
processes

Article

RadViz Deluxe: An Attribute-Aware Display for
Multivariate Data †

Shenghui Cheng 1,2, Wei Xu 1 and Klaus Mueller 2,*
1 Computational Science Initiative, Brookhaven National Lab, Computer Science Department,

Stony Brook University, Stony Brook, NY 11794, USA; shecheng@cs.stonybrook.edu (S.C.);
wxu@cs.stonybrook.edu (W.X.)

2 Visual Analytics and Imaging Lab, Computer Science Department, Stony Brook University, Stony Brook,
NY 11794, USA

* Correspondence: mueller@cs.stonybrook.edu
† This paper is an extended version of our paper published in the 2015 IEEE Pacific Visualization

Symposium as titled “Improving the fidelity of contextual data layouts using a Generalized Barycentric
Coordinates framework”.

Received: 12 October 2017; Accepted: 17 November 2017; Published: 22 November 2017

Abstract: Modern data, such as occurring in chemical engineering, typically entail large collections
of samples with numerous dimensional components (or attributes). Visualizing the samples in relation
of these components can bring valuable insight. For example, one may be able to see how a certain
chemical property is expressed in the samples taken. This could reveal if there are clusters and outliers
that have specific distinguishing properties. Current multivariate visualization methods lack the
ability to reveal these types of information at a sufficient degree of fidelity since they are not optimized
to simultaneously present the relations of the samples as well as the relations of the samples to their
attributes. We propose a display that is designed to reveal these multiple relations. Our scheme is
based on the concept of RadViz, but enhances the layout with three stages of iterative refinement.
These refinements reduce the layout error in terms of three essential relationships—sample to sample,
attribute to attribute, and sample to attribute. We demonstrate the effectiveness of our method via
various real-world domain examples in the domain of chemical process engineering. In addition,
we also formally derive the equivalence of RadViz to a popular multivariate interpolation method
called generalized barycentric coordinates.

Keywords: RadViz; multivariate data; multi-objective layout; generalized barycentric interpolation

1. Introduction

Due to the many advances in domain knowledge and acquisition hardware the amount and
specificity of data is increasing rapidly. This is true not only in chemical and biological process
engineering, but also in general. In any of these cases, a given data point or sample typically has
information about multiple components or attributes of the sample. Numerous methods have been
described that allow users to reveal patterns that may exist among these multivariate data samples,
such as clusters and outliers There is Principal Component Analysis (PCA) [1], Multidimensional
Scaling (MDS) [2,3] or more recently, t-Distributed Stochastics Neighborhood Embedding (t-SNE) [4].
All of these layout methods can also be used to visualize the relations among the attributes, instead of
those among the samples. This can be achieved simply by transposing the data matrix which exposes
the similarities among the attributes instead of those among the samples.

But there are settings in which it can be of interest to see the data points in relation to their
attributes. This requires a layout that jointly considers these two aspects of the data matrix. For example,
to obtain a proper solvent among hundreds of candidates, a chemical scientist might want to see the

Processes 2017, 5, 75; doi:10.3390/pr5040075 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr5040075
http://www.mdpi.com/journal/processes

Processes 2017, 5, 75 2 of 18

composition in relation of the chemical’s properties, for example “Dielectric”, “Boilpoint”, “Solubility”
etc. The scientist would then analyze these components and pick those solvents that best fit the
intended experiment(s). These types of visual analyses are difficult to do with PCA and related
displays, such as biplots, since the data layout is not optimized in terms of these tasks. The plots
are just linear projections that become inaccurate when the data variance significantly extends into
more than two principal directions. Adversely, operations of this type are not supported at all by
layout-optimizing displays such as MDS or t-SNE since the other (not-optimized) aspect of the data
matrix is lost in the optimization process.

Our work focuses on what we call contextual layout displays—displays that can simultaneously
present the relations of the samples, the relations of the attributes, as well as the relations of the
samples to the attributes. We have chosen a method that is based on the concept of RadViz [5] which
in turn in similar to a scheme that can be derived from Generalized Barycentric Coordinate (GBC)
Interpolation [6,7] (see Section 3 for this derivation). However, while these displays are contextual in
principle they are still linear mappings and for this reason cannot convey the simultaneous relations of
samples and attributes accurately. Achieving high accuracy requires numerical optimization, similar
to MDS and t-SNE. Our scheme fulfils this requirement. It automatically adjusts the locations of both
types of spatial representations—those for the points and those for the attributes—such that these
multiple relations are better preserved.

Our paper is structured as follows. Section 2 presents related work. Section 3 provides theoretical
aspects. Section 4 describes our RadViz Deluxe framework. Section 5 demonstrates our framework
by ways of a set of real-world applications in chemical process engineering. Section 6 ends the paper
with conclusions.

2. Related Work

The visualization of high-dimensional datasets essentially follows three major paradigms—
parallel coordinates, scatterplots, and 2D space embeddings. Since the visualization of high-
dimensional data on a 2D canvas is inherently an ill-posed problem, there is no method without
drawbacks. Parallel coordinates [8], and its radial version, the star plot [9], have the least ambiguity
in the 2D mapping process and the serialization of the high dimensional space into the parallel axis
configuration allows all attributes to be seen at once. However, the overplotting of polylines and the
need to re-order the parallel axes to see certain patterns in the data can become a significant problem
once the number of data points and attributes grows even moderately large.

Contextual data layouts [10], as defined above, represent the attributes as special nodes on the
data canvas where data points that are ‘stronger’ in certain attributes also come to rest more closely to
these attributes (although there can be significant errors—see below). RadViz [11–13] uniformly spaces
the attributes as dimensional anchors along the circumference of a circle. The location of the data points
is then determined by a weighting formula where data point attributes with higher values receive
a higher weight and so increase the attraction of the point to the corresponding anchor points. However,
similar to star coordinates [14], this can lead to location ambiguities which can be—but typically not
entirely eliminated—by re-ordering the anchor points manually or algorithmically. Gravi++ [15] uses
a different weighting formula but also spaces the attributes at uniform distances onto an encompassing
circle. Even more general is the Dust & Magnet system [16] which allows one not only to move but
also adjust the weights of the nodes representing the attributes. As shown in the next section (and also
in [10]) all of these contextual layouts are in fact special forms of RadViz.

With any of these contextual displays, users can focus on the attribute nodes of greater interest
and view the data points in their neighborhoods. They can assess and recognize conflicts in their set of
criteria. For example, in the practical scenario of this paper, there might be no solvents that can fulfil
two competing criteria, and thus some sort of trade-off is required. However, none of the methods so
far can guarantee that nearby data and variables points are actually neighbors in high-dimensional
space. Often data points that are not related at all may come to rest very closely to one another which

Processes 2017, 5, 75 3 of 18

can lead to false conclusions. Moving the attribute nodes in an interactive fashion can reduce, but not
completely eliminate this error, at least not in general. Our method overcomes these shortcomings by
adding an extra multi-objective optimization steps to the initial layout. In our effort we build on our
previous work [10], but focus on data originating in process engineering.

Lastly, another general multivariate visualization paradigm is the projective scatterplot. It suffers
less from overplotting, but the projection operation can lead to ambiguities as points located far away
in high-dimensional space may project to similar 2D locations. Assembling all possible axis-aligned
scatterplots into a scatterplot matrix [17] or supporting the projections by an interactive view
manipulation system [7] can help but both require effort to navigate. Similar to the star plot, the method
of Star Coordinates arranges the attribute axes in a radial fashion but instead of constructing polylines
it plots the data points as a vector sum of the individual axis coordinates. However, the locations of
the data points are not unique and so an interactive interface is provided that allows users to manually
rotate and scale axes to resolve ambiguities, at least partially. To that end, these projections share the
shortcomings of the other contextual displays as noted above.

3. Theoretical Background and Derivations

Let X be the data matrix with m rows and n columns,

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


where the rows denote the data points, the columns denote the attributes and xij is the data value in
the ith row and jth column. Without loss of generality, we assume X is normalized to [1]. Furthermore,
let Di be the ith data points (we shall simply refer to them as data):

Di = [xi1, xi2, . . . , xin](i = 1, 2, . . . , m)

Finally, let Vj be the jth data attributes (we shall refer to them as variables).

Vj =
[
x1j, x2j, . . . , xmj

]T
(j = 1, 2, . . . , n)

where T is the transpose operator. We shall now use this notation to describe the various contextual
layout methods mentioned in Section 2.

3.1. The Space of Contextual Layout Methods

In Section 2, we argued that RadViz, Star Coordinates, Dust & Magnet, and Gravi++ are similar in
that they all arrange the variables as vertices in the outward periphery of the data points. To unify
these methods into a common framework, we require a unified notation. These plots typically differ
from the way they arrange the vertices and the mechanism they use to map the data items. For the
arrangement of the vertices coding the variables, we define the function VF. To map the data based on
the vertices’ locations, we define the mapping function MF. We consider two layout stages: (1) the
arrangement VF of the vertices coding the variables; and (2) the mapping function MF that uses VF to
map the data. Table 1 compares the various methods using this common notation.

