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Abstract: Performance of integrated production scheduling and advanced process control with
disturbances is summarized and reviewed with four progressive stages of scheduling and control
integration and responsiveness to disturbances: open-loop segregated scheduling and control,
closed-loop segregated scheduling and control, open-loop scheduling with consideration of process
dynamics, and closed-loop integrated scheduling and control responsive to process disturbances
and market fluctuations. Progressive economic benefit from dynamic rescheduling and integrating
scheduling and control is shown on a continuously stirred tank reactor (CSTR) benchmark application
in closed-loop simulations over 24 h. A fixed horizon integrated scheduling and control formulation
for multi-product, continuous chemical processes is utilized, in which nonlinear model predictive
control (NMPC) and continuous-time scheduling are combined.

Keywords: scheduling; model predictive control; dynamic market; market fluctuations; process
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1. Introduction

Production scheduling and advanced process control are related tasks for optimizing chemical
process operation. Traditionally, implementation of process control and scheduling are separated; however,
research suggests that opportunity is lost from separate implementation [1–3]. Many researchers suggest
that economic benefit may arise from integrating production scheduling and process control [4–10].
Though integration may provide economic benefit, scheduling and control integration presents several
challenges which are outlined in multiple reviews on integrated scheduling and control (ISC) [3,11–14].
Some of the major challenges to integration mentioned in review articles include time-scale bridging,
computational burden, and human factors such as organizational and behavioral challenges.

1.1. Economic Benefit from Integrated Scheduling and Control

Many complex, interrelated elements factor into the potential benefit from the integration of
scheduling and control, including the following [3,11]:

(i) Rapid fluctuations in dynamic product demand;
(ii) Rapid fluctuations in dynamic energy rates;
(iii) Dynamic production costs;
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(iv) Benefits of increased energy efficiency;
(v) Necessity of control-level dynamics information for optimal production schedule calculation.

In the current economic environment, demand and selling prices for the products and inputs of
chemical processes can change significantly over the course of not only months and years, but on the
scales of weeks, days, and hours [3,11,12]. Energy rates often fluctuate hourly, with peak pricing during
peak demand hours and rate cuts during off peak hours (sometimes even negative rate cuts occur
during periods of excess energy production) [11]. An optimal schedule is intrinsically dependent upon
market conditions such as input material price, product demand and pricing, and energy rates [12].
Therefore, when market conditions change, the optimal production sequence or schedule may also
change. Since the time scale at which market factors fluctuates has decreased, the time scale at which
scheduling decisions must be recalculated should also decrease [3,12].

Frequent recalculation of scheduling on a time scale closer to that of advanced process control
(seconds to minutes) leads to a greater need to integrate process dynamics into the scheduling
problem [3]. According to a previous review [11], process dynamics are important for optimal
production scheduling because (i) transition times between any given products are determined by
process dynamics and process control; (ii) process dynamics may show that a calculated production
sequence or schedule is operationally infeasible; and (iii) process disturbances may cause a change in
the optimal production sequence or schedule.

1.2. Previous Work

Significant research has been conducted on the integration of production scheduling and
advanced process control [3,11]. This section summarizes evidence for economic benefit from integration,
upon which this work builds. Previous research showing the benefits of combined scheduling and control
is explored and previous research done to show the economic benefits of combined over segregated
scheduling and control is examined. The reviewed articles are summarized in Table 1. This work focuses
on research demonstrating benefit over a baseline comparison of segregated scheduling and control (SSC).

Table 1. Economic benefit of integrated scheduling and control (ISC) over segregated scheduling
and control (SSC) (CSTR: continuously stirred tank reactor; MMA: methyl methacrylate; DR:
demand response; FRB: fluidized bed reactor; RTN: resource task network; ASU: air separation
unit; HIPS: high-impact polystyrene; PFR: plug flow reactor; SISO: single-input single-output; MIMO:
multiple-input multiple-output).

Author Shows Benefit of
ISC over SSC

Batch
Process

Continuous
Process Example Application (s)

Baldea et al. (2015) [15] X CSTR

Baldea et al. (2016) [16] X MMA

Baldea (2017) [17] X DR chemical processes and power generation facilities

Beal (2017) [18] X CSTR

Beal (2017) [19] X CSTR

Beal (2017a) [20] X CSTR

Cai et al. (2012) [21] X Semiconductor production

Capon-Garcia et al. (2013) [6] X 2 different batch plants (1-stage, 3-product & 3-stage,
3-product)

Chatzidoukas et al. (2003) [22] X X gas-phase polyolefin FBR.

