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Abstract: The collision and adhesion behavior of particles and bubbles is the key to flotation.
Many scholars have investigated the collision and adhesion law of regularly shaped and
homogeneous particles (glass beads, glass fiber), but the particles in flotation cells are irregular
and heterogeneous. Therefore, it is necessary to take actual coal samples as the research object.
First, based on previous research, a particle–bubble collision and adhesion behavior measurement
device was set up to study free falling coal particles with different surface properties colliding and
adhering to a bubble (db = 1.0 mm). Then bituminous coal from Inner Mongolia was taken as the
test object, and the collision and adhesion process of a large amount of coal particles was traced.
The entire process is photographically recorded by a camera and analyzed frame by frame through
a self-designed software. Finally, the relationship between collision angle and initial settlement
position (initial), particle velocity (process), and adhesion efficiency (result) was studied by taking
the collision angle as the cut-in point. It was found that both the distribution range of the initial
settlement position and the particle central distribution interval are expanding outward with the
increase of collision angle. The resistance layer has an important influence on the velocity of particles.
The collision angle had an effect on adhesion efficiency and the adhesion efficiency of low-density
particles was higher than that of high-density particles.

Keywords: flotation; coal particle; collision angle; initial settlement position; particle velocity;
adhesion efficiency

1. Introduction

Flotation is a kind of technology that takes bubbles as the carrier to recover useful minerals
according to the difference between particle surface properties. It has the advantages of large
throughput, highly precise separation, and simple operation, so it has been widely used in the
separation of fine minerals such as coal, copper, and zinc ore [1–3]. The interaction between particles
and bubbles will affect the flotation results. At present, it is generally believed that the process of
particle–bubble interaction can be divided into three sub processes [4]: (1) particles collide with bubbles,
(2) particles adhere to bubbles and form a stable combination, and (3) unstable adhesion particles
detach from bubbles.

When a particle collides with a bubble and squeezes the free water between them, there is a
thin liquid film between them [5]. As the particle keeps approaching the bubble, the thin liquid film
gradually thins until it reaches the critical liquid film thickness. With the rupture of the thin liquid
film, the particle adheres to the bubble and the extension of three-phase contact makes the adhesion
more firm. Adhesion is influenced by the particle’s surface properties, the state of the fluid, and the
chemical environment of the solution.
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In recent years, many scholars have done experiments on the movement of particles on the surface
of bubbles. The research method used is mainly particle sedimentation, that is, an injector is used to
create a bubble on top of the needle in the water tank. The particles settle under the action of gravity.
The collision and adhesion process of particles is observed by a high-speed camera [6–8].

At present, materials with homogeneous surface properties (glass beads, glass fiber) are usually
used as test objects. It is found that the adhesion behavior is affected by the hydrophobicity of the
particles [9–11]. Hydrophobic glass beads will jump in the bubbles, while this phenomenon is not
observed if the test material is hydrophilic glass beads. Hydrophilic glass beads only slide along the
upper hemisphere of the bubble and will detach if they cross the bubble equator, but hydrophobic
glass beads will continue to slide along the bubble surface and eventually adhere to the bottom of
the bubble after crossing the equator [12,13]. In addition to hydrophobicity, the shape of the particle
also has a great influence on adhesion [14]. The irregular convex surface of particles can speed up the
liquid film drainage and puncture the liquid film. The induction time of polygonal particles is much
lower than that of spherical particles [15]. It was found that the collision angle also affects adhesion
through studying the motion of hydrophobic glass fiber. Studies have shown that when the collision
angle was less than 30◦, the glass fiber adhered to the bubble along the long axis and adhered stably.
When the collision angle was greater than 30◦, the glass fiber adhered to the bubble along the short
axis and was susceptible to the fluid environment [16].

In summary, most of the tested objects have been materials with regular shape and homogeneous
surface properties (glass beads, glass fiber). Actual minerals have not been studied in depth because of
their complex surface properties and irregular shape. Research work in other fields have shown that
material heterogeneity has an important influence on many processes of particles, such as the strength
and deformation behavior and micro-cracking process of minerals. Therefore, the influence of particle
heterogeneity should be considered in the research of flotation [17–19]. In this paper, actual coal
samples are taken as the research object and the relationship between collision angle and initial settling
position, particle velocity, and adhesion efficiency is studied from the point of view of particle group.