Processes 2017, 5, 75 4 of 18

Table 1. The various contextual layout methods expressed in a common notation (VF: vertices’ function,
MF: mapping function).

Method VF (vj) MF (Pi)

RadViz vj =
(

r· cos j
2π , r· sin j

2π

)
Pi = ∑n

j=1
xij

∑n
k=1 xik

vj

Star Coordinates vj =
(

r· cos θj
2π , r· sin θj

2π

)
or other Pi = ∑n

j=1 xijvj

Gravi++ vj =
(

r· cos θj
2π , r· sin θj

2π

)
or other

free layout
Pi = ∑n

j=1
sj xij

∑n
k=1 sk xik

·vj

Dust & Magnet vj =
(

r· cos θj
2π , r· sin θj

2π

)
or other

free layout
Pi = ∑n

j=1 aijxij·vj

GBC vj =
(

r· cos θj
2π , r· sin θj

2π

)
or other

convex polygon
Pi = ∑n

j=1
xij

∑n
k=1 xik

vj

Remarks
θ1 + ∑n

i=2(θj − θj−1) = 2π. sj stands for the strength multiplicator of vj.
aij is the attraction between dust i and magnet j, and r is the circle radius.

For VF, a circular layout is most common, and so for this paper, we only consider this type
of arrangement for the variables. The MF, on the other hand, uses slightly different forms of
weights to compute the variable node locations. The mapping concept is identical—all apply a linear
function—just some methods perform normalization and others do not. Consider, for example, Figure 1
which shows a data visualization with RadViz. It uses VF to map the attributes onto the surrounding
circle, and it uses MF to map the data points into the circle. The result of MF is dependent on the
attribute placement generated by VF, as well as the data themselves.

Processes 2017, 5, 75 4 of 18

For VF, a circular layout is most common, and so for this paper, we only consider this type of
arrangement for the variables. The MF, on the other hand, uses slightly different forms of weights to
compute the variable node locations. The mapping concept is identical—all apply a linear function—
just some methods perform normalization and others do not. Consider, for example, Figure 1 which
shows a data visualization with RadViz. It uses VF to map the attributes onto the surrounding circle,
and it uses MF to map the data points into the circle. The result of MF is dependent on the attribute
placement generated by VF, as well as the data themselves.

Figure 1. The battery dataset visualized with RadViz.

3.2. The GBC Plot and Its Relation to RadViz

In this section we formally derive the GBC plot which is the last row in Table 1. The GBC plot is
based on the method of generalized barycentric coordinate interpolation which extends barycentric
interpolation from 3-sided to n-sided convex polygons, where n ≥ 3. Generalized barycentric
coordinate interpolation was devised by Meyer et al. [6] and was later used by Nam and Mueller [7]
to specify views onto n-dimensional data spaces. In the following, we shall denote ܲ as an interior
point whose value is to be interpolated and the ݒ௜ as the values of the polygon vertices. The
interpolation weight ݓ௝ of vertex ݒ௝ for P is given by (see Figure 2 for an illustration): ݓ௝ = cot(ߙ) + cot(ߚ)ฮܲ − ௝ฮଶݒ

where the bottom part of this equation is the Euclidian distance of the locations of P and the vertex ݒ௝. The interpolated value ௫ܲ at P is then given as follows:

Figure 2. Generalized barycentric coordinate interpolation.

Figure 1. The battery dataset visualized with RadViz.

3.2. The GBC Plot and Its Relation to RadViz

In this section we formally derive the GBC plot which is the last row in Table 1. The GBC plot is
based on the method of generalized barycentric coordinate interpolation which extends barycentric
interpolation from 3-sided to n-sided convex polygons, where n≥ 3. Generalized barycentric coordinate
interpolation was devised by Meyer et al. [6] and was later used by Nam and Mueller [7] to specify
views onto n-dimensional data spaces. In the following, we shall denote P as an interior point whose
value is to be interpolated and the vi as the values of the polygon vertices. The interpolation weight wj
of vertex vj for P is given by (see Figure 2 for an illustration):

wj =
cot(α) + cot(β)

‖P− vj‖2

Processes 2017, 5, 75 5 of 18

where the bottom part of this equation is the Euclidian distance of the locations of P and the vertex vj.
The interpolated value Px at P is then given as follows:

Processes 2017, 5, 75 4 of 18

For VF, a circular layout is most common, and so for this paper, we only consider this type of
arrangement for the variables. The MF, on the other hand, uses slightly different forms of weights to
compute the variable node locations. The mapping concept is identical—all apply a linear function—
just some methods perform normalization and others do not. Consider, for example, Figure 1 which
shows a data visualization with RadViz. It uses VF to map the attributes onto the surrounding circle,
and it uses MF to map the data points into the circle. The result of MF is dependent on the attribute
placement generated by VF, as well as the data themselves.

Figure 1. The battery dataset visualized with RadViz.

3.2. The GBC Plot and Its Relation to RadViz

In this section we formally derive the GBC plot which is the last row in Table 1. The GBC plot is
based on the method of generalized barycentric coordinate interpolation which extends barycentric
interpolation from 3-sided to n-sided convex polygons, where n ≥ 3. Generalized barycentric
coordinate interpolation was devised by Meyer et al. [6] and was later used by Nam and Mueller [7]
to specify views onto n-dimensional data spaces. In the following, we shall denote ܲ as an interior
point whose value is to be interpolated and the ݒ௜ as the values of the polygon vertices. The
interpolation weight ݓ௝ of vertex ݒ௝ for P is given by (see Figure 2 for an illustration): ݓ௝ = cot(ߙ) + cot(ߚ)ฮܲ − ௝ฮଶݒ

where the bottom part of this equation is the Euclidian distance of the locations of P and the vertex ݒ௝. The interpolated value ௫ܲ at P is then given as follows:

Figure 2. Generalized barycentric coordinate interpolation. Figure 2. Generalized barycentric coordinate interpolation.

Px =
n

∑
j=1

ajvj where aj = wj/
n

∑
k=1

wk and
n

∑
j=1

aj = 1

We can modify this scheme for our purposes and instead of computing the value of a point P at
a given location inside the polygon we can compute its location Pi given its n-dimensional vector xi.
Assuming a normalized data matrix (see Section 3.1) a weight wj is then simply the value xij of data
point Di at coordinate j. The location of the point in the polygon is then given by:

Pi =
n

∑
j=1

ajvj where aj = xij/
n

∑
k=1

xik and
n

∑
j=1

aj = 1

where the vj are the 2D locations of the polygon vertices. Note that this equation is equivalent to the
RadViz equation in Table 1. For more details, please see [6,11,13].

Pi =
n

∑
j=1

xij

∑n
k=1 xik

vj

We therefore refer to the plot derived from the Generalized Barycentric Coordinate Interpolation
scheme as the Generalized Barycentric Coordinate (GBC) plot. The only difference of the GBC plot to
RadViz is that it is defined on a polygon. But we can simply discard the polygon edges and replace
the contour by an enclosing circle, as shown in Figure 1. As such the GBC plot and RadViz are
virtually equivalent.

3.3. A Demonstration of RadViz

For a demonstration of RadViz (and a motivation for our work), we use a battery dataset we
obtained from Brookhaven National Lab, Upton, NY, USA. It has 2006 samples with four components
each: “Ce”, ”Co”, ”Fe”, and “Gd”. Figure 1 shows the RadViz/GBC visualization for this dataset.
In this plot each colored point corresponds to one sample. The colors of the points encode three clusters
we obtained via k-means clustering. We observe that the points due to different clusters are mixed in
the plot center. Also, the high density and small size of the yellow cluster suggests that these samples
have very similar values for the four elements.

Processes 2017, 5, 75 6 of 18

To verify the fidelity of this plot, we visualize the samples using a parallel coordinate display,
shown in Figure 3. In this display each component is a vertical axis and each sample is a piecewise
linear line (called polyline) going across each axis at its respective value. While the parallel coordinate
display makes it more difficult to see the spatial extent of distributions, it clearly conveys the actual
values of the data. In Figure 3, we see the three clusters as bands of colored polylines. We observe that
the yellow cluster has rather high values for “Co” and “Fe” and low values for “Ce” and “Gd” which
is not what the RadViz of Figure 1 suggests. This significant error motivated the RadViz optimizations
described in Section 4.

Processes 2017, 5, 75 5 of 18

௫ܲ = ∑ ௝ܽݒ௝௡௝ୀଵ ,	where ܽ୨ = w୨ ∑ ⁄௞୬୩ୀଵݓ and ∑ ௝ܽ = 1௡௝ୀଵ

We can modify this scheme for our purposes and instead of computing the value of a point P at
a given location inside the polygon we can compute its location ௜ܲ 	 given its n-dimensional vector 	ݔ௜.
Assuming a normalized data matrix (see Section 3.1) a weight ݓ௝ is then simply the value 	ݔ௜௝ of
data point ܦ௜	 at coordinate j. The location of the point in the polygon is then given by:

௜ܲ = ∑ ௝ܽݒ௝௡௝ୀଵ ,	where ܽ୨ = x୧୨ ∑ ⁄௜௞୬୩ୀଵݔ and ∑ ௝ܽ = 1௡௝ୀଵ

where the ݒ௝ are the 2D locations of the polygon vertices. Note that this equation is equivalent to the
RadViz equation in Table 1. For more details, please see [6,11,13].