Chatzidoukas et al. (2009) [23] X X catalytic olefin copolymerization FBR

Chu & You (2012) [24] X MMA

Chu & You (2013) [25] X CSTR

Chu & You (2013a) [26] X polymerization with parallel reactors & 1 purification
unit (RTN)

Chu & You (2013b) [27] X X 5-unit batch process

Chu & You (2013c) [28] X X sequential batch process

Chu & You (2014) [29] X batch process (reaction task, filtration task, reaction task)
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Table 1. Cont.

Author Shows Benefit of
ISC over SSC

Batch
Process

Continuous
Process Example Application (s)

Chu & You (2014a) [30] X 8-unit batch process

Chu & You (2014b) [31] X X 8-unit batch process

Dias et al. (2016) [32] X MMA

Du et al. (2015) [33] X CSTR & MMA

Flores-Tlacuahuac & Grossmann
(2006) [34] X CSTR

Flores-Tlacuahuac (2010) [8] X Parallel CSTRs

Gutiérrez-Limón et al. (2011) [35] X CSTR

Gutiérrez-Limón et al. (2016) [36] X CSTR & MMA

Gutiérrez-Limón &
Flores-Tlacuahuac (2014) [37] X CSTR

Koller & Ricardez-Sandoval
(2017) [38] X CSTR

Nie & Bieglier (2012) [7] X X flowshop plant (batch reactor, filter, distillation column)

Nie et al. (2015) [39] X X polymerization with parallel reactors & 1 purification unit

Nystrom et al. (2005) [40] X industrial polymerization process

Nystrom et al. (2006) [4] X industrial polymerization process

Patil et al. (2015) [41] X CSTR & HIPS

Pattison et al. (2016) [42] X X ASU model

Pattison et al. (2017) [10] X ASU model

Prata (2008) et al. [43] X medium industry-scale model

Terrazas-Moreno et al. (2008) [44] X MMA (with one CSTR) & HIPS

Terrazas-Moreno &
Flores-Tlacuahuac (2007) [45] X HIPS & MMA

Terrazas-Moreno &
Flores-Tlacuahuac (2008) [9] X HIPS & MMA

You & Grossmann (2008) [46] X medium and large polystyrene supply chaiins

Zhuge & Ierapetritou (2012) [47] X CSTR & PFR.

Zhuge & Ierapetritou (2014) [48] X simple and complex batch processes

Zhuge & Ierapetritou (2015) [49] X SISO & MIMO CSTRs

Zhuge & Ierapetritou (2016) [50] X X CSTR & MMA

1.2.1. Integrating Process Dynamics into Scheduling

Mahadevan et al. suggest that process dynamics should be considered in scheduling problems.
To avoid the computational requirements of mixed-integer nonlinear programming (MINLP),
they include process dynamics as costs in the scheduling problem [51]. Flores-Tlacuahuac and
Grossman implement process dynamics into scheduling directly in a mixed-integer dynamic
optimization (MIDO) problem with a continuous stirred tank reactor (CSTR). Chatzidoukas et al.
demonstrated the economic benefit of implementing scheduling in a MIDO problem for polymerization,
solving product grade transitions along with the scheduling problem [22]. Economic benefit has also
been shown for simultaneous selection of linear controllers for grade transitions and scheduling,
ensuring that the process dynamics from the controller selection are accounted for in the scheduling
problem [23]. Terrazas-Moreno et al. also demonstrate the benefits of process dynamics in cyclic
scheduling for continuous chemical processes [45]. Capon-Garcia et al. prove the benefit of
implementing process dynamics in batch scheduling via an MIDO problem [6]. MIDO batch scheduling
optimization with dynamic process models is shown to be more profitable than a fixed-recipe approach.
Chu and You also demonstrate enhanced performance from batch scheduling with simultaneous
solution of dynamic process models over a traditional batch scheduling approach [27,28,31]. Economic
benefit from integrating process dynamics into batch and semi-batch scheduling has also been
demonstrated via mixed-logic dynamic optimization in state equipment networks and solution
with Benders decomposition in resource task networks [7,39]. Potential for economic benefit
from integrating process dynamics into design, scheduling, and control problems has also been
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demonstrated [41,44,52]. Computational reduction of incorporating process dynamics into scheduling
has been investigated successfully, maintaining benefit from the incorporation of process dynamics
into scheduling while reducing dynamic model order [10,15,16,33,42].