2. Materials and Methods

2.1. Experimental Device

A three-dimensional (3D) diagram of the test device is shown in Figure 1. The main part of the
device is composed of a funnel micromoving device, a bubble micromoving device, a bubble-generating
device, a feeding funnel, a water tank, a camera, and a light-emitting diode (LED) array light source.
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The characteristics of the device are as follows: (1) The funnel position is adjusted by the funnel
micromoving device to ensure that the particles settle in the depth of focus, and the adjustment
accuracy is 0.01 mm. (2) The bubble micromoving device can move bubbles in the direction of
XYZ, and the moving precision is 0.01 mm. (3) The bubble diameter can be adjusted to 0.5–2.0 mm.
(4) The material of the water tank is PMMA (Polymethyl methacrylate) and the light transmittance
rate is 92%. The water tank size is 80 mm × 90 mm × 150 mm. (5) The LED array light source,
used to provide illumination, consists of 8 × 12 LED beads. The luminous flux is 1250 lm and the
color-rendering index is 95.

2.2. Experimental Methods

The conversion relationship between the pixel and the actual distance is first established in the
experiment. The method is as follows: (1) Generate a bubble with the bubble-generation device.
(2) Move the bubble through the bubble micromoving device. Take 1 photo per 0.50 mm and move
5 times. (3) Calculate the actual distance of 1 pixel according to the actual moving distance of the
bubble and the pixel movement of the bubbles in the image. The bubble size can be adjusted according
to the conversion relationship, and the bubble diameter is adjusted to 1 mm in this experiment.

The relative position of the feeding funnel and the bubble is shown in Figure 2. The outlet of the
funnel is 4 mm from the top of the bubble and the particle enters the water tank through the feeding
funnel. No external force is applied in the feeding process, and particles only settle under gravity.
Each experimental video was about 5 h, and the final count of effective particles was about 1200.
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2.3. Video Processing Software.

The method of video processing is to combine artificial watching video and image processing
software (Image-Pro-Plus 6.0) in the early stage. This method will consume a lot of manpower and
cannot get enough parameters of particles. Besides, there are differences between different people’s
results for the same video. To solve this problem, video processing software was programmed on the
MATLAB platform to realize fully automated processing for the experimental video.



Processes 2018, 6, 218 4 of 15

The software contains two modules. The first module is the ruler processing module, which is
to get the actual distance corresponding to the pixels in the video by precisely moving the bubbles.
The second module is the video processing module, which is to track all particles in the video. Then the
parameters of particles and bubbles are analyzed. These parameters include the particles trajectories,
the particles velocity, the collision point between particles and bubbles, the collision angle, the particles
area, the particles circumference, the particles equivalent diameter and the particles clarity [20].

2.3.1. Principle of Software

The principle of video processing software is to extract each frame of the experimental video for
processing. Each frame is processed by image interception and grayscale transformation. The grayscale
image is transformed into a binary image by the OTSU algorithm. The OTSU algorithm is an efficient
adaptive threshold algorithm. Although the gray-scale average algorithm is simple in calculation, the
segmentation precision is lower for low-contrast images. The maximum entropy algorithm involves
logarithmic operation and the operation speed is low. Because the object in this experiment is the
experiment video which involves a large number of images and the computation is huge so it is not
suitable for the maximum entropy algorithm. After the binarization process finished, the target area
is processed by filling, denoising, and segmentation, and the locations of particles are obtained by
background subtraction. Particle tracking was determined by comparing the shape, characteristic
length, equivalent circle diameter, and position before and after the two frames to determine whether
the particles in the two frames belonged to the same particle. In the process of video processing,
the particle position is represented by centroid coordinates and the particle velocity is calculated
by dividing the moving distance of the particles in the two frames by the time. The particle size is
expressed in equivalent circle diameter, which is equal to the diameter of the projection area of the
particle. Figure 3 shows a diagram of the software.
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2.3.2. Collision Angle

The collision angle is the angle between the connection of the collision point to the bubble center
and the vertical direction. Because the actual shape of coal particles is irregular, it is difficult to get the
collision angle by using the particle centroid coordinate. To accurately represent the relative position of
particle and bubble, the center of the bubble is defined as the coordinate origin, the horizontal direction
is the x-axis, and the vertical direction is the z-axis.

