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Abstract: Various distance metrics and their induced norms are employed in the quantitative
modeling of evolutionary dynamics. Minimization of these distance metrics, when applied to
evolutionary optimization, are hypothesized to result in different outcomes. Here, we apply the
different distance metrics to the evolutionary trait dynamics brought about by the interaction
between two competing species infected by parasites (exploiters). We present deterministic cases
showing the distinctive selection outcomes under the Manhattan, Euclidean, and Chebyshev norms.
Specifically, we show how they differ in the time of convergence to the desired optima (e.g., no
disease), and in the egalitarian sharing of carrying capacity between the competing species. However,
when randomness is introduced to the population dynamics of parasites and to the trait dynamics
of the competing species, the distinctive characteristics of the outcomes under the three norms
become indistinguishable. Our results provide theoretical cases of when evolutionary dynamics
using different distance metrics exhibit similar outcomes.

Keywords: evolutionary dynamics; quantitative trait; Manhattan norm; Euclidean norm; Chebyshev
norm; parasitism; exploitation; egalitarianism

1. Introduction

Parasitism-induced coevolution is an interesting topic of evolutionary biology, as parasites can
drive biodiversity and balance in communities [1–4]. Specifically, parasite infection greatly influences
the population dynamics of species in a competitive environment [5,6]. Species maximize their fitness
(measure of reproductive success) but resources are limited, leading to the competition for share in the
environmental carrying capacity [6–9]. If one species wins, parasites could drive the winner to become
a loser, giving other species the opportunity to dominate [5–10]. Both competition and parasitism arise
as two candidate biotic factors for explaining the evolution of traits (e.g., phenotype and behavior) in
populations [11].

The evolution of traits has been modeled using various mathematical techniques (e.g., game theory,
dynamical systems, and probability theory). One of which is the selection gradient in differential
equation form [12–17]. In this model, if the selection gradient results in a positive change in fitness
value, then the trait becomes more favored and further improved. If it is negative, then the trait is
reduced. Similarly, we use in this study the idea of selection ascent towards fitness maximization.
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The trait of a population is represented numerically, and the changes in the trait are modeled using a
dynamical system. The quantitative trait dynamics is governed by the goal of the population (here,
termed as evolutionary objective) and by the existent population dynamics of the species modeled
using Lotka-Volterra-type equations. We study the population dynamics since the effect of evolution
in species are often reflected in their population densities [18–20].

The evolutionary objective is represented by mathematical metrics [21–25]. A metric is a
measure of distance between the desired goal and the instantaneous condition of the population.
For example, if the evolutionary objective is to reach the maximum population density normalized
to 1 and the current population density is X, then the metric can be represented by ‖1− X‖. Here,
three common distance metrics are studied, namely the Manhattan norm (also known as Taxicab or
1-norm), the Euclidean norm (least squares or 2-norm), and the Chebyshev norm (supremum, uniform,
or infinity norm) [26,27]. We investigate the differences in the effect of the three metrics to the resulting
trait dynamics of competing populations.

The distance metric used in obtaining the desired evolutionary outcome is hypothesized to have
a significant effect on the trait and population dynamics of species [28–30]. A notable example
is how populations or societies adapt to their environment considering different strategies of
distributing the available resources (e.g., welfare based on utilitarianism or egalitarianism) [30].
Predicting the population dynamics of species could be subject to the metric used in data analysis and
simulations. This has crucial implications on formulating ecological conclusions. For this reason, it
is imperative to determine the advantages and limitations of the metrics. We identify the distinctive
characteristics of the resulting trait dynamics under the Manhattan, Euclidean, and Chebyshev norms.
We also investigate whether these characteristics are robust under stochastic noise. Our results
provide an answer to the question “Does the choice of measure for adaptation success matter in a
stochastic environment?”