1.2.2. Reactive Integrated Scheduling and Control

Research indicates that additional benefit arises from ISC responsive to process disturbances,
which are a form of process uncertainty. This is in congruence with recent work by Gupta and
Maravelias demonstrating that increased frequency of schedule rescheduling (online scheduling) can
improve process economics [53–55]. Many previous works considering reactive ISC are outlined
in Table 2. For a complete review of ISC under uncertainty, the reader is directed to a recent
review by Dias and Ierapetritou [32]. Zhuge and Ierapetritou demonstrate increased profit from
closed-loop implementation (over open-loop implementation) of combined scheduling and control in
the presence of process disturbances [47]. The schedule is optimally recalculated when a disturbance
is encountered. Zhuge and Ierapetritou also present methodology to reduce the computational burden
of ISC to enable closed-loop online operation for batch and continuous processes. They propose using
multi-parametric model predictive control for online batch scheduling and control [48], fast model
predictive control coupled with reduced order (piece-wise affine) models in scheduling and control for
continuous processes [49], and decomposition into separate problems for continuous processes [50].
Chu and You demonstrate the economic benefit of closed-loop moving horizon scheduling with
consideration of process dynamics in batch scheduling [29]. Chu and You also investigate the
reduction of computational burden to enable online closed-loop ISC for batch and continuous
processes. They investigate utilization of Pareto frontiers to decompose batch scheduling into an
online mixed-integer linear programming (MILP) problem and offline dynamic optimization (DO)
problems [26]. Investigation of a solution via mixed-integer nonlinear fractional programming and
Dinkelbach’s algorithm coupled with decomposing into an online scheduling and controller selection
and offline transition time calculation [24].

Table 2. Works considering reactive ISC.

Authors Product Price
Disturbance

Product Demand
Disturbance

Process Variable
Disturbance

Other
Disturbances

Baldea et al. (2016) [16] X X

Baldea (2017) [17] X

Cai et al. (2012) [21] X

Chu & You (2012) [24] X

Du et al. (2015) [33]

Flores-Tlacuahuac (2010) [8] X

Gutiérrez-Limón et al. (2016) [36] X

Kopanos & Pistikopoulos (2014) [56] X

Liu et al. (2012) [57] X X

Patil et al. (2015) [41] X

Pattison et al. (2017) [10] X X

Touretzky & Baldea (2014) [58] Weather &
energy price

You & Grossmann (2008) [46] X

Zhuge & Ierapetritou (2012) [47] X

Zhuge & Ierapetritou (2015) [49] X

Closed-loop reactive ISC responds to process uncertainty in a reactive rather than preventative
manner [59]. Preventative approaches to dealing with process uncertainty in ISC have also been
investigated. Chu and You investigated accounting for process uncertainty in batch processes in
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a two-stage stochastic programming problem solved by a generalized Benders decomposition [28].
The computational requirements of the problem prevent online implementation. Dias and Ierapetritou
demonstrate the benefits of using robust model predictive control in ISC to optimally address process
uncertainty in continuous chemical processes [32].

1.2.3. Responsiveness to Market Fluctuations

As mentioned in Section 1.1, a major consideration affecting the profitability of ISC is rapidly
fluctuating market conditions. If the market changes, the schedule should be reoptimized to new
market demands and price forecasts. This is again congruent with recent work demonstrating benefit
from frequent re-scheduling [53–55]. Literature on ISC reactive to market fluctuations is relatively
limited in scope. Gutierrez-Limon et al. demonstrated integrated planning, scheduling, and control
responsive to fluctuations in market demand on a CSTR benchmark application [36,37]. Pattison et al.
investigated ISC with an air separation unit (ASU) in fast-changing electricity markets, responding
optimally to price fluctuations [42]. Pattison et al. also demonstrated theoretical developments with
moving horizon closed-loop scheduling in volatile market conditions [10]. Periodic rescheduling to
account for fluctuating market conditions was implemented successfully on an ASU application.

1.3. Purpose of This Work

This work aims to provide evidence for the progressive economic benefits of combining scheduling
and control and operating combined scheduling and control in a closed-loop responsive to disturbances
over segregated scheduling and control and open-loop formulations for continuous chemical processes.
This work demonstrates the benefits of integration through presenting four progressive stages
of integration and responsiveness to disturbances. This work comprehensively demonstrates the
progression of economic benefit from (1) integrating process dynamics and control level information
into production scheduling and (2) closed-loop integrated scheduling and control responsive to market
fluctuations. Such a comprehensive examination of economic benefit has not been performed to the
authors’ knowledge. This work also utilizes a novel, computationally light decomposed integration
method employing continuous-time scheduling and nonlinear model predictive control (NMPC) as
the fourth phase of integration. This method is outlined in detail in another work [60]. Although the
phases of integration presented in this work are not comprehensively representative of integration
methods presented in the literature, the concepts of integration progressively applied in the four
phases are applicable across the majority of formulations in the literature.

