind. Eng.
Chem. Res. 2000, 39, 4228–4238.

19. Méndez, C.A.; Cerdá, J. Dynamic scheduling in multiproduct batch plants. Comput. Chem. Eng. 2003,
27, 1247–1259.

20. Ferrer-Nadal, S.; Méndez, C.A.; Graells, M.; Puigjaner, L. Optimal reactive scheduling of manufacturing
plants with flexible batch recipes. Ind. Eng. Chem. Res. 2007, 46, 6273–6283.

21. Janak, S.L.; Floudas, C.A.; Kallrath, J.; Vormbrock, N. Production scheduling of a large-scale industrial batch
plant. II. Reactive scheduling. Ind. Eng. Chem. Res. 2006, 45, 8253–8269.

22. Novas, J.M.; Henning, G.P. Reactive scheduling framework based on domain knowledge and constraint
programming. Comput. Chem. Eng. 2010, 34, 2129–2148.

23. Honkomp, S.; Mockus, L.; Reklaitis, G.V. A framework for schedule evaluation with processing uncertainty.
Comput. Chem. Eng. 1999, 23, 595–609.

24. Subramanian, K.; Maravelias, C.T.; Rawlings, J.B. A state-space model for chemical production scheduling.
Comput. Chem. Eng. 2012, 47, 97–110.

25. Gupta, D.; Maravelias, C.T. On deterministic online scheduling: Major considerations, paradoxes and
remedies. Comput. Chem. Eng. 2016, 94, 312–330.

Processes 2017, 5, 69 29 of 31

26. Velez, S.; Maravelias, C.T. Advances in Mixed-Integer Programming Methods for Chemical Production
Scheduling. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 97–121.

27. Subramanian, K.; Rawlings, J.B.; Maravelias, C.T.; Flores-Cerrillo, J.; Megan, L. Integration of control theory
and scheduling methods for supply chain management. Comput. Chem. Eng. 2013, 51, 4–20.

28. Subramanian, K.; Rawlings, J.B.; Maravelias, C.T. Economic model predictive control for inventory
management in supply chains. Comput. Chem. Eng. 2014, 64, 71–80.

29. Kondili, E.; Pantelides, C.C.; Sargent, R.W.H. A general algorithm for short-term scheduling of batch
operations-I. MILP formulation. Comput. Chem. Eng. 1993, 17, 211–227.

30. Pantelides, C.C. Unified frameworks for optimal process planning and scheduling. In Proceedings of the
Second Conference on Foundations of Computer Aided Operations; Cache: New York, NY, USA, 1994; pp. 253–274.

31. Sundaramoorthy, A.; Maravelias, C.T. Computational Study of Network-Based Mixed-Integer Programming
Approaches for Chemical Production Scheduling. Ind. Eng. Chem. Res. 2011, 50, 5023–5040.

32. Pinto, J.M.; Grossmann, I.E. A Continuous Time Mixed Integer Linear Programming Model for Short Term
Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res. 1995, 34, 3037–3051.

33. Blomer, F.; Gunther, H.O. LP-based heuristics for scheduling chemical batch processes. Ind. Eng. Chem. Res.
2000, 38, 1029–1051.

34. Velez, S.; Maravelias, C.T. Mixed-integer programming model and tightening methods for scheduling in
general chemical production environments. Ind. Eng. Chem. Res. 2013, 52, 3407–3423.

35. Merchan, A.F.; Maravelias, C.T. Reformulations of Mixed-Integer Programming Continuous-Time Models
for Chemical Production Scheduling. Ind. Eng. Chem. Res. 2014, 53, 10155–10165.

36. Burkard, R.; Hatzl, J. Review, extensions and computational comparison of MILP formulations for scheduling
of batch processes. Comput. Chem. Eng. 2005, 29, 1752–1769.

37. Janak, S.L.; Floudas, C.A. Improving unit-specific event based continuous-time approaches for batch
processes: Integrality gap and task splitting. Comput. Chem. Eng. 2008, 32, 913–955.

38. Lee, H.; Maravelias, C.T. Discrete-time mixed-integer programming models for short-term scheduling in
multipurpose environments. Comput. Chem. Eng. 2017, 107, 171–183.

39. Sahinidis, N.; Grossmann, I. Reformulation of multiperiod MILP models for planning and scheduling of
chemical processes. Comput. Chem. Eng. 1991, 15, 255–272.

40. Yee, K.; Shah, N. Improving the efficiency of discrete time scheduling formulation. Comput. Chem. Eng. 1998,
22, S403–S410.

41. Lee, H.; Maravelias, C.T. Mixed-integer programming models for simultaneous batching and scheduling in
multipurpose batch plants. Comput. Chem. Eng. 2017, 106, 621–644.