A schematic of the collision angle solving method is shown in Figure 4. The first step is to find
the edge pixel coordinates of particle and bubble to calculate the distance between the particle’s edge
pixels (the solid point in Figure 4) to the bubble’s edge pixels and find the minimum value. Then the
coordinates corresponding to the minimum distance values of the first time less than 1 pixel are
obtained, which is the collision point. This method is verified by the velocity of the particle. When the
particle collides with the bubble, the velocity will drop to the minimum. The angle between the
centroid point of the particle velocity minimum to the central point of the bubble and the z-axis is
compared with the collision angle. It was found that the difference between the two angles was ±3◦.
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2.4. Materials

The test coal samples were bituminous coal from Gongwusu ore district, which is located in
the northwest edge of Ordos basin and belong to Zhuozishan coalfield. The coal-bearing stratum
in Zhuozishan coalfields are mainly composed of delta facies, tidal-flat facies and meandering river
facies. The main coal-bearing stratum in the coalfield are located in the Permo-Carboniferous Taiyuan
formation and Shanxi formation. The coalfield contains 18 coal seams which are sequentially numbered
No. 1–No. 18 from top to bottom. The main coal seam is No. 9 coal seam of Shanxi formation and
No. 16 coal seam of Taiyuan formation and the coal-bearing sedimentary sequence from Gongwusu
mine is shown in Figure 5 [21,22].

In this experiment, the coal sample was taken from No. 16 coal seam and the coal sample was
pre-treated before the experiment. First, the coal samples were wet-screened to obtain samples of
particle size 0.15–0.10 mm. Subsequently, float-and-sink tests were carried out to obtain coal samples
with density of −1.3 g/cm3, 1.4–1.5 g/cm3, and +1.7 g/cm3. The air dry basis ash (Aad) of the 3 samples
was 3.62%, 18.12%, and 42.96% and the static contact angles were 100.5◦, 87.1◦, and 65.6◦, respectively.
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Figure 5. The coal-bearing sedimentary sequence from Gongwusu mine.

The experimental liquid environment was deionized water with conductivity of 0.25 µs/cm.
We added 600 mL deionized water to the water tank, ensuring that the liquid surface completely
submerged the funnel inlet. In each test, 5 mg coal particles and 200 mL deionized water were mixed
evenly with a magnetic stirrer. The video resolution was 1280 × 720, the ISO was 100, the FPS was 50,
the value of the aperture was 5.6, the shutter speed was 1/500, and the test environment temperature
was 25 ± 1 ◦C.
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3. Results and Discussion

3.1. Collision Angle versus Initial Settlement Position

Due to the influence of water flow disturbance, fine particles coming out from the funnel outlet
will have a radial oscillation. To ensure the verticality of particle trajectory, the initial settlement
position was set at 2 mm from the origin of the coordinates.

During the statistical process, it was found that the particle number distributions in different
collision angle ranges were quite different. Taking the coal samples with density 1.4–1.5 g/cm3 as
an example, Figure 6 shows the ratio of number of particles in each collision angle to total number
of particles.Processes 2018, 6, x FOR PEER REVIEW  7 of 15 
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As shown in Figure 6, the number of particles in the middle collision angle range had more than
two sides. At a collision angle of 20–50◦, the number of particles accounted for 73.10% of the total
particles. When the collision angle was less than 10◦ or greater than 60◦, the number of particles was
very small; when the collision angle was greater than 60◦, the ratio was only 3.88%.

Particle flow around the bubble in the process of approaching was analyzed, resulting in the
trajectory of particles deviating from the z-axis. If the initial settlement position was far from the z-axis,
it was difficult for particles to collide with the bubble due to the influence of the flow around the
bubble, resulting in a smaller number of particles at a collision angle greater than 60◦.