2. Phases of Progressive Integration

This section introduces the four phases of progressive integration of scheduling and control
investigated in this work. Each phase is outlined in the appropriate section.

2.1. Phase 1: Fully Segregated Scheduling and Control

A schedule is created infrequently (every 24 h in this work) and a controller seeks to implement the
schedule throughout the 24 h with no other considerations. In this format, the schedule is open-loop,
whereas the control is closed-loop. The controller acts to reject disturbances and process noise to direct
the process to follow the predetermined schedule (see Figure 1).

This work considers an NMPC controller and a continuous-time, slot-based schedule (Section 2.5).
For this phase, the schedule is uninformed of transition times as dictated by process dynamics
and control structure. All product grade transitions are considered to produce a fixed amount of
off-specification material and to require the same duration.
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Control Process

Rapid (Seconds)

Schedule

   Scheduling: open-loop
   Control: closed-loop

Infrequent 
(Hours/Days)

Measurement

Control Move

Sensor

Figure 1. Phase 1: Open-loop scheduling determined once per day with no consideration of process
dynamics. Closed-loop control implemented to follow the schedule.

2.2. Phase 2: Reactive Closed-Loop Segregated Scheduling and Control

Phase two is a closed-loop implementation of completely segregated scheduling and control.
The formulation for Phase 2 is identical to that of Phase 1 with the exception that the schedule is
recalculated in the event of a process disturbance or market update (see Figure 2).

2.3. Phase 3: Open-Loop Integrated Scheduling and Control

For phase 3, the schedule is calculated infrequently, similar to phase 1 (every 24 h in this work).
However, information about the control structure and process dynamics in the form of transition
times are fed to the scheduling algorithm to enable a more intelligent decision. Scheduling remains
open-loop while the controller remains closed-loop to respond to noise and process disturbances while
implementing the schedule (see Figure 3).

Control Process

Rapid (Seconds)

Schedule

   Scheduling: closed-loop
   Control: closed-loop

Measurement

Control Move

Sensor

(Time-scale of disturbances)

Figure 2. Phase 2: Dual-loop segregated scheduling and control. Scheduling is recalculated reactively
in the presence of process disturbances above a threshold or updated market conditions. Closed-loop
control implements the schedule in the absence of disturbances.

This work considers a continuous-time schedule with process dynamics incorporated via transition
times estimated by NMPC. Transitions between products are simulated with a dynamic process model and
nonlinear model predictive controller implementation. The time required to transition between products
is minimized by the controller, and the simulated time required to transition is fed to the scheduler as an
input to the continuous-time scheduling formulation (Section 2.5).
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Control Process

Rapid (Seconds)

Schedule 
Considering 

Process 
Dynamics

   Scheduling: open-loop
   Control: closed-loop

Infrequent 
(Hours/Days)

Measurement

Control Move

Sensor

Figure 3. Phase 3: Open-loop scheduling determined once per day with consideration of process
dynamics and control structure in the form of grade transition information. Closed-loop control
implemented to follow the schedule.

2.4. Phase 4: Closed-Loop Integrated Scheduling and Control Responsive to Market Fluctuations

Phase 4 represents closed-loop implementation of ISC responsive to both market fluctuations and
process disturbances. This work utilizes the formulation for computationally light online scheduling
and control for closed-loop implementation introduced in another work by the authors [60]. As in
phase 3, a continuous-time schedule is implemented with NMPC-estimated transition times as inputs
to the scheduling optimization; however, the ISC algorithm is implemented not only once at the
beginning of the horizon as in phase 3, but triggered by updated market conditions or process
disturbances above a threshold (see Figure 4). This enables the ISC algorithm to respond to fluctuations
in market conditions as well as respond to measured process disturbances in a timely manner to ensure
that production scheduling and control are updated to reflect optimal operation with current market
conditions and process state.

Control Process

Rapid (Seconds)

ISC Algorithm

   ISC Scheduling: closed-loop
   Control: closed-loop

Measurement

Control Move

Sensor

(Time-scale of disturbances)

Figure 4. Phase 4: Closed-loop combined scheduling and control responsive to both process
disturbances and updated market information.