௜ܲ = ෍ ∑௜௝ݔ ௜௞௡௞ୀଵݔ ௝௡௝ୀଵݒ

We therefore refer to the plot derived from the Generalized Barycentric Coordinate Interpolation
scheme as the Generalized Barycentric Coordinate (GBC) plot. The only difference of the GBC plot to
RadViz is that it is defined on a polygon. But we can simply discard the polygon edges and replace
the contour by an enclosing circle, as shown in Figure 1. As such the GBC plot and RadViz are
virtually equivalent.

3.3. A Demonstration of RadViz

For a demonstration of RadViz (and a motivation for our work), we use a battery dataset we
obtained from Brookhaven National Lab, Upton, NY, USA. It has 2006 samples with four components
each: “Ce”, ”Co”, ”Fe”, and “Gd”. Figure 1 shows the RadViz/GBC visualization for this dataset. In
this plot each colored point corresponds to one sample. The colors of the points encode three clusters
we obtained via k-means clustering. We observe that the points due to different clusters are mixed in
the plot center. Also, the high density and small size of the yellow cluster suggests that these samples
have very similar values for the four elements.

To verify the fidelity of this plot, we visualize the samples using a parallel coordinate display,
shown in Figure 3. In this display each component is a vertical axis and each sample is a piecewise
linear line (called polyline) going across each axis at its respective value. While the parallel coordinate
display makes it more difficult to see the spatial extent of distributions, it clearly conveys the actual
values of the data. In Figure 3, we see the three clusters as bands of colored polylines. We observe
that the yellow cluster has rather high values for “Co” and “Fe” and low values for “Ce” and “Gd”
which is not what the RadViz of Figure 1 suggests. This significant error motivated the RadViz
optimizations described in Section 4.

Figure 3. The battery dataset visualized with parallel coordinates

3.4. The Distance Matrix

RadViz conceptually can show three types of distances: (1) sample to sample; (2) sample to
attribute and (3) attribute to attribute. Here, a sample is a data point (or simply a point) and an
attribute is a component or variable. These relations give rise to three distance matrices:

Figure 3. The battery dataset visualized with parallel coordinates.

3.4. The Distance Matrix

RadViz conceptually can show three types of distances: (1) sample to sample; (2) sample to
attribute and (3) attribute to attribute. Here, a sample is a data point (or simply a point) and an attribute
is a component or variable. These relations give rise to three distance matrices:

C = {DD, VV, DV}

where DD and VV store the pairwise distances (dissimilarities) of the points or variables, respectively,
and DV stores the affinity a point has to a certain variable.

There are various measures suitable to express distance or dissimilarity. We have chosen the
Euclidean Distance for DD since it is an intuitive measure for distance in (high-dimensional) space.
For DV, we use the point’s component value, as it is a good measure of affinity. In practice, we use
1-value since distance and value have opposite meaning. Finally, for VV, we choose correlation since
it captures the statistical distribution of the attributes. In practice, we use 1-correlation to make it
comparable to the other two distance metrics. Let F be the set of Distance Metrics, then

F = {Euclidean Distance, |1− value |, 1− correlation} (1)

3.5. RadViz Layout Error

From the example in Section 3.3, the properties the Radviz presently do not match the properties
in the original data set. To be more specific, the error is the distance in the original data space and the
distance in the mapped 2D space. Since the distance contains the data to data distance, data to variable
distance and variable to variable distance, the error also contain these three types of error.

We denote E as the error, where EDD, EDV and EVV represent the error of data to data, data to
variable and variable to variable, respectively; EA is the overall error of the RadViz mapping. We will
use this metric to gauge the quality of the layout.

Numerous error measurement methods have been devised in the past. Since we use MDS
(Section 4.3) to adjust the data to data error, we choose the stress as the metric. We use the
normalized stress metric between L, the matrix of low-dimensional distances Lij, and C, the matrix of
high-dimensional distances Cij:

Processes 2017, 5, 75 7 of 18

stress(L, C) =

√√√√∑ij
(

Lij − Cij
)2

∑ij C2
ij

(2)

We use this stress metric to gauge EDD, EDV , and EVV . However, since each error has a different
origin, we set L and C differently. For more details about the L and C in the EDD, EDV and EVV ,
please see the Appendix A. As suggested before, users may have different priorities in the types of
distances they try to optimize. We can express these by giving different weights to the three distances.
The overall error is then defined as follows:

E = wDDEDD + wDV EDV + wVV EVV (3)

Based on the discussion in Section 4.4, these priorities are likely EVV , then EDV followed by EDD
and so we set wDD : wDV : wVV = 2 : 4 : 8.

4. RadViz Deluxe: An Improved RadViz for More Accurate Contextual Data Mappings

As discussed above, the conventional RadViz plot has three types of errors: EDD, EDV and
EVV . It is difficult to reduce three types of errors with the same strategy reduce since the mapping
mechanism are different. To reduce these errors, we first analyze each type, reduce them separately,
and then combine these reduction effects together to reduce the overall error, EA.

4.1. Distance Spaced Attribute Layouts

We begin with EVV . The attributes (variables) are arranged around the circle—this type of layout
is a mapping from high dimensional space to 1D. Standard manifold learning can achieve this by
projecting the high dimensional data into low dimension while preserving the pairwise data similarity.
For example, project the distance matrix into 1D using MDS. However, we cannot guarantee that
this method provides a good mapping since MDS and other projecting methods become increasingly
error-prone as the distance matrix increases.

Another and more direct way to obtain a linear closed ordering of the attributes on the circle is by
arranging them along a Hamilton Cycle that operates on the matrix of pairwise correlation distances.
Note that this only provides an ordering—the spacing of adjacent attributes is determined by their
respective dissimilarity value. This process is illustrated in Figure 4 and the algorithm is given in
Algorithm 1. Finding the solution for Hamilton Cycle is a NP-complete problem.

Algorithm 1. Distance Based Attribute Layout Scheme

Input: The distance matrix (VV)
Output: The variables locations v
1: V = HC(VV) // Reorder the variables. VN (i) is the circle

2: sum VV = ∑n
i=1 F

(
Vi, VN (i)

)
// layout neighbor of Vi.

3: angle0 = 0
4: for i = 2 : n
5: anglei = anglei−1 + 2π

F(Vi ,VN (i))
sumVV

6: end for
7: for i = 1 : n // Lay out the variables around the circle.
8: vix = r·cos(anglei)

9: viy = r·sin(anglei)

10: end for

Processes 2017, 5, 75 8 of 18

Processes 2017, 5, 75 7 of 18

Another and more direct way to obtain a linear closed ordering of the attributes on the circle is
by arranging them along a Hamilton Cycle that operates on the matrix of pairwise correlation
distances. Note that this only provides an ordering—the spacing of adjacent attributes is determined
by their respective dissimilarity value. This process is illustrated in Figure 4 and the algorithm is
given in Algorithm 1. Finding the solution for Hamilton Cycle is a NP-complete problem.

Algorithm 1. Distance Based Attribute Layout Scheme
Input: The distance matrix (VV)
Output: The variables locations v
 1: V = HC(VV) // Reorder the variables. ܸࣨ (௜) is the circle
 2: sum VV = ∑)ܨ ௜ܸ, ܸࣨ (௜))௡௜ୀଵ // layout neighbor of ௜ܸ.
 3: ݈ܽ݊݃݁଴ = 0
 4: for ݅ = 2: ݊
 5: 	݈ܽ݊݃݁௜ = ݈ܽ݊݃݁௜ିଵ + ߨ2 ி(௏೔,௏ࣨ(೔))௦௨௠௏௏
 6: end for
 7: for ݅ = 1: ݊ // Lay out the variables around the circle.
௜ೣݒ :8 = ݎ ∙ (௜݈݁݃݊ܽ)ݏ݋ܿ
௜೤ݒ :9 = ݎ ∙ (௜݈݁݃݊ܽ)݊݅ݏ
10: end for

Figure 4. Illustration of the distance spaced attribute layout scheme.

We solve an approximation of it using a dynamic programming approach [18] inspired by the
original scheme independently developed by Bellman, and Hell and Karp. Initially, we divide the
entire set of connections into different subsets. Then we optimize for the best solution over subsets
and eventually expand to the whole set.

Figure 5 shows the outcome of this experiment for the three datasets we tested. “Co” and “Fe”
are strongly positive correlated and thus they are placed next to each other. We observe, from Table
2, that the variable-to-variable error ܧ௏௏	 is only 5% of the original error.

Figure 4. Illustration of the distance spaced attribute layout scheme.

We solve an approximation of it using a dynamic programming approach [18] inspired by the
original scheme independently developed by Bellman, and Hell and Karp. Initially, we divide the
entire set of connections into different subsets. Then we optimize for the best solution over subsets
and eventually expand to the whole set.