The study of evolutionary dynamics encompasses different dimensions. As in the concept of
inclusive inheritance, information transfer and changes in traits can happen at genetic, epigenetic,
ecological, and cultural levels [31–33]. The changes in traits can be transgenerational (e.g., genetic
inheritance from parents to offspring) or intra-generational (e.g., cultural information transfer within
the same generation). In this paper, we assume that novel traits of two competing species are selected
(preferred) to adapt or defend against parasites [34–39]. The novel traits may arise in different
evolutionary dimensions. As such, our results can be interpreted not only in the perspective of
genetics, but also in the perspective of cultural societies where parasites are characterized by exploiters.
Introductory background and discussion on advances in the fields evolutionary parasitology and
evolution of exploitation are available in literature [40–44].

2. The Mathematical Model

Two competing species (X1 and X2) maximize their population densities with respect to the
environmental carrying capacity. In order to maximize their population, the two competing host
species minimize the effect of antagonistic parasites (P) by changing the host defense trait. This can
be achieved through minimizing the parasitism exploitation coefficient α (represented by α1 and α2

in our model). However, as the host species compete for available resources in the environment,
they cooperatively assure that there is egalitarian (equal) sharing of resources. Our model represents
competitive-cooperative interaction of two species that are evolving to defend against the negative
influence of parasitism or exploitation [45,46].

We assume that the two competing host species have equal characteristics. This allows our
analysis to focus on the effect of the different metrics to the evolutionary objective rather than on
the differences between the two species. Without losing generality in our conceptual study, we use a
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basic Lotka-Volterra-type model [6,47–50] (with time step h << 1) for population dynamics with basal
growth rate ri as follows:

X1(t + h) = X1(t) + h(r1X1(t)× (1− X1(t)− X2(t))− α1X1(t)× P(t)) (1)

X2(t + h) = X2(t) + h(r2X2(t)× (1− X1(t)− X2(t))− α2X2(t)× P(t)) (2)

P(t + h) = P(t) + h(P(t)× (β1X1(t) + β2X2(t))− P(t)) + noise1 (3)

where βi = γαi, i = 1, 2. The parameter γ is the ratio between the parasitism numerical response
coefficient (βi) and the parasitism exploitation coefficient (αi). When βi > αi (βi < αi), the parasites
produce more (less) offspring compared to the number of parasitized hosts.

The evolutionary trait dynamics using Manhattan 1-norm, |1− X1(t)| + |1− X2(t)|, is
modeled by:

α1(t + h) = α1(t)− h
(

ε
|1− X1(t)|+ |1− X2(t)|

max{X1(t), 10−6}

)
+ noise2 (4)

α2(t + h) = α2(t)− h
(

ε
|1− X1(t)|+ |1− X2(t)|

max{X2(t), 10−6}

)
+ noise3. (5)

Using Euclidean 2-norm,
√
(1− X1(t))

2 + (1− X2(t))
2, the evolutionary trait dynamics is

represented by:

α1(t + h) = α1(t)− h

ε

√
(1− X1(t))

2 + (1− X2(t))
2

max{X1(t), 10−6}

+ noise2 (6)

α2(t + h) = α2(t)− h

ε

√
(1− X1(t))

2 + (1− X2(t))
2

max{X2(t), 10−6}

+ noise3. (7)

For the Chebyshev infinity-norm, max{|1− X1(t)|, |1− X2(t)|}, the model is:

α1(t + h) = α1(t)− h
(

ε
max{|1− X1(t)|, |1− X2(t)|}

max{X1(t), 10−6}

)
+ noise2 (8)

α2(t + h) = α2(t)− h
(

ε
max{|1− X1(t)|, |1− X2(t)|}

max{X2(t), 10−6}

)
+ noise3. (9)

For comparison, we also consider a model where the competing species evolve independently of
each other. We use the following model that follows a non-cooperative optimization with no assured
egalitarian sharing of resources:

α1(t + h) = α1(t)− h(α1(t)×max(|X1(t)− X1(t− 100)|, 10−6)) (10)

α2(t + h) = α2(t)− h(α2(t)×max(|X2(t)− X2(t− 100)|, 10−6)). (11)

In this model, α1 is directly independent of X2. Also, α2 is directly independent of X1.