The formulation for phase 4 builds on the work of Zhuge et al. [49], which justifies decomposing
slot-based ISC into two subproblems: (1) NLP solution of transition times and transition control profiles
and (2) MILP solution of the slot-based, continuous-time schedule. The formulation in [60] expands the
work of Zhuge et al. by combining a look-up transition time table with control profiles and transition
times between known product steady-state conditions, calculated offline and stored in memory,
with transitions from current conditions to each product. The transitions from current conditions
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or most recently received process measurements are the only transition times and transition control
profiles required to be solved at each iteration of combined scheduling and control (Equations (2)–(8)).
This reduces the online problem to few nonlinear programming (NLP) dynamic optimization problems
and an MILP problem only, eliminating the computational requirements of MINLP. This work also
introduces the use of nonlinear models in this form of decomposition. Zhuge et al. use piecewise affine
(PWA) models, whereas this work harnesses full nonlinear process dynamics to calculate optimal
control and scheduling.

This work also builds on the work of Pattison et al., who demonstrate closed-loop moving horizon
combined scheduling and control to respond to market updates [10]. This formulation, however, does
not use simplified dynamic process models for scheduling, but rather maintains nonlinear process
dynamics while reducing computational burden via problem decomposition into offline and online
components and further decomposition of the problem into computationally light NLP and MILP
problems, solvable together without the need for iterative alternation [60].

The continuous-time scheduling formulation, as introduced in Section 2.5, will produce
sub-optimal results if the number of products exceeds the optimal number of products to produce
in a prediction horizon. The number of slots is constrained to be equal to the number of products,
causing the optimization to always create n production slots and n transitions even in cases in which
<n slots would be most economical in the considered horizon for scheduling and control. To eliminate
this sub-optimality, an iterative method is introduced to leverage the computational lightness of the
MILP continuous-time scheduling formulation. The number of slots in the continuous-time schedule
is selected iteratively based on improvement to the objective function (profit), beginning from one
slot. As previously mentioned, transition times and control profiles between steady-state products
are stored in memory, requiring no computation in online operation. Additionally, the transitions
from current measured state to each steady-state product (τ0′i) are calculated once before iterations are
initiated. Thus, the iterative method only iterates the MILP problem, not requiring any recalculation
of grade transition NLP dynamic optimization problems. This decomposition is computationally
light and allows for a fixed-horizon non-cyclic scheduling and control formulation. This non-cyclic
fixed-horizon approach to combined scheduling and control enables response to market fluctuations
in maximum demand and product price, whereas traditional continuous-time scheduling requires a
makespan (TM) to meet a demand rather than producing an optimal amount of each product within a
given fixed horizon. Additional details for this formulation are included in another paper [60].

2.5. Mathematical Formulation

This continuous-time optimization used in phases 1–3 seeks to maximize profit and minimize
grade transitions (and associated waste material production) while observing scheduling constraints.
The objective function is formulated as follows:

max
zi,s ,ts

i ,t f
i ∀i,s

J =
n

∑
i=1

Πiωi −
n

∑
i=1

cstorage,iωi

m

∑
s=1

zi,s(TM − t f
s )−Wτ

m

∑
s=1

τs,

s.t. Equations (2)–(8),

(1)

where TM is the makespan, n is the number of products, m is the number of slots (m = n in these cyclic
schedules), zi,s is the binary variable that governs the assignment of product i to a particular slot s, ts

s

is the start time of the slot s, t f
s is the end time of slot s, Πi is the per unit price of product i, Wτ is an

optional weight on grade transition minimization, τs is the transition time within slot s, cstorage,i is the
per unit cost of storage for product i, and ωi represents the amount of product i manufactured,

ωi =
m

∑
s=1

∫ t f
s

ts
s+τs

zi,sq dt, (2)
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and where q is the production volumetric flow rate and τs is the transition time between the product
made in slot s− 1 and product i made in slot s. The time points must satisfy the precedence relations:

t f
s > ts

s + τs ∀s > 1, (3)

ts
s = t f

s−1 ∀s 6= 1, (4)

t f
m = TM, (5)

which require that a time slot be longer than the corresponding transition time, impose the coincidence
of the end time of one time slot with the start time of the subsequent time slot, and define the relationship
between the end time of the last time slot (t f

n) and the total makespan or horizon duration (TM).
Products are assigned to each slot using a set of binary variables, zi,s ∈

{
0, 1
}

, along with
constraints of the form:

m

∑
s=1

zi,s = 1 ∀i, (6)

n

∑
i=1

zi,s = 1 ∀s, (7)

which ensure that one product is made in each time slot and each product is produced once.
The makespan is fixed to an arbitrary horizon for scheduling. Demand constraints restrict

production from exceeding the maximum demand (δi) for a given product, as follows:

ωi ≤ δi ∀i. (8)

The continuous-time scheduling optimization requires transition times between steady-state
products (τi′i) as well as transition times from the current state to each steady-state product if initial
state is not at steady-state product conditions (τ0′i).