Figure 5 shows the outcome of this experiment for the three datasets we tested. “Co” and “Fe”
are strongly positive correlated and thus they are placed next to each other. We observe, from Table 2,
that the variable-to-variable error EVV is only 5% of the original error.
Processes 2017, 5, 75 8 of 18

Figure 5. Attribute layout schemes: (a) original RadViz layout; and (b) distance-spaced RadViz layout.

Table 2. RadViz vs. RadViz Deluxe in terms of the various layout errors.

 EDD EDV EVV EA

RadViz 0.416 0.232 0.999 0.697
RadViz Deluxe 0.138 0.172 0.056 0.101
Error Reduction 66.8% 25.9% 94.4% 85.5%

4.2. Iterative Data to Atrribute Layout Error Reduction

Next we aim to reduce ܧ஽௏. In the original RadViz plot, a data point’s value can be gauged by
its location—if it is located close to a given variable point then it has a high value in the corresponding
attribute, and vice versa. Hence, each variable point has a set of iso-contours where a data point’s
value is constant. In the current algorithm we restrict our study to linear contours, but an extension
to non-linear contours would follow similar error-reduction principles.

Our method seeks to reconstruct an error polygon for each data point and iteratively reduces
the size of this polygon. Figure 6a provides an illustration and Algorithm 2 lists the pseudo code. The
first concept our algorithm makes is the existence of a set of distance contours that encode the
importance of a variable to a given data point. Suppose we have the variables vertices ݒଵ, ,ଶݒ ,ଷݒ ,ସݒ ହݒ
and a test data item (x1, x2, x3, x4, x5) with its mapping location as P. Figure 6a examines the distance
contours for ସܸ . Assuming the data item has been normalized to a unit vector, the maximum
importance a variable can have is 1.0. This would mean in the case examined that ݔସ = 1.0 and so P
would coincide with ݒସ in the plot. In contrast, if ݔସ = 0.0 which is the minimum importance, then
with the current vertex ordering P would need to fall on the edge ݒହݒଵ, ݒଵݒଶ or ݒଶݒଷ. Any other
value would lead to a placement of P onto some contour in between. Figure 6a shows the contour ܳହܳଵܳଶܳଷതതതതതതതതതതതതത for ݔସ = 0.6. It is constructed by connecting v4 with all vertices vi and marking the points ܳ௜ where (ݒସܳ௜)/(ݒସݒ௜) = 1 − 0.6. Connecting these points yields the contour.

Next we find ݒସ on the error polygon (marked as ܧ ସܲ) by intersecting the contour with the line
that connects ݒସ with P. Performing this procedure for all variables yields all vertices of the error
polygon (marked as polygon ܧ ଵܲܧ ଶܲܧ ଷܲܧ ସܲܧ ହܲതതതതതതതതതതതതതതതതതതതതതതതത). The iterative step concludes by moving P into the
center of the error polygon, marked as P’, and then a new iteration begins. This type of iteration is
also like MDS, using iteration to optimize the error. From our test [10] and theoretical prove [19], this
algorithm reduces the error monotonically. The complexity of this algorithm is O (IDV × m × n).

In practice, we iterate about 20 times which completes in a couple of seconds and so does not
cause a significant performance drop. After running this algorithm, the data-to-variable error ܧ஽௏ is
reduced to roughly 75% of the original error (see Table 2).

Figure 5. Attribute layout schemes: (a) original RadViz layout; and (b) distance-spaced RadViz layout.

Processes 2017, 5, 75 9 of 18

Table 2. RadViz vs. RadViz Deluxe in terms of the various layout errors.

EDD EDV EVV EA

RadViz 0.416 0.232 0.999 0.697
RadViz Deluxe 0.138 0.172 0.056 0.101
Error Reduction 66.8% 25.9% 94.4% 85.5%

4.2. Iterative Data to Atrribute Layout Error Reduction

Next we aim to reduce EDV . In the original RadViz plot, a data point’s value can be gauged by its
location—if it is located close to a given variable point then it has a high value in the corresponding
attribute, and vice versa. Hence, each variable point has a set of iso-contours where a data point’s
value is constant. In the current algorithm we restrict our study to linear contours, but an extension to
non-linear contours would follow similar error-reduction principles.

Our method seeks to reconstruct an error polygon for each data point and iteratively reduces the
size of this polygon. Figure 6a provides an illustration and Algorithm 2 lists the pseudo code. The first
concept our algorithm makes is the existence of a set of distance contours that encode the importance
of a variable to a given data point. Suppose we have the variables vertices v1, v2, v3, v4, v5 and a test
data item (x1, x2, x3, x4, x5) with its mapping location as P. Figure 6a examines the distance contours
for V4. Assuming the data item has been normalized to a unit vector, the maximum importance
a variable can have is 1.0. This would mean in the case examined that x4 = 1.0 and so P would
coincide with v4 in the plot. In contrast, if x4 = 0.0 which is the minimum importance, then with the
current vertex ordering P would need to fall on the edge v5v1, v1v2 or v2v3. Any other value would
lead to a placement of P onto some contour in between. Figure 6a shows the contour Q5Q1Q2Q3

for x4 = 0.6. It is constructed by connecting v4 with all vertices vi and marking the points Qi where(
v4Qi

)
/(v4vi) = 1− 0.6. Connecting these points yields the contour.

Next we find v4 on the error polygon (marked as EP4) by intersecting the contour with the line
that connects v4 with P. Performing this procedure for all variables yields all vertices of the error
polygon (marked as polygon EP1EP2EP3EP4EP5). The iterative step concludes by moving P into the
center of the error polygon, marked as P’, and then a new iteration begins. This type of iteration is
also like MDS, using iteration to optimize the error. From our test [10] and theoretical prove [19],
this algorithm reduces the error monotonically. The complexity of this algorithm is O (IDV × m × n).

In practice, we iterate about 20 times which completes in a couple of seconds and so does not
cause a significant performance drop. After running this algorithm, the data-to-variable error EDV is
reduced to roughly 75% of the original error (see Table 2).

Algorithm 2. Iterative Data to Attribute Layout Error Reduction.

Input: the distance matrix (DV), the RadViz plot (variables point locations, data item point locations), the error
threshold (EDV) and maximum iterations (IDV).
Output: the data points locations.
1: while EDV < threshold || IDV > max-threshold
2: for each data point P
3: for each variable vertex vj
4: Compute distance contour.
5: Compute error polygon vertex EPj.
6: end for
7: Construct error polygon EP formed by all the EPj.
8: Move P to the center of EP.
9: end for
10: Compute EDV and iterations IDV .
11: end while

Processes 2017, 5, 75 10 of 18

Processes 2017, 5, 75 9 of 18

Algorithm 2. Iterative Data to Attribute Layout Error Reduction.
Input: the distance matrix (DV), the RadViz plot (variables point locations, data item point
locations), the error threshold (ܧ஽௏) and maximum iterations (ܫ஽௏).
Output: the data points locations.
 1: while ܧ஽௏ < threshold || ܫ஽௏ > max-threshold
 2: for each data point P
 3: for each variable vertex vj
 4: Compute distance contour.
 5: Compute error polygon vertex ܧ ௝ܲ.
 6: end for
 7: Construct error polygon EP formed by all the ܧ ௝ܲ.
 8: Move P to the center of EP.
 9: end for
10: Compute ܧ஽௏ and iterations ܫ஽௏.
11: end while

Figure 6. (a) The error contours for the iterative data to attribute layout error reduction; (b) the force
directed adjustment procedure for the data to data layout error reduction.

4.3. Force Directed Adjustment of the Data Points

The remaining error is the data to data error. We can adjust the locations of the data points via
MDS to reduce the data to data error. A way to implement MDS is via force directed layout [20].

As the data items already have the locations, we can easily get the error between each data items
from the real distance to the 2-D mapping distance. We should move the data item according to the
all the data errors relevant to reduce the error. The input is the pairwise distance of data to data in
the original data space and in the mapped space. In order to move the data item, we construct a
network where the vertices correspond to the data points and the edges are springs loaded according
to the error. This scheme adjusts the data locations one by one as shown in Figure 6b.

Since we have m points, we should fix the other m-1 points and take turns to move one data
point at a time. Suppose A, B, C, D, and E are fixed data points and P is the point we plan to adjust
the location for. P has two types of distances to these five points: (1) the high-dimensional space
distance and (2) the 2D layout distances. The difference of these two distances forms the error and
we should move P to the error reduction direction. We set the difference of these two distances as a

Figure 6. (a) The error contours for the iterative data to attribute layout error reduction; (b) the force
directed adjustment procedure for the data to data layout error reduction.

4.3. Force Directed Adjustment of the Data Points

The remaining error is the data to data error. We can adjust the locations of the data points via
MDS to reduce the data to data error. A way to implement MDS is via force directed layout [20].