3. Simulation Results and Discussion

Deterministic Case: Without stochastic noise, the population densities of the evolving competing
host species converge to a stable equilibrium point (Figure 1). The evolutionary objective is to drive
the parasitism exploitation coefficient α to zero as well as to reach the maximum population density
(Figure 1a,b). We expect that the convergence to the desired evolutionary outcome is faster when
using Manhattan, then Euclidean, and lastly, the Chebyshev norm (Figures 1a,b and 2). This is

because |1− X1(t)| + |1− X2(t)| ≥
√
(1− X1(t))

2 + (1− X2(t))
2 ≥ max{|1− X1(t)|, |1− X2(t)|}.
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In a biological or social context, this behavior implies that we may consider the Manhattan or Euclidean
norm as the metric when the time of convergence is essential in evolutionary optimization (e.g., during
crisis and catastrophes).

To understand the extent of the regularity of the trait dynamics convergence, we investigate
the pattern of convergence under different parameter values of ε and γ (Figure 2). The parameter
ε is the speed of evolutionary adaptation, which reflects the effect of the distance metric to the trait
dynamics in one generation. In Figure 2, the speed of convergence of the trait dynamics following
non-cooperative optimization is slowest in the cases when ε = 100 to 10−1 compared to the trait
dynamics that utilize the Manhattan, Euclidean, and Chebyshev norms. In the cases when ε = 10−2

to 10−5, the trait dynamics following non-cooperative optimization is fastest. In most cases, when ε

and γ are varied, the convergence of the trait dynamics with the Manhattan norm is faster than the
Euclidean norm, and the convergence of the trait dynamics with the Euclidean norm is faster than the
Chebyshev norm.
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Figure 1. Effect of using different norms in the evolutionary objective under the deterministic case. 
(a) Effect on lowering the parasitism exploitation coefficient. The parameters 1, 1 , 1  
and 1  ( 2, 2 , 2  and 2 ) are the parasitism exploitation coefficients 
for species 1 (species 2) using non-cooperative optimization, Manhattan, Euclidean, and Chebyshev 
norms, respectively. The figure shows which method converges faster to the desired value = 0 (no 
disease). (b) In the figure, = 1 + 2  (for non-cooperative optimization), =1 + 2 , = 1 + 2 , and = 1 + 2 . 
The desired goal is to maximize the utilization of the resources (sum equals 1). The variables 1, 1 , 1 , and 1  ( 2, 2 , 2 , and 2 ) are the population 
densities for species 1 (species 2) using non-cooperative optimization, Manhattan, Euclidean, and 
Chebyshev norms, respectively. 

Figure 1. Effect of using different norms in the evolutionary objective under the deterministic case.
(a) Effect on lowering the parasitism exploitation coefficient. The parameters α1, α11−norm, α12−norm

and α1∞−norm (α2, α21−norm, α22−norm and α2∞−norm) are the parasitism exploitation coefficients for
species 1 (species 2) using non-cooperative optimization, Manhattan, Euclidean, and Chebyshev norms,
respectively. The figure shows which method converges faster to the desired value α = 0 (no disease).
(b) In the figure, sum = X1+X2 (for non-cooperative optimization), sum1−norm = X11−norm + X21−norm,
sum2−norm = X12−norm + X22−norm, and sum∞−norm = X1∞−norm + X2∞−norm. The desired goal
is to maximize the utilization of the resources (sum equals 1). The variables X1, X11−norm,
X12−norm, and X1∞−norm (X2, X21−norm, X22−norm, and X2∞−norm) are the population densities
for species 1 (species 2) using non-cooperative optimization, Manhattan, Euclidean, and Chebyshev
norms, respectively.
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competing species (Figure 3a). The population densities of the competing species following the trait 
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Figure 2. Convergence time to the evolutionary objective under the deterministic case. In this figure,
‘stop’ means time of convergence towards the evolutionary objective for non-cooperative optimization,
and ‘stop’ with the index means time of convergence towards the evolutionary objective using the
corresponding mathematical norm. The larger the ε, the larger the effect of the distance metric to the
trait dynamics in one generation. Here, we consider γ = 0.5, which means βi is half of αi, γ = 1, which
means βi equals αi, and γ = 2, which means βi is double αi. The numerals 1 to 4 represent the ranking
of convergence, where 1 denotes the fastest convergence while 4 denotes the slowest convergence.
We took the mean and the mean plus standard deviation (sd) of 1000 numerical simulations with
random population initial conditions.