Transition times are estimated using NMPC via the following objective function:

min
u

J = (x− xsp)
TWsp(x− xsp) + ∆uTW∆u + uTWu,

s.t. nonlinear process model

x(t0) = x0,

(9)

where Wsp is the weight on the set point for meeting target product steady-state, W∆u is the weight
on restricting manipulated variable movement, Wu is the cost for the manipulated variables, u is the
vector of manipulated variables, xsp is the target product steady-state, and x0 is the start process state
from which the transition time is being estimated. The transition time is taken as the time at which and
after which |x− xsp| < δ, where δ is a tolerance for meeting product steady-state operating conditions.
This formulation harnesses knowledge of nonlinear process dynamics in the system model to find an
optimal trajectory and minimum time required to transition from an initial concentration to a desired
concentration. This method for estimating transition times also effectively captures the actual behavior
of the controller selected, as the transition times are estimated by a simulation of actual controller
implementation. This work uses W∆u = 0 and Wu = 0.

3. Case Study Application

As shown in prior work, there are many different strategies for integrating scheduling and control.
A novel contribution of this work is a systematic comparison of four general levels of integration
through a single case study. In this section, the model and scenarios used to demonstrate progressive
economic benefit from the integration of scheduling and control for continuous chemical processes
are presented.
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3.1. Process Model

This section presents a standard CSTR problem used to highlight the value of the formulation
introduced in this work. The CSTR model is applicable in various industries from food/beverage to
oil and gas and chemicals. Notable assumptions of a CSTR include:

• Constant volume;
• Well mixed;
• Constant density.

The model shown in Equations (10) and (11) is an example of an exothermic, first-order reaction
of A⇒ B, where the reaction rate is defined by an Arrhenius expression and the reactor temperature
is controlled by a cooling jacket:

dCA
dt

=
q
V
(CA0 − CA)− k0e−EA/RTCA, (10)

dT
dt

=
q
V
(Tf − T)− 1

ρCp
k0e

−EA
RT CA∆Hr −

UA
VρCp

(T − Tc). (11)

In these equations, CA is the concentration of reactant A, CA0 is the feed concentration, q is the
inlet and outlet volumetric flowrate, V is the tank volume (q/V signifies the residence time), EA is the
reaction activation energy, R is the universal gas constant, UA is an overall heat transfer coefficient
times the tank surface area, ρ is the fluid density, Cp is the fluid heat capacity, k0 is the rate constant,
Tf is the temperature of the feed stream, CA0 is the inlet concentration of reactant A, ∆Hr is the heat of
reaction, T is the temperature of reactor and Tc is the temperature of cooling jacket. Table 3 lists the
CSTR parameters used.

Table 3. Reactor parameter values.

Parameter Value

V 100 m3

EA/R 8750 K
UA

VρCp
2.09 s−1

k0 7.2× 1010 s−1

Tf 350 K
CA0 1 mol/L
∆Hr
ρCp

−209 K m3 mol−1

q 100 m3/h

In this example, one reactor can make multiple products by varying the concentrations of A and
B in the outlet stream. The manipulated variable in this optimization is Tc, which is bounded by
200 K ≤ Tc ≤ 500 K and by a constraint on manipulated variable movement as ∆Tc ≤ 2 K/min.

3.2. Scenarios

The sample problem uses three products over a 24-h horizon. The product descriptions are shown
in Table 4, where the product specification tolerance (δ) is ±0.05 mol/L.

Table 4. Product specifications.

Product
CA Max Demand Price Storage Cost

(mol/L) (m3) ($/m3) ($/h/m3)
1 0.10 1000 22 0.11
2 0.30 1000 29 0.1
3 0.50 1000 23 0.12
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The transition times between products, as calculated by NMPC using Equation (9), is shown
in Table 5.

Table 5. Transition Times Between Products (h).

Starting Final Product
Product 1 2 3

1 0 0.50 0.833
2 0.50 0 0.50
3 0.417 0.833 0

Three scenarios are applied to each phase of progressive integration of scheduling and control:

(A) Process disturbance (CA);
(B) Demand disturbance;
(C) Price disturbance.