To study the relationship between the initial settlement position and the collision angle, first,
the distance between the initial settlement position and the z-axis of the particles in the range of the
collision angles was calculated with an interval of 10◦. Then the particle ratio in each interval was
calculated with an interval of 0.05 mm.

Figure 7 shows the distribution of the initial settlement position corresponding to each collision
angle. To visually reflect the ratio of particles in the initial settlement position, a change in color is used
to indicate a change in the ratio of particle numbers. When the collision angle was greater than 60◦,
there were few particles that could collide with bubbles, and they had no statistical meaning.

It can be seen from Figure 7 that the initial settlement position of the particles shows two change
rules as collision angle increased. First, the initial settlement position range continued to expand
outward. Second, the central distribution interval of the particles in the initial settlement position also
expanded outward.
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Figure 7. Distribution of initial settlement position of each collision angle.

When the collision angle increased from 0–10◦ to 20–30◦, the initial settlement position extended
from 0.15 mm to 0.30 mm from the z-axis. When the collision angle increased to 30–40◦, a hollow
interval appeared. That means that no particle collided with the bubble in the interval near the z-axis.
As the collision angle increased, the area of the hollow interval expanded continuously. When the
collision angle increased to 50–60◦, the interval between 0–0.20 mm was hollow. At collision angles
of 0–20◦, the particle central distribution interval was 0–0.10 mm, and the ratio of particles in this
interval was over 70%. With the increase of collision angle, the central distribution interval of particles
expanded outward. When the collision angle increased to 20–30◦ and 30–40◦, the main distribution
intervals of particles were 0.05–0.25 mm and 0.10–0.30 mm, respectively. The ratio of particles in these
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two intervals was 79.95% and 70.78%. When the collision angle increased to 40–50◦, the particles were
mainly distributed in the interval of 0.20–0.40 mm. The ratio of particles in the interval reached 78.07%.

3.2. Collision Angle versus Particle Velocity

During the sedimentation process, the velocity of particles is affected by the relative position of
particles and bubbles. Figure 8 shows the actual trajectory of six particles; the density of these particles
was between 1.4 and 1.5 g/cm3, and these particles were obtained by float-and-sink experiment.
The collision angles were 5.86◦, 15.03◦, 21.33◦, 36.99◦, 41.95◦, and 50.91◦, in ascending order.
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Figure 9 shows a diagram of particle velocity corresponding to the particles in Figure 8.
The particle velocity was very stable when the particle was far from the bubble, and the velocity
was the terminal velocity. When the distance between particles and bubbles decreased to a certain
distance, the velocity of particles decreased sharply and achieved the minimum at the collision point.

As the particles began to slide on the surface of the bubble, the particle velocity gradually
increased. When the particles slid to the equator of the bubble, the particle velocity increased to the
maximum. At this time, the particle velocity was similar to the terminal velocity. As the particles
crossed the bubble equator, the particle velocity began to decrease, eventually reducing to 0, and finally
the particle adhered to the bottom of the bubble.
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Figure 9. Diagram of particle velocity.

As shown in Figure 9, the particle velocity began to decrease before collision, and this process is
related to the collision angle. The idea of resistance layer was introduced when exploring the effect of
bubbles on particle velocity. Once the particle enters the resistance layer, the velocity decreases until
it collides with the bubble. To quantify the range of resistance layer, the position where the particle
velocity decreases by 10% is defined as the boundary of the resistance layer. Figure 10 shows the
resistance layer boundary of the three coal samples. Figure 11 shows the distance from the resistance
layer boundary to the bubble center at different collision angles.
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It is known from Figure 11 that the thickness of the resistance layer around the bubble is not
constant, but is related to the collision angle and the properties of particles. The thickness of the
resistance layer gradually thins as the collision angle increases. When the collision angle increases to
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50–60◦, the thickness of the resistance layer is reduced to 0.24 mm. As the particle density increases, the
thickness of the resistance layer is compressed. When the particle density increases from −1.3 g/cm3 to
+1.7 g/cm3