In terms of egalitarian sharing of resources, each of the distance metrics provides opportunity for
the competing species to maintain nearly equal sharing of available resources even though the species
maximize their population densities in a zero-sum game. If the difference between the population
densities of the competing species is near zero, it means that the competition system is egalitarian.
The effect of the trait dynamics can be observed from the population densities of the competing species
(Figure 3a). The population densities of the competing species following the trait dynamics with
non-cooperative optimization can converge faster to the evolutionary objective. However, the outcome
may not be egalitarian; that is, there may be large difference between the population densities of the
competing species (Figure 3b).
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This means that when the speed of adaptation is fast (e.g., the trait evolution significantly affects the 
current or first generation of offspring), the dynamics with the Chebyshev norm may result in almost 
equal population densities. In most cases, when = 10  to 10 , the dynamics with the Manhattan 
norm is the first in rank (Figure 4). That is, when the consequence of evolution is exhibited mostly in 
the second or later generations, the dynamics with the Manhattan norm results in a higher degree of 
egalitarianism. However, when = 2, this pattern may not be always the case. A parameter > 1 
indicates that infection of host leads to a high reproduction rate of parasites.  

Figure 3. Effect of using different norms in the population dynamics of the host species under the
deterministic case. (a) Effect on the population densities. (b) In the figure, |di f f erence| = |X1− X2|,
|di f f erence|1−norm = |X11−norm − X21−norm|, |di f f erence|2−norm = |X12−norm − X22−norm|, and
|di f f erence|∞−norm = |X1∞−norm − X2∞−norm|. Here, we can see what method provides opportunity
for the competing species to maximize each of their population densities while maintaining equal
sharing of the available resources. If the difference is near zero, it means that the competition system
is egalitarian.

When varying the parameter values of ε and γ, the trait dynamics with non-cooperative
optimization is ranked with very low egalitarian sharing of resources (Figure 4). In most cases
in Figure 4, the degree of being egalitarian of the population dynamics with the Euclidean norm falls
between that with the Manhattan and Chebyshev norms. The dynamics with the Chebyshev norm
shows a very high degree of egalitarianism (rank 1 in most cases in Figure 4) when ε = 100 to 10−1.
This means that when the speed of adaptation is fast (e.g., the trait evolution significantly affects the
current or first generation of offspring), the dynamics with the Chebyshev norm may result in almost
equal population densities. In most cases, when ε = 10−2 to 10−5, the dynamics with the Manhattan
norm is the first in rank (Figure 4). That is, when the consequence of evolution is exhibited mostly in
the second or later generations, the dynamics with the Manhattan norm results in a higher degree of
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egalitarianism. However, when γ = 2, this pattern may not be always the case. A parameter γ > 1
indicates that infection of host leads to a high reproduction rate of parasites.Processes 2017, 5, 74  7 of 13 
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Figure 4. Absolute difference between the population densities of host species 1 and 2. If the difference
is near zero, it means that the competition system is egalitarian. The numerals 1 to 4 represent the
ranking of the degree of egalitarianism, where 1 denotes the most egalitarian while 4 denotes the least
egalitarian. We took the mean and the mean plus standard deviation (sd) of 1000 numerical simulations
with random population initial conditions.

The trait dynamics using the Manhattan and Euclidean norms have advantages over the
Chebyshev norm. Nevertheless, the speed of convergence entails evolutionary trade-off. The trait
dynamics with the Manhattan norm requires higher energy cost compared to that with the Euclidean
norm. Also, the trait dynamics with the Euclidean norm requires more energy cost than that with
the Chebyshev norm. More so in the stochastic case, the distinctive advantages of the three metrics
become indistinguishable.