Scenarios A–C maintain the specifications in Table 4 but introduce process disturbances, demand
disturbances, and price disturbances, respectively (see Table 6). Scenario A introduces a process
disturbance to the concentration in the reactor (CA) of 0.15 mol/L, ramping uncontrollably over 1.4 h.
Scenario B introduces a market update with a 20% increase in demand for product 2. Scenario C shows
a market update with fluctuations in selling prices for products 2 and 3. The starting concentration for
each scenario is 0.10 mol/L, the steady-state product conditions for product 1.

Table 6. Scenario descriptions.

Scenario
Time Disturbance

(h) Product 1 Product 2 Product 3

A 2.2–3.8 ————– 0.15 mol/L —————
B 3.1 +0 m3 +200 m3 +0 m3

C 2.1 +0 $/m3 −9 $/m3 +6 $/m3

4. Results

The results of implementation of each phase for each scenario are discussed and presented in this
section. Each problem is formulated in the Pyomo framework for modeling and optimization [61,62].
Nonlinear programming dynamic optimization problems are solved via orthogonal collocation
on finite elements [63] with 5 min time discretization and the APOPT and COUENNE MINLP
solvers are utilized to solve all mathematical programming problems presented in this work [64,65].
For comparative purposes, profits are compared to those of Phase 3 due to its centrality in performance.

4.1. Scenario A: Process Disturbance

In Scenario A, phase 1 has a poor schedule due to a lack of incorporation of process dynamics into
scheduling. The durations of grade transitions, as dictated by process dynamics, are unaccounted for.
However, the production amounts or production durations for each product are optimized based on
selling prices. The order is selected based on storage costs, clearly leading to longer grade transitions
than necessary. The schedule maximizes production of higher-selling products 2 and 3. Phase 1 does
not recalculate the schedule after the process disturbance, holding to pre-determined transition timing.

Phase 2 follows the same pattern as phase 1 due to its lack of incorporation of process dynamics.
Phase 2 recalculates a schedule after the process disturbance, but because it does not account for process
dynamics, it cannot determine that it would be faster to transition to Product 3 from the disturbed
process state than to return to Product 2. Thus, the production sequence remains sub-optimal. However,
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the recalculated schedule enables more profitable Product 2 to be produced than in Phase 1 as the
timing of transition to Product 1 is delayed due to the disturbance by the recalculation. Phase 2
illustrates benefit that comes from frequent schedule recalculation rather than from scheduling and
control integration.

Phase 3 does not react optimally to the process disturbance because it has a fixed schedule, but its
initial schedule is optimal due to the incorporation of process dynamics and the resultant minimization
of grade transition durations. Phase 3 illustrates benefit originating solely from scheduling and control
integration, without schedule recalculation. Phase 4 optimally reschedules with understanding of
transition behavior from the disturbed state to each steady-state operating condition, transitioning
to Product 2 immediately after the disturbance. Phase 4 demonstrates the premium benefits of both
reactive or frequent rescheduling and from scheduling and control integration.

The simulation results of scenario A are shown in Figure 5 and Table 7.

Table 7. Results: Scenario A.

Phase Description
Profit Production (m3)

($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 3114 (−38%) 367 858 908
2 Segregated, Reactive Schedule 3942 (−21%) 317 900 992
3 Integrated, Fixed Schedule 4983 (+0%) 308 1000 983
4 Integrated, Reactive Schedule 7103 (+43%) 308 1000 983

Table 8. Results: Scenario B.

Phase Description
Profit Production (m3)

($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 6033 (−19%) 367 967 908
2 Segregated, Reactive Schedule 7446 (+0.1%) 133 1200 908
3 Integrated, Fixed Schedule 7441 (+0%) 317 1000 992
4 Integrated, Reactive Schedule 8676 (+17%) 308 1200 800

4.2. Scenario B: Market Update Containing Demand Fluctuation

As in Scenario A, the production order for Phases 1 and 2 is sub-optimal due to a lack of
incorporation of process dynamics in scheduling, or a lack of integration of scheduling and control.
Phase 2 improves performance over Phase 1 by reacting to the market update and producing more
profitable Product 2, which had a surge in demand, illustrating again the benefits of reactive scheduling.
Phase 3 integrates control with scheduling, resulting in an optimal initial schedule minimizing
transition durations. The benefits from integrating scheduling and control (Phase 3) and the benefits
of reactive scheduling (Phase 2) are approximately the same in Scenario B, differing in profit by only
a negligible amount. However, incorporating both reactive scheduling and scheduling and control
integration (Phase 4) leads to a large increase in profits. The initial and recalculated schedules in
Phase 4 have optimal production sequence, utilizing process dynamics information to minimize grade
transition durations. Additionally, recalculation of the integrated scheduling and control problem
after the market update allows for increased production of the highest-selling product, leading to
increased profit.