As the data items already have the locations, we can easily get the error between each data items
from the real distance to the 2-D mapping distance. We should move the data item according to the all
the data errors relevant to reduce the error. The input is the pairwise distance of data to data in the
original data space and in the mapped space. In order to move the data item, we construct a network
where the vertices correspond to the data points and the edges are springs loaded according to the
error. This scheme adjusts the data locations one by one as shown in Figure 6b.

Since we have m points, we should fix the other m-1 points and take turns to move one data
point at a time. Suppose A, B, C, D, and E are fixed data points and P is the point we plan to adjust
the location for. P has two types of distances to these five points: (1) the high-dimensional space
distance and (2) the 2D layout distances. The difference of these two distances forms the error and we
should move P to the error reduction direction. We set the difference of these two distances as a force
either drag or push in each vertex direction. We use fA, fB, fC, fD and fE to denote the force vectors
from each vertex and the five force vectors together form an aggregate force in direction fS to move P.
The direction of force fS is the same as the direction of the error reduction gradient. The algorithm
is given in Algorithm 3. The complexity of this algorithm is O (IDD × m × m) and it converges [19].
After running this algorithm, we observe in Table 2 that the data to data error is reduced significantly
to roughly 15% of the original error.

Algorithm 3. Force Directed Adjustment of the Data Points

Input: DD, P, v, error threshold EDD, maximum iterations IDD.
Output: the data points locations.
1: if EDD < threshold || IDD > max-threshold, return.
2: for each data point Di
3: Compute the forces f j according to the error.
4: Compute the resultant force fs = ∑m

j=1 f j.
5: Compute the acceleration by the force.
6: Move this data point for small step (typically 0.2).
7: end for
8: Compute the error EDD and iterations IDD.
9: end if

Processes 2017, 5, 75 11 of 18

4.4. Comprehensive Layout

The previous sections described the three algorithms we designed to reduce the three types of
error. Now, to reduce the overall error, we need to combine them into a single algorithm and create
a comprehensive plot we call RadViz Deluxe. The problem is to determine the order in which to apply
the three algorithms since they can affect each other. In practice we fix the variables first since this
provides a mapping that is more accurate than the one obtained when the mapping error is reduced
first. Next we adjust the data items to make the layout more accurate. Concretely, we apply our
schemes in the following order: (1) distance spaced attribute layout; (2) iterative data to attribute
error reduction; and (3) force directed data point adjustment. We observe that the layout has inherited
improvements from all three schemes, but the effect of the distance spaced layout seems to the strongest.
Figure 7 shows the final result of RadViz Deluxe after all schemes have been applied.

Processes 2017, 5, 75 10 of 18

force either drag or push in each vertex direction. We use ஺݂, ஻݂, ஼݂, ஽݂ and ா݂ to denote the force
vectors from each vertex and the five force vectors together form an aggregate force in direction ௌ݂
to move P. The direction of force ௌ݂ is the same as the direction of the error reduction gradient. The
algorithm is given in Algorithm 3. The complexity of this algorithm is O (IDD × m × m) and it converges
[19]. After running this algorithm, we observe in Table 2 that the data to data error is reduced
significantly to roughly 15% of the original error.

Algorithm 3. Force Directed Adjustment of the Data Points
Input: DD, P, v, error threshold EDD, maximum iterations IDD.
Output: the data points locations.
1: if ܧ஽஽ < threshold || ܫ஽஽ > max-threshold, return.
2: for each data point Di

3: Compute the forces ௝݂ according to the error.
4: Compute the resultant force ௦݂ = ∑ ௝݂௠௝ୀଵ .
5: Compute the acceleration by the force.
6: Move this data point for small step (typically 0.2).
7: end for
8: Compute the error ܧ஽஽ and iterations ܫ஽஽.
9: end if

4.4. Comprehensive Layout

The previous sections described the three algorithms we designed to reduce the three types of
error. Now, to reduce the overall error, we need to combine them into a single algorithm and create
a comprehensive plot we call RadViz Deluxe. The problem is to determine the order in which to apply
the three algorithms since they can affect each other. In practice we fix the variables first since this
provides a mapping that is more accurate than the one obtained when the mapping error is reduced
first. Next we adjust the data items to make the layout more accurate. Concretely, we apply our
schemes in the following order: (1) distance spaced attribute layout; (2) iterative data to attribute error
reduction; and (3) force directed data point adjustment. We observe that the layout has inherited
improvements from all three schemes, but the effect of the distance spaced layout seems to the
strongest. Figure 7 shows the final result of RadViz Deluxe after all schemes have been applied.

Figure 7. The battery data set visualized with RadViz Deluxe.

In Figure 7 we can easily recognize three distinguished clusters—green, blue and yellow
clusters. The green cluster is dominated by “Ce”, the blue cluster is dominated by “Gd” while the
yellow cluster is dominated by “Fe” and “Co”. This in fact corresponds to the features we also
observed in the parallel coordinate plot (Figure 3). At the same time, we also observe some outliers,

Figure 7. The battery data set visualized with RadViz Deluxe.

In Figure 7 we can easily recognize three distinguished clusters—green, blue and yellow clusters.
The green cluster is dominated by “Ce”, the blue cluster is dominated by “Gd” while the yellow
cluster is dominated by “Fe” and “Co”. This in fact corresponds to the features we also observed in
the parallel coordinate plot (Figure 3). At the same time, we also observe some outliers, for example,
the point marked by a grey circle in Figure 7. This is an outlier because its values with respect to all
attributes are low so that it tries to stay away from all the attributes. Compared to the original RadViz
(see Figure 1), the samples in the visualization generated by RadViz Deluxe are more scattered based
on their components. This can assist scientists to label each cluster according to its component features.
We performed such as (simple) labelling in Figure 7.

Table 2 lists the various error metrics. We can clearly see that with the distance spaced layout,
the EVV reduces sharply; then the iterative error reduction yields a large improvement of the EDV ;
and finally, the force directed adjustment reduces the EDD. The EVV has a higher error than EDV
and EDD since the layout of variable to variable maps the variables to 1D but the other two map the
data to 2D. But EDD and EDV are also important—they can preserve an accurate data distribution.
As demonstrated above, RadViz Deluxe improves the fidelity of conventional RadViz dramatically.

4.5. Assessiong the Fidelity of Presserving Contextual Relation

In this section, we verify if, and by how much, RadViz Deluxe improves upon the fidelity of
RadViz in its ability to preserve contextual relations, expressed as the distance of each data point to
the attribute’s vertex. We again use the battery dataset as an example. Figure 8 visualizes the true
high-dimensional distances with respect to each of the four attributes—“Gd” (red arrow), “Ce” (green
arrow) and “Co” (pink arrow) and“Fe” (blue arrow), respectively—by intensity-shading all points
in terms of that distance (here ‘distance’ refers to (1-value) in the chosen attribute). An irregular or

Processes 2017, 5, 75 12 of 18

adverse shading pattern would point to problems. This does not seem to be the case. We can clearly
see that for each attribute, the respective shading of the samples gradually fades out as the distance
becomes larger.

Processes 2017, 5, 75 11 of 18

for example, the point marked by a grey circle in Figure 7. This is an outlier because its values with
respect to all attributes are low so that it tries to stay away from all the attributes. Compared to the
original RadViz (see Figure 1), the samples in the visualization generated by RadViz Deluxe are more
scattered based on their components. This can assist scientists to label each cluster according to its
component features. We performed such as (simple) labelling in Figure 7.

Table 2 lists the various error metrics. We can clearly see that with the distance spaced layout,
the ܧ௏௏ reduces sharply; then the iterative error reduction yields a large improvement of the ܧ஽௏;
and finally, the force directed adjustment reduces the ܧ஽஽. The ܧ௏௏ has a higher error than ܧ஽௏ and ܧ஽஽ since the layout of variable to variable maps the variables to 1D but the other two map the data
to 2D. But ܧ஽஽ and ܧ஽௏ are also important—they can preserve an accurate data distribution. As
demonstrated above, RadViz Deluxe improves the fidelity of conventional RadViz dramatically.

4.5. Assessiong the Fidelity of Presserving Contextual Relation

In this section, we verify if, and by how much, RadViz Deluxe improves upon the fidelity of
RadViz in its ability to preserve contextual relations, expressed as the distance of each data point to
the attribute’s vertex. We again use the battery dataset as an example. Figure 8 visualizes the true
high-dimensional distances with respect to each of the four attributes—“Gd” (red arrow), “Ce”
(green arrow) and “Co” (pink arrow) and“Fe” (blue arrow), respectively—by intensity-shading all
points in terms of that distance (here ‘distance’ refers to (1-value) in the chosen attribute). An irregular
or adverse shading pattern would point to problems. This does not seem to be the case. We can clearly
see that for each attribute, the respective shading of the samples gradually fades out as the distance
becomes larger.

Figure 8. The sample values in terms of “Gd” (a); “Ce” (b); “Co” (c) and “Fe” (d) respectively. The
darker intensities correspond to higher values.

Next, Figure 9 uses the same intensity-shading no for RadViz, for the “Fe” attribute. We observe
that there is no gradual fading of intensities away from the “Fe” vertex node. Instead there is a darker
shaded cluster distant to the node, and multiple shaded sprinkles throughout the display. It is

Figure 8. The sample values in terms of “Gd” (a); “Ce” (b); “Co” (c) and “Fe” (d) respectively.
The darker intensities correspond to higher values.