Stochastic Case: Random perturbations, such as uncertain environmental noise, are frequent
in biological and social systems [51,52]. The presence of randomness can be disadvantageous in
predicting future events when perturbations do not follow the regularity posted by known probability
distributions. However, randomness can also pose benefits to populations, and drive diversity
in biological and social systems. A dominant species can lose its competitive advantage over its
competitor because of environmental noise, resulting in the switching of winners [6,51].

We have introduced a degree of stochastic noise to the population dynamics of parasites
(Equation (3)) and to the trait dynamics of the competing species (Equations (4)–(9)). It is observable
that the distinctive characteristics of the outcomes under the Manhattan, Euclidean, and Chebyshev
norms become indistinguishable (Figure 5a). The patterns of convergence to the desired evolutionary
outcomes, which are to drive the parasitism exploitation coefficient α to zero (Figure 5a) and to reach
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the maximum population density (Figure 5b), become almost similar for the trait dynamics under the
three norms.
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Figure 5. Effect of using different norms in the evolutionary objective under the stochastic case.
The distinctive characteristics of the outcomes under the Manhattan, Euclidean, and Chebyshev norms
become homogeneous. (a) Effect on lowering the parasitism exploitation coefficient. (b) The sums
represent the carrying capacity of the environment where species 1 and 2 compete for the available
resources. The desired goal is to maximize the utilization of the resources (sum equals 1).

The patterns of egalitarian sharing of resources becomes indistinguishable when randomness
is introduced (Figure 6). That is, the stochastic population dynamics with trait dynamics using the
Manhattan, Euclidean, and Chebyshev norms are similar in many cases (Figure 6a). We cannot
determine what norm could result in an observable higher degree of egalitarianism (Figure 6b).
Moreover, randomness can result in negative frequency-dependent selection, as shown by the
population fluctuations in Figure 6a. This reveals that randomness can drive the switching of winners
(dominant populations). We also simulated a case where r1 and r2 are the evolving traits, and the
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result shows that there are only minute differences in the population densities using the Manhattan,
Euclidean, and Chebyshev norms (Figure A1 in Appendix B).Processes 2017, 5, 74  9 of 13 

 

(a) 

 

(b) 

 

Figure 6. Effect of using different norms in the population dynamics of the host species under the 
stochastic case. Oscillations arise due to stochasticity, and the temporal patterns of egalitarian sharing 
of resources becomes indistinguishable. (a) Effect on the population densities. (b) If the difference is 
near zero, it means that the competition system is egalitarian. 

4. Conclusions 

In host-parasite or exploited-exploiter interaction, we hypothesized that the distance metric used 
in obtaining the desired evolutionary outcome (optimal use of environmental resources and without 
disease) has a significant effect on the trait and population dynamics of a species. To determine the 
advantages and limitations of the Manhattan, Euclidean, and Chebyshev metrics used in the trait 
dynamics simulation, we identified the distinctive characteristics of the resulting trait dynamics 
under deterministic and stochastic cases. Results show that without random noise, the different 
metrics lead to different dynamics. However, the characteristics are not robust under stochasticity, 
which means that the choice of measure for adaptation success could be immaterial in a stochastic 
environment. 

Our results provide theoretical cases when evolutionary dynamics using different distance 
metrics exhibit distinguishable outcomes. These results can guide experimental studies on the 
behavior of evolution under host-parasite interaction. However, random perturbations could mask 
the effect of using different evolutionary measures. This has two important implications. First, the 

Figure 6. Effect of using different norms in the population dynamics of the host species under the
stochastic case. Oscillations arise due to stochasticity, and the temporal patterns of egalitarian sharing
of resources becomes indistinguishable. (a) Effect on the population densities. (b) If the difference is
near zero, it means that the competition system is egalitarian.