42. Papageorgiou, L.G.; Pantelides, C.C. Optimal campaign planning/scheduling of multipurpose
batch/semicontinuous plants. 2. A mathematical decomposition approach. Ind. Eng. Chem. Res. 1996,
35, 510–529.

43. Bassett, M.H.; Pekny, J.F.; Reklaitis, G.V. Decomposition techniques for the solution of large-scale scheduling
problems. AIChE J. 1996, 42, 3373–3387.

44. Kelly, J.D.; Zyngier, D. Hierarchical decomposition heuristic for scheduling: Coordinated reasoning for
decentralized and distributed decision-making problems. Comput. Chem. Eng. 2008, 32, 2684–2705.

45. Wu, D.; Ierapetritou, M.G. Decomposition approaches for the efficient solution of short-term scheduling
problems. Comput. Chem. Eng. 2003, 27, 1261–1276.

46. Calfa, B.A.; Agarwal, A.; Grossmann, I.E.; Wassick, J.M. Hybrid Bilevel-Lagrangean Decomposition Scheme
for the Integration of Planning and Scheduling of a Network of Batch Plants. Ind. Eng. Chem. Res. 2013,
52, 2152–2167.

47. Castro, P.M.; Harjunkoski, I.; Grossmann, I.E. Greedy algorithm for scheduling batch plants with
sequence-dependent changeovers. AIChE J. 2011, 57, 373–387.

48. Roslöf, J.; Harjunkoski, I.; Björkqvist, J.; Karlsson, S.; Westerlund, T. An MILP-based reordering algorithm
for complex industrial scheduling and rescheduling. Comput. Chem. Eng. 2001, 25, 821–828.

49. Kopanos, G.M.; Méndez, C.A.; Puigjaner, L. MIP-based decomposition strategies for large-scale scheduling
problems in multiproduct multistage batch plants: A benchmark scheduling problem of the pharmaceutical
industry. Eur. J. Oper. Res. 2010, 207, 644–655.

50. Relvas, S.; Barbosa-Póvoa, A.P.F.; Matos, H.A. Heuristic batch sequencing on a multiproduct oil distribution
system. Comput. Chem. Eng. 2009, 33, 712–730.

Processes 2017, 5, 69 30 of 31

51. Jain, V.; Grossmann, I.E. Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems.
INFORMS J. Comput. 2001, 13, 258–276.

52. Harjunkoski, I.; Grossmann, I.E. Decomposition techniques for multistage scheduling problems using
mixed-integer and constraint programming methods. Comput. Chem. Eng. 2002, 26, 1533–1552.

53. Maravelias, C.T.; Grossmann, I.E. A hybrid MILP/CP decomposition approach for the continuous time
scheduling of multipurpose batch plants. Comput. Chem. Eng. 2004, 28, 1921–1949.

54. Roe, B.; Papageorgiou, L.G.; Shah, N. A hybrid MILP/CLP algorithm for multipurpose batch process
scheduling. Comput. Chem. Eng. 2005, 29, 1277–1291.

55. Maravelias, C.T. A decomposition framework for the scheduling of single- and multi-stage processes.
Comput. Chem. Eng. 2006, 30, 407–420.

56. Subrahmanyam, S.; Kudva, G.K.; Bassett, M.H.; Pekny, J.F. Application of distributed computing to batch
plant design and scheduling. AIChE J. 1996, 42, 1648–1661.

57. Ferris, M.C.; Maravelias, C.T.; Sundaramoorthy, A. Simultaneous Batching and Scheduling Using Dynamic
Decomposition on a Grid. INFORMS J. Comput. 2009, 21, 398–410.

58. Velez, S.; Maravelias, C.T. A branch-and-bound algorithm for the solution of chemical production scheduling
MIP models using parallel computing. Comput. Chem. Eng. 2013, 55, 28–39.

59. Shah, N.; Pantelides, C.C.; Sargent, R.W.H. A general algorithm for short-term scheduling of batch
operations-II. Computational issues. Comput. Chem. Eng. 1993, 17, 229–244.

60. Stephanopoulos, G. Chemical Process Control: An Introduction to Theory and Practice; Prentice-Hall: Englewood
Cliffs, NJ, USA, 1984; p. 696.

61. Ogunnaike, B.A.; Ray, W.H. Process Dynamics, Modeling, and Control; Oxford University Press: New York, NY,
USA, 1994; p. 1260.

62. Bequette, B.W. Process Control : Modeling, Design, and Simulation; Prentice Hall PTR: Upper Saddle River, NJ,
USA, 2003; p. 769.

63. Rawlings, J.B.; Mayne, D. Model Predictive Control: Theory and Design; Nob Hill Pub: Madison, WI, USA, 2009;
p. 669.

64. Seborg, D.E.; Edgar, T.F.; Duncan, M.A.; Doyle, F.J., III. Process Dynamics and Control; Wiley: Hoboken, NJ,
USA, 2016; p. 502.