Next, Figure 9 uses the same intensity-shading no for RadViz, for the “Fe” attribute. We observe
that there is no gradual fading of intensities away from the “Fe” vertex node. Instead there is a darker
shaded cluster distant to the node, and multiple shaded sprinkles throughout the display. It is obvious
that the original distance and the mapped distances do not match overly well, while they do with
RadViz Deluxe (see Figure 8d).

Processes 2017, 5, 75 12 of 18

obvious that the original distance and the mapped distances do not match overly well, while they do
with RadViz Deluxe (see Figure 8d).

Figure 9. Mapping sample value to intensity for RadViz.

To quantitatively measure the contextual relation preservation, we plot the Euclidean distance
between the sample and each of the four attribute vertices vs. the sample value in the given attribute.
Figures 10 and 11 show these plots for RadViz and for RadViz Deluxe, respectively. We observe that
the point clouds in Figure 10 appear significantly more scattered than those in Figure 11. This shows
that RadViz Deluxe performs better in preserving the contextual relation—the value reduces while
the distance becomes larger.

Figure 10. Distance vs. value plot for RadViz for (a) Gd; (b) Ce; (c) Co and (d) Fe.

Figure 9. Mapping sample value to intensity for RadViz.

Processes 2017, 5, 75 13 of 18

To quantitatively measure the contextual relation preservation, we plot the Euclidean distance
between the sample and each of the four attribute vertices vs. the sample value in the given attribute.
Figures 10 and 11 show these plots for RadViz and for RadViz Deluxe, respectively. We observe that
the point clouds in Figure 10 appear significantly more scattered than those in Figure 11. This shows
that RadViz Deluxe performs better in preserving the contextual relation—the value reduces while the
distance becomes larger.

Processes 2017, 5, 75 12 of 18

obvious that the original distance and the mapped distances do not match overly well, while they do
with RadViz Deluxe (see Figure 8d).

Figure 9. Mapping sample value to intensity for RadViz.

To quantitatively measure the contextual relation preservation, we plot the Euclidean distance
between the sample and each of the four attribute vertices vs. the sample value in the given attribute.
Figures 10 and 11 show these plots for RadViz and for RadViz Deluxe, respectively. We observe that
the point clouds in Figure 10 appear significantly more scattered than those in Figure 11. This shows
that RadViz Deluxe performs better in preserving the contextual relation—the value reduces while
the distance becomes larger.

Figure 10. Distance vs. value plot for RadViz for (a) Gd; (b) Ce; (c) Co and (d) Fe. Figure 10. Distance vs. value plot for RadViz for (a) Gd; (b) Ce; (c) Co and (d) Fe.Processes 2017, 5, 75 13 of 18

Figure 11. Distance vs. value plot for RadViz Deluxe for (a) Gd; (b) Ce; (c) Co and (d) Fe.

Ideally, the plots would show a straight line, which would have a correlation factor of 1.0. In our
final measurement we compute the correlation coefficients for each plot of Figures 10 and 12. Figure
12 visualizes the outcome as a bar chart. We observe that RadViz Deluxe has a significantly better
correlation factor for all plots. Also, during the optimization process, we found that the distance spaced
layout process accounts for most (average 81.5%) of this improvement.

Figure 12. Comparing RaViz and RadViz Deluxe in terms of the correlation factor for the plots shown
in Figures 10 and 11. A higher factor means a better approximation to the ideal straight line with a
correlation factor of 1.0.

5. Case Study

Now that we have described our method, we can move to a set of case studies that illustrate how
it can be used to assist scientists as well as practitioners to extract insightful information about the
properties of chemical data.

5.1. Case Study 1: Determining Promsing Solvents for Chemical Experiments

In chemical experiments, numerous solvents/materials are typically available. Figuring out the
most appropriate solvents for a given experiment can save much time for scientists. The solvents
typically contain multiple components (mapped to attributes) and due to this it is often difficult to

Figure 11. Distance vs. value plot for RadViz Deluxe for (a) Gd; (b) Ce; (c) Co and (d) Fe.

Processes 2017, 5, 75 14 of 18

Ideally, the plots would show a straight line, which would have a correlation factor of 1.0. In our
final measurement we compute the correlation coefficients for each plot of Figures 10 and 12. Figure 12
visualizes the outcome as a bar chart. We observe that RadViz Deluxe has a significantly better
correlation factor for all plots. Also, during the optimization process, we found that the distance spaced
layout process accounts for most (average 81.5%) of this improvement.

Processes 2017, 5, 75 13 of 18

Figure 11. Distance vs. value plot for RadViz Deluxe for (a) Gd; (b) Ce; (c) Co and (d) Fe.

Ideally, the plots would show a straight line, which would have a correlation factor of 1.0. In our
final measurement we compute the correlation coefficients for each plot of Figures 10 and 12. Figure
12 visualizes the outcome as a bar chart. We observe that RadViz Deluxe has a significantly better
correlation factor for all plots. Also, during the optimization process, we found that the distance spaced
layout process accounts for most (average 81.5%) of this improvement.

Figure 12. Comparing RaViz and RadViz Deluxe in terms of the correlation factor for the plots shown
in Figures 10 and 11. A higher factor means a better approximation to the ideal straight line with a
correlation factor of 1.0.

5. Case Study

Now that we have described our method, we can move to a set of case studies that illustrate how
it can be used to assist scientists as well as practitioners to extract insightful information about the
properties of chemical data.

5.1. Case Study 1: Determining Promsing Solvents for Chemical Experiments

In chemical experiments, numerous solvents/materials are typically available. Figuring out the
most appropriate solvents for a given experiment can save much time for scientists. The solvents
typically contain multiple components (mapped to attributes) and due to this it is often difficult to

Figure 12. Comparing RaViz and RadViz Deluxe in terms of the correlation factor for the plots shown
in Figures 10 and 11. A higher factor means a better approximation to the ideal straight line with
a correlation factor of 1.0.

5. Case Study

Now that we have described our method, we can move to a set of case studies that illustrate how
it can be used to assist scientists as well as practitioners to extract insightful information about the
properties of chemical data.

5.1. Case Study 1: Determining Promsing Solvents for Chemical Experiments

In chemical experiments, numerous solvents/materials are typically available. Figuring out the
most appropriate solvents for a given experiment can save much time for scientists. The solvents
typically contain multiple components (mapped to attributes) and due to this it is often difficult
to obtain the solvent most suitable for a certain task. For our case study we used a dataset [21] of
103 solvents with 9 attributes each which are “Boilpoint”(BoilP), “Dielectric” (Diel), “DipoleMoment”
(DipoM), “RefractiveIndex” (RefI), ”ET30”, “Density”, “logP” and “Solubility”(Solu). We used this
dataset and produced the RadViz Deluxe visualization shown in Figure 13. The error of original
Radviz is 1.314, while that of Radviz Deluxe is 0.637. This reduces the error to 51.5%.

Processes 2017, 5, 75 14 of 18

obtain the solvent most suitable for a certain task. For our case study we used a dataset [21] of 103
solvents with 9 attributes each which are “Boilpoint”(BoilP), “Dielectric” (Diel), “DipoleMoment”
(DipoM), “RefractiveIndex” (RefI), ”ET30”, “Density”, “logP” and “Solubility”(Solu). We used this
dataset and produced the RadViz Deluxe visualization shown in Figure 13. The error of original
Radviz is 1.314, while that of Radviz Deluxe is 0.637. This reduces the error to 51.5%.

Figure 13. RadViz Deluxe visualizing the solvents data.

In this plot we observe that the majority of the solvents have rather similar properties. They
aggregate quite closely in the center which means that are somewhat average blends of most of the
attributes, although they have slight biases. There are also a few interesting outliers located close to
the circle boundary, circled in red. These are possibly interesting solvents with properties dominated
by one or two properties, “Diel”, “Density”, “Refl” & “logP”, “Solu” & “DipoM”, respectively.

In chemical experiments, oftentimes not all of the properties of the solvents are taken into
consideration, limiting the exploration to a subset of high-impact properties. Let us consider the case
in which the scientists only care about three specific properties: “DipoM”, “BoilP” and “Refl”. This
allows us to restrict the layout to these three properties and so achieve a more differentiated display
with respect to only these three. In this particular example, since these three properties locate right
next to one another on the circle, the display will reveal much more detail on this data subspace when
only these properties are selected via mouse interactions in the display.

Figure 14a shows the outcome of this refined layout. As before, analysts can select a certain
solvent according to the distance it has to each of these three properties. For example, a visual search
for a solvent with low “BoilP” would lead to a quick discovery of the one marked by a red circle. On
the other hand, if one would look for a solvent with high “BoilP” and “DipoM” and low “Refl”, the
green circled solvent would be quickly identified via visual inspection.