4. Conclusions

In host-parasite or exploited-exploiter interaction, we hypothesized that the distance metric used
in obtaining the desired evolutionary outcome (optimal use of environmental resources and without
disease) has a significant effect on the trait and population dynamics of a species. To determine the
advantages and limitations of the Manhattan, Euclidean, and Chebyshev metrics used in the trait
dynamics simulation, we identified the distinctive characteristics of the resulting trait dynamics under
deterministic and stochastic cases. Results show that without random noise, the different metrics lead
to different dynamics. However, the characteristics are not robust under stochasticity, which means
that the choice of measure for adaptation success could be immaterial in a stochastic environment.
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Our results provide theoretical cases when evolutionary dynamics using different distance metrics
exhibit distinguishable outcomes. These results can guide experimental studies on the behavior of
evolution under host-parasite interaction. However, random perturbations could mask the effect of
using different evolutionary measures. This has two important implications. First, the use of different
metrics entails employing different strategies but, whatever metric is used, the outcomes may be
indistinguishable in a stochastic environment. Consequently, a simpler metric can be used rather
than using a metric that is too costly to implement in evolutionary dynamics. Second, when data are
available, intrinsic and extrinsic noise may lead to difficulty in tracking the evolutionary measure that
was utilized during evolutionary events. In investigating evolutionary strategies of populations, it is
advisable to clear the data of randomness, for example by compressing the data to reflect only the
deterministic trends.

This study is the first to investigate the effect of using different mathematical norms in
evolutionary dynamics. Notably, we presented the advantages and disadvantages of the utilization of
Manhattan and Chebyshev norms in the evolution of traits, especially with regard to the equal sharing
of environmental carrying capacity. The outcome of the Euclidean norm is generally between that of
the Manhattan and Chebyshev norms. It is possible that our deterministic and stochastic results are
consistent with the situations when there are multi-hosts and multi-parasites. Our simulations can
be extended by considering more than two hosts and more than one parasite, with multiple evolving
traits, for further studies.
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Appendix A. Methods

The deterministic evolutionary trait dynamics using a mathematical norm ‖1− X‖ is modeled by:

α(t + h) = α(t)− h
(

ε
‖1− X‖

max{X, 10−6}

)
. (A1)

The parameter ε is the speed of evolutionary adaptation. The quantitative trait α will increase
when ‖1−X‖

max{X,10−6} < 0. On the other hand, the quantitative trait α will decrease when ‖1−X‖
max{X,10−6} > 0.

The evolutionary effect of ‖1−X‖ is regulated by the density of the population (max{X, 10−6}), where
the number 10−6 is introduced to avoid division by zero during numerical simulations. Here, low
population size facilitates trait evolution.

The stochasticity in the model is represented by the following:

noise1 = σ1e−P
√

hN(0, 1) (A2)

noise2 = σ2
√

hN(0, 1) (A3)

noise3 = σ2
√

hN(0, 1) (A4)

where σi is the amplitude of the noise, and N(0, 1) is a normally distributed random number.
The expression e−P characterizes density-dependent noise in a parasite population, where a large
parasite population leads to homogeneity. In the numerical simulations, it is assured that all state
variables (X) and the quantitative trait (α) are nonnegative.



Processes 2017, 5, 74 11 of 13

In the figures, we used the following values: α1(0) = α1(0) = 1, h = 0.01, σ1 = 10−0.5,
and σ2 = 10−2. A model with small h approximates the trait dynamics simulated using differential
equations. Lower values of σ1 and σ2 may result in an approximately deterministic case (e.g., σ1 = 10−1

and σ2 = 10−3). The initial values for the 1000 simulation runs are uniformly distributed random
numbers between 0 and 1 per host and parasite population state variables.

Appendix B.

We also simulated a case where r1 and r2 are the evolving traits with α1 = α2 = 1. The quantitative
trait evolution equations are:

r1(t + h) = r1(t)− h
(

ε
‖1− X‖

max{X1(t), 10−6}

)
+ noise2 (A5)

r2(t + h) = r2(t)− h
(

ε
‖1− X‖

max{X2(t), 10−6}

)
+ noise3 (A6)

where ‖1− X‖ represents the corresponding mathematical norm. Figure A1 shows sample paths of
the population dynamics with σ1 = 10−1 and σ2 = 0.
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Figure A1. Effect of using different norms in the population dynamics of the host species under the
stochastic case, with r1 and r2 as the evolving traits.
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