65. Amrit, R.; Rawlings, J.B.; Biegler, L.T. Optimizing process economics online using model predictive control.
Comput. Chem. Eng. 2013, 58, 334–343.

66. Ellis, M.; Durand, H.; Christofides, P.D. A tutorial review of economic model predictive control methods.
J. Process Control 2014, 24, 1156–1178.

67. Rawlings, J.B.; Risbeck, M.J. Model predictive control with discrete actuators: Theory and application.
Automatica 2017, 78, 258–265.

68. Baldea, M.; Harjunkoski, I. Integrated production scheduling and process control: A systematic review.
Comput. Chem. Eng. 2014, 71, 377–390.

69. Li, Z.; Ierapetritou, M.G. Process scheduling under uncertainty: Review and challenges. Comput. Chem. Eng.
2008, 32, 715–727.

70. Janak, S.L.; Lin, X.; Floudas, C.A. A new robust optimization approach for scheduling under uncertainty. II.
Uncertainty with known probability distribution. Comput. Chem. Eng. 2007, 31, 171–195.

71. Sand, G.; Engell, S. Modeling and solving real-time scheduling problems by stochastic integer programming.
Comput. Chem. Eng. 2004, 28, 1087–1103.

72. Sabuncuoglu, I.; Karabuk, S. Rescheduling frequency in an fms with uncertain processing times and
unreliable machines. J. Manuf. Syst. 1999, 18, 268–283.

73. Chaari, T.; Chaabane, S.; Aissani, N.; Trentesaux, D. Scheduling under uncertainty: Survey and research
directions. In Proceedings of the 2014 International Conference on Advanced Logistics and Transport,
Hammamet, Tunisia, 1–3 May 2014; pp. 229–234.

74. Martagan, T.; Krishnamurthy, A. Control and Optimization of Bioprocesses Using Markov Decision Process.
In Proceedings of the 2012 Industrial and Systems Engineering Research Conference, Orlando, FL, USA,
19–23 May 2012; pp. 1–8.

75. Martagan, T.; Krishnamurthy, A.; Maravelias, C.T. Optimal condition-based harvesting policies for
biomanufacturing operations with failure risks. IIE Trans. 2016, 48, 440–461.

Processes 2017, 5, 69 31 of 31

76. Dedopoulos, I.T.; Shah, N. Optimal Short-Term Scheduling of Maintenance and Production for Multipurpose
Plants. Ind. Eng. Chem. Res. 1995, 34, 192–201.

77. Sanmartí, E.; Espuña, A.; Puigjaner, L. Batch production and preventive maintenance scheduling under
equipment failure uncertainty. Comput. Chem. Eng. 1997, 21, 1157–1168.

78. Vassiliadis, C.; Pistikopoulos, E. Maintenance scheduling and process optimization under uncertainty.
Comput. Chem. Eng. 2001, 25, 217–236.

79. Kopanos, G.M.; Xenos, D.P.; Cicciotti, M.; Pistikopoulos, E.N.; Thornhill, N.F. Optimization of a network of
compressors in parallel: Operational and maintenance planning – The air separation plant case. Appl. Energy
2015, 146, 453–470.

80. Xenos, D.P.; Kopanos, G.M.; Cicciotti, M.; Thornhill, N.F. Operational optimization of networks of
compressors considering condition-based maintenance. Comput. Chem. Eng. 2016, 84, 117–131.

81. Biondi, M.; Sand, G.; Harjunkoski, I. Optimization of multipurpose process plant operations:
A multi-time-scale maintenance and production scheduling approach. Comput. Chem. Eng. 2017, 99, 325–339.

82. Zhang, Y.H.P.; Sun, J.; Ma, Y. Biomanufacturing: History and perspective. J. Ind. Microbiol. Biotechnol. 2017,
44, 773–784.

83. Clomburg, J.M.; Crumbley, A.M.; Gonzalez, R. Industrial biomanufacturing: The future of chemical
production. Science 2017, 355, doi:10.1126/science.aag0804.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Chemical Production Scheduling
	General Problem Statement
	Problem Representation
	Model Classification
	Solution Methods

	Scheduling MILP Model
	Standard form of State-Space Models
	Scheduling State-Space Model

	Modeling Generalizations
	New Basic Formulation
	Fractional Delays and Unit Downtimes
	Variable Batch-Sizes
	Robust Scheduling: Batch-Sizes
	Robust Scheduling: Processing Times
	Feedback on Yield Estimates
	Task Termination
	Post-Production Storage in Unit
	Unit Capacity Degradation and Maintenance

	Integrated Model
	Case Study
	Conclusions
	References