Note that the focused visual searches explained just now are a bit harder to do, but not
impossible, in the all-property display of Figure 13. Clearly, the ability to turn properties on and off
on the fly can come in handy in the exploration process. Furthermore, to enable users to keep track
of the changing topology of the embedded point cloud our display supports animated transitions.

Figure 13. RadViz Deluxe visualizing the solvents data.

Processes 2017, 5, 75 15 of 18

In this plot we observe that the majority of the solvents have rather similar properties.
They aggregate quite closely in the center which means that are somewhat average blends of most of
the attributes, although they have slight biases. There are also a few interesting outliers located close to
the circle boundary, circled in red. These are possibly interesting solvents with properties dominated
by one or two properties, “Diel”, “Density”, “Refl” & “logP”, “Solu” & “DipoM”, respectively.

In chemical experiments, oftentimes not all of the properties of the solvents are taken into
consideration, limiting the exploration to a subset of high-impact properties. Let us consider the case in
which the scientists only care about three specific properties: “DipoM”, “BoilP” and “Refl”. This allows
us to restrict the layout to these three properties and so achieve a more differentiated display with
respect to only these three. In this particular example, since these three properties locate right next to
one another on the circle, the display will reveal much more detail on this data subspace when only
these properties are selected via mouse interactions in the display.

Figure 14a shows the outcome of this refined layout. As before, analysts can select a certain
solvent according to the distance it has to each of these three properties. For example, a visual search
for a solvent with low “BoilP” would lead to a quick discovery of the one marked by a red circle.
On the other hand, if one would look for a solvent with high “BoilP” and “DipoM” and low “Refl”,
the green circled solvent would be quickly identified via visual inspection.

Note that the focused visual searches explained just now are a bit harder to do, but not impossible,
in the all-property display of Figure 13. Clearly, the ability to turn properties on and off on the fly can
come in handy in the exploration process. Furthermore, to enable users to keep track of the changing
topology of the embedded point cloud our display supports animated transitions.Processes 2017, 5, 75 15 of 18

Figure 14. RadViz Deluxe visualization for a subset of properties chosen by the user: (a) choose
interesting solvents based on distance from properties; or (b) choose interesting solvents based on
cluster.

While small experiments can be accomplished with only a few solvents large experiment require
a large number of solvents. To quickly pick numerous solvents with certain properties, our system
supports k-means clustering to divide the set of points into groups of similar points. Figure 14b shows
the outcome of this process for k = 3. In this figure, the blue cluster is the low “Refl”, “BoilP” and
“DipoM” solvents, the green cluster contains high “Refl” and “BoilP” materials, while the yellow
cluster consists of high “BoilP” and “DipoM” and low “Refl” ones.

5.2. Case Study 2: Multivariate Root Cause Analysis of Forest Fires

Forest fires are fairly frequent and many factors are at play that may lead to their cause. We
obtained a forest fire data from the Montesinho Natural Park, which is the Tr´as-os-Montes Northeast
region of Portugal [22]. This park contains a fairly high diversity in flora and fauna and is therefore
interesting to study. Inserted within a supra-Mediterranean climate, the average annual temperature
is within the range 8 to 12 °C. The data set has 581 different fire instances with the following eight
environmental and atmospheric factors and encodings—Fine Fuel Moisture Code (FFMC), Duff
Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), temperature, relative humidity
(RH), wind speed, and the forest area burnt by the fire. Figure 15 shows a visualization of the dataset
with RadViz Deluxe. The error of original Radviz is 1.107, while that of Radviz Deluxe is 0.687. The
error reduces 40%.

We used k-means (k = 2) to identify two distinct types of fires, colored blue and orange.
There are some interesting observations we can make just by looking at the locations of the

various factors on the circle boundary. We observe that wind and burnt area are fairly closely spaced
and therefore more related which makes sense because stronger winds promote the spread of the fire.
We also observe that humidity and temperature are closely related which also makes sense given the
specific origin of the data.

Now looking at the data themselves we see some outliers close to the border of the circle. These
fires are not regular fires and are caused by extreme settings. For example, the fire marked by the red
circle is mainly caused by extremely high temperature and extremely high relative humidity. This is
not a usual condition, apparently. Typically, high humidity prevents large fires, however when it
comes to extremely high temperature, we learn that there is a possibility of fire nevertheless.
Fortunately this condition is rare, as evidenced by the sparsity of the data.

Figure 14. RadViz Deluxe visualization for a subset of properties chosen by the user: (a) choose
interesting solvents based on distance from properties; or (b) choose interesting solvents based
on cluster.

While small experiments can be accomplished with only a few solvents large experiment require
a large number of solvents. To quickly pick numerous solvents with certain properties, our system
supports k-means clustering to divide the set of points into groups of similar points. Figure 14b shows
the outcome of this process for k = 3. In this figure, the blue cluster is the low “Refl”, “BoilP” and
“DipoM” solvents, the green cluster contains high “Refl” and “BoilP” materials, while the yellow
cluster consists of high “BoilP” and “DipoM” and low “Refl” ones.

Processes 2017, 5, 75 16 of 18

5.2. Case Study 2: Multivariate Root Cause Analysis of Forest Fires

Forest fires are fairly frequent and many factors are at play that may lead to their cause.
We obtained a forest fire data from the Montesinho Natural Park, which is the Tr´as-os-Montes
Northeast region of Portugal [22]. This park contains a fairly high diversity in flora and fauna and
is therefore interesting to study. Inserted within a supra-Mediterranean climate, the average annual
temperature is within the range 8 to 12 ◦C. The data set has 581 different fire instances with the
following eight environmental and atmospheric factors and encodings—Fine Fuel Moisture Code
(FFMC), Duff Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), temperature,
relative humidity (RH), wind speed, and the forest area burnt by the fire. Figure 15 shows
a visualization of the dataset with RadViz Deluxe. The error of original Radviz is 1.107, while that of
Radviz Deluxe is 0.687. The error reduces 40%.

We used k-means (k = 2) to identify two distinct types of fires, colored blue and orange.
There are some interesting observations we can make just by looking at the locations of the

various factors on the circle boundary. We observe that wind and burnt area are fairly closely spaced
and therefore more related which makes sense because stronger winds promote the spread of the fire.
We also observe that humidity and temperature are closely related which also makes sense given the
specific origin of the data.

Now looking at the data themselves we see some outliers close to the border of the circle.
These fires are not regular fires and are caused by extreme settings. For example, the fire marked by
the red circle is mainly caused by extremely high temperature and extremely high relative humidity.
This is not a usual condition, apparently. Typically, high humidity prevents large fires, however
when it comes to extremely high temperature, we learn that there is a possibility of fire nevertheless.
Fortunately this condition is rare, as evidenced by the sparsity of the data.

The fires in the center of plot occur more regularly. The two clusters can be well distinguished in
terms of burn area (and wind). The orange cluster has fires that burn large areas and at high speed.
These are essentially “big fires”. The fires in the blue cluster are then consequently “small fires”.
We also see that both types of fires have similar spreads in temperature and humidity, but small fires
have higher values in DMC, DC, and ignite faster (higher ISI).

Processes 2017, 5, 75 16 of 18

The fires in the center of plot occur more regularly. The two clusters can be well distinguished
in terms of burn area (and wind). The orange cluster has fires that burn large areas and at high speed.
These are essentially “big fires”. The fires in the blue cluster are then consequently “small fires”. We
also see that both types of fires have similar spreads in temperature and humidity, but small fires
have higher values in DMC, DC, and ignite faster (higher ISI).

Figure 15. RadViz Deluxe visualization of the forest fire data set.

6. Conclusions

We have presented a framework that improves upon the fidelity of RadViz, aptly called RadViz
Deluxe. It enforced three types of distance constraints via dedicated optimization procedures—the
similarity among data samples, the similarity among data attributes, and the affinity of the data
sample attributes. Using these non-linear layout optimizations we are able to achieve displays that
are less ambiguous and more insightful about the phenomena manifest in the data. We demonstrated
the effectiveness of our display via three domain studies.

Future work will look into scalability issues for large data and high dimensionality, possibly by
using a level of detail approach. We would also like to conduct a set of formal user studies to gain
more insight into the usability of our system. We did receive a number of encouraging comments
from casual users of our system and so we believe that the formal user studies will largely support
the design we have now.

Acknowledgments: This research was partially supported by NSF grant IIS 1527200, by the MSIP, Korea, under
the “ICT Consilience Creative Program” and by LDRD grant 16-041 from Brookhaven National Lab.

Author Contributions: Shenghui Cheng and Klaus Mueller collaborated on deriving both the theoretical and
practical aspects of the algorithm. Shenghui Cheng coded the implementation and Shenghui Cheng and Wei Xu
ran the experiments. Klaus Mueller wrote the paper based on a draft prepared by the Shenghui Cheng.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Data to Data Error

The data to data error results from the difference between the distances in high-dimensional
space and 2D layout space. These two types of distances can be computed easily—the former is one
of the distance metrics F given in Equation (A1) and the other is the Euclidean distance that gauges
user perception. Suppose the location of data item ܦ௜ is 	 ௜ܲ, and ‖∙‖ is the Euclidean distance. Then
we can compute the normalized form of each distance and compare them.