The simulation results of scenario B are shown in Figure 6 and Table 8.
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Figure 5. Scenario A: Process disturbance.
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Figure 6. Scenario B: Market update (demand disturbance).
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Figure 7. Scenario C: Market update (price disturbance).
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4.3. Scenario C: Market Update Containing New Product Selling Prices

As in Scenarios A and B, the production order for Phases 1 and 2 is sub-optimal due to a lack
of incorporation of process dynamics in scheduling. However, reactive rescheduling after the price
fluctuation information is made available results in a large profit increase from Phase 1 to Phase 2,
demonstrating the strength of reactive scheduling even without scheduling and control integration.

Phases 3 and 4 have an optimal production sequence due to the integration of scheduling and
control, leading to higher profits than the corresponding segregated phases. This illustrates again the
benefits of scheduling and control integration. Like Phase 2, Phase 4 reschedules when the updated
market conditions are made available, producing less of product 2 and more of products 1 and 3 due to
the price fluctuations. This leads to a leap in profit compared to Phase 3. Phase 4 with both scheduling
and control integration and reactive or more frequent scheduling is again the most profitable phase.

The simulation results of scenario C are shown in Figure 7 and Table 9.

Table 9. Results: Scenario C.

Phase Description
Profit Production (m3)

($) (%) Product 1 Product 2 Product 3

1 Segregated, Fixed Schedule 3758 (−16%) 367 967 908
2 Segregated, Reactive Schedule 4879 (+9%) 967 367 908
3 Integrated, Fixed Schedule 4466 (+0%) 317 1000 992
4 Integrated, Reactive Schedule 5662 (+27%) 1000 317 992

5. Conclusions

This work summarizes and reviews the evidence for the economic benefit from scheduling and
control integration, reactive scheduling with process disturbances and market updates, and from a
combination of reactive and integrated scheduling and control. This work demonstrates the value
of combining scheduling and control and responding to process disturbances or market updates by
directly comparing four phases of progressive integration through a benchmark CSTR application and
three scenarios with process disturbance and market fluctuations. Both ISC and reactice resecheduling
show benefit, though their relative benefits are dependent on the situation. More complete integration
(applying ISC in closed-loop control, rather than just the scheduling) demonstrates the most benefit.

Directions for Future Work

This work demonstrates the benefit of ISC through four phases of progressive integration using
continuous-time scheduling and NMPC on a CSTR case study with three scenarios. This work
introduces a benchmark problem with an application (CSTR) and three scenarios on which to
benchmark the performance of a scheduling and control formulation. The development of additional
benchmark problems applicable to a wider variety of industrial scenarios is proposed as an
important potential subject of future work. With increasing research in ISC, benchmark problems
for formulation performance comparison of integrated scheduling and control formulations as well
as for comparison against a baseline segregated scheduling and control formulation are increasingly
important. Benchmark applications and scenarios applicable to batch processes, multi-product
continuous processes, and other processes with scenarios representative of probable industrial
occurrences should be developed.

This work is applicable to continuous processes considering a single process unit. Progressive
integrations proving economic benefit of scheduling and control integration should also be applied
to batch processes and continuous processes considering multiple process units. Additionally,
this work utilized continuous-time scheduling and NMPC in a decomposed ISC formulation.
This formulation inherently considered only steady-state production with no external or dynamic
factors (such as time-of-day pricing or dynamic constraints) during production periods. Discrete-time
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ISC formulations [18–20,66,67] have been shown to effectively incorporate external and dynamic
factors, such as cooling constraints and time-of-day energy pricing. This incorporation enables
demand response to time-of-day pricing by reducing or increasing production during periods of
steady-state product manufacturing and moving the time of transitions to take advantage of times
with relaxed constraints (such as relaxed cooling constraints on exothermic processes). A study of
economic benefit of discrete-time formulations as compared to continuous-time formulations for ISC is
a potential subject of future work.
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The following abbreviations are used in this manuscript:

ISC integrated scheduling and control
SSC segregated scheduling and control
MINLP mixed-integer nonlinear programming
NLP nonlinear programming
CSTR continuous stirred tank reactor
MIDO mixed-integer dynamic optimization
MILP mixed-integer linear programming
NMPC nonlinear model predictive control
ASU air separation unit
MMA methyl methacrylate reactor
FBR fluidized bed reactor
RTN resource task network
HIPS high impact polystyrene reactor
ASU cryogenic air separation unit
SISO single-input single-output
PFR plug flow reactor
PWA piecewise affine
DR demand response
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