Figure 15. RadViz Deluxe visualization of the forest fire data set.

6. Conclusions

We have presented a framework that improves upon the fidelity of RadViz, aptly called RadViz
Deluxe. It enforced three types of distance constraints via dedicated optimization procedures—the
similarity among data samples, the similarity among data attributes, and the affinity of the data sample
attributes. Using these non-linear layout optimizations we are able to achieve displays that are less
ambiguous and more insightful about the phenomena manifest in the data. We demonstrated the
effectiveness of our display via three domain studies.

Processes 2017, 5, 75 17 of 18

Future work will look into scalability issues for large data and high dimensionality, possibly by
using a level of detail approach. We would also like to conduct a set of formal user studies to gain
more insight into the usability of our system. We did receive a number of encouraging comments
from casual users of our system and so we believe that the formal user studies will largely support the
design we have now.

Acknowledgments: This research was partially supported by NSF grant IIS 1527200, by the MSIP, Korea, under the
“ICT Consilience Creative Program” and by LDRD grant 16-041 from Brookhaven National Lab.

Author Contributions: Shenghui Cheng and Klaus Mueller collaborated on deriving both the theoretical and
practical aspects of the algorithm. Shenghui Cheng coded the implementation and Shenghui Cheng and Wei Xu
ran the experiments. Klaus Mueller wrote the paper based on a draft prepared by the Shenghui Cheng.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix.

Appendix A.1. Data to Data Error

The data to data error results from the difference between the distances in high-dimensional space
and 2D layout space. These two types of distances can be computed easily—the former is one of the
distance metrics F given in Equation (A1) and the other is the Euclidean distance that gauges user
perception. Suppose the location of data item Di is Pi, and ‖·‖ is the Euclidean distance. Then we can
compute the normalized form of each distance and compare them.

Cij = F
(

Di, Dj
)
/

m

∑
k=1

F(Di, Dk) Lij = ‖Pi − Pj‖/
m

∑
k=1
‖Pi − Pk‖ (A1)

Appendix A.2. Data to Variable Error

RadViz and RadViz Deluxe place each point in a position relative to the variables. However,
since the location of the data point is defined by the contour—it uses ‖EPj − vi‖ to represent F

(
Di, Vj

)
,

there is a scale ratio αij for Di in the variable Vj.

αij = ‖EPj − vi‖/F
(

Di, Vj
)

(A2)

Then the real distance and mapped distance can be obtained as

Cij = αijF
(

Di, Vj
)

Lij = ‖Pi − vj‖ (A3)

Appendix A.3. Variable to Variable Error

RadViz and RadViz Deluxe place the variables around the circle. Thus, we can use the arc length
to measure the distance between two variables. As we know, the sum of distances of neighboring
variables around the circle is its perimeter:

n

∑
k=1

ˆvkvN (k) = 2πr (A4)

where vN (k) is the neighbor point in the counterclockwise of vk. However, in the variable to variable
distance, we cannot guarantee that the sum of the neighbor variables distances satisfies condition (A5),
so we must define a scale ratio β:

β = 2πr/
n

∑
k=1

F
(

Vk, VN (k)

)
(A5)

Then the real and mapping distance, respectively, can be obtained as:

Processes 2017, 5, 75 18 of 18

Cij = βF
(
Vi, Vj

)
Lij = ‖vi − vj‖ (arc length) (A6)

References

1. Jolliffe, I.T. Principal Component Analysis. In Springer Series in Statistics, 2nd ed.; Springer: New York, NY,
USA, 2002.

2. Kruskal, J.; Wish, M. Multidimensional Scaling; Sage Publications: Thousand Oaks, CA, USA, 1977.
3. Cheng, S.; Mueller, K. The Data Context Map: Fusing Data and Attributes into a Unified Display. IEEE Trans.

Vis. Comput. Graph. 2016, 22, 121–130. [CrossRef] [PubMed]
4. Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
5. Nováková, L.; Stepánková, O. Visualization of trends using RadViz. J. Intell. Inf. Syst. 2011, 37, 355–369.

[CrossRef]
6. Meyer, M.; Barr, A.; Lee, H.; Desbrun, M. Generalized Barycentric Coordinates on Irregular Polygons.

J. Graph. Tools 2002, 7, 13–22. [CrossRef]
7. Nam, J.; Mueller, K. TripAdvisorN-D: A Tourism-Inspired High-Dimensional Space Exploration Framework

with Overview and Detail. IEEE Trans. Vis. Comput. Graph. 2013, 19, 291–305. [CrossRef]
8. Inselberg, A.; Dimsdale, B. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry.

In Proceedings of the First IEEE Conference on Visualization, San Francisco, CA, USA, 23–26 October 1990;
pp. 361–378.

9. Chambers, J.; Cleveland, W.; Tukey, P. Graphical Methods for Data Analysis; Duxbury Press: North Scituate,
MA, USA, 1983.

10. Cheng, S.; Mueller, K. Improving the Fidelity of Contextual Data Layouts using a Generalized Barycentric
Coordinates Frame-work. In Proceedings of the 2015 IEEE Pacific Visualization Symposium (PacificVis),
Hangzhou, China, 14–17 April 2015.

11. Daniels, K.; Grinstein, G.; Russell, A.; Glidden, M. Properties of normalized radial visualizations. Inf. Vis.
2012, 11, 273–300. [CrossRef]

12. Grinstein, G.; Trutschl, M.; Cvek, U. High-dimensional visualizations. In Proceedings of the Visual Data
Mining Workshop, KDD, San Francisco, CA, USA, 26–29 August 2001.

13. Hoffman, P.; Grinstein, G.; Marx, K.; Grosse, I.; Stanley, E. DNA Visual and Analytic Data Mining.
In Proceedings of the IEEE Visualization, Phoenix, AZ, USA, 18–24 October 1997; pp. 437–441.

14. Kandogan, E. Star Coordinates: A Multi-Dimensional Visualization Technique with Uniform Treatment of
Dimensions. In Proceedings of the ACM SIGKDD, San Francisco, CA, USA, 26–29 August 2001; pp. 107–116.

15. Hinum, K.; Miksch, S.; Aigner, W.; Ohmann, S.; Popow, C.; Pohl, M.; Rester, M. Gravi++: Interactive
Information Visualization to Explore Highly Structured Temporal Data. J. Univers. Comput. Sci. 2005, 11,
1792–1805.

16. Yi, J.; Melton, R.; Stasko, J.; Jacko, J. Dust & Magnet: Multivariate Information Visualization using a Magnet
Metaphor. Inf. Vis. 2005, 4, 239–256.

17. Hartigan, J. Printer Graphics for Clustering. J. Stat. Comput. Simul. 1975, 4, 187–213. [CrossRef]
18. Bollobás, B.; Frieze, A.; Fenner, T. An algorithm for finding Hamilton paths and cycles in random graphs.

Combinatorica 1987, 7, 327–341. [CrossRef]
19. Leeuw, J. Convergence of the majorization method for multidimensional scaling. J. Classif. 1998, 5, 163–180.

[CrossRef]
20. Zhang, Z.; McDonnell, K.; Mueller, K. A Network-Based Interface for the Exploration of High-Dimensional

Data Spaces. In Proceedings of the 2012 IEEE Pacific Visualization Symposium (PacificVis), Songdo, Korea,
28 February–2 March 2012; pp. 17–24.

21. OpenMV.net Datasets. Available online: https://openmv.net/info/solvents (accessed on 8 January 2017).
22. Cortez, P.; Morais, A. Forest Fires Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/

forest+fires (accessed on 8 January 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVCG.2015.2467552
http://www.ncbi.nlm.nih.gov/pubmed/26529693
http://dx.doi.org/10.1007/s10844-011-0157-4
http://dx.doi.org/10.1080/10867651.2002.10487551
http://dx.doi.org/10.1109/TVCG.2012.65
http://dx.doi.org/10.1177/1473871612439357
http://dx.doi.org/10.1080/00949657508810123
http://dx.doi.org/10.1007/BF02579321
http://dx.doi.org/10.1007/BF01897162
https://openmv.net/info/solvents
https://archive.ics.uci.edu/ml/datasets/forest+fires
https://archive.ics.uci.edu/ml/datasets/forest+fires
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Theoretical Background and Derivations
	The Space of Contextual Layout Methods
	The GBC Plot and Its Relation to RadViz
	A Demonstration of RadViz
	The Distance Matrix
	RadViz Layout Error

	RadViz Deluxe: An Improved RadViz for More Accurate Contextual Data Mappings
	Distance Spaced Attribute Layouts
	Iterative Data to Atrribute Layout Error Reduction
	Force Directed Adjustment of the Data Points
	Comprehensive Layout
	Assessiong the Fidelity of Presserving Contextual Relation

	Case Study
	Case Study 1: Determining Promsing Solvents for Chemical Experiments
	Case Study 2: Multivariate Root Cause Analysis of Forest Fires

	Conclusions
	
	Data to Data Error
	Data to Variable Error
	Variable to Variable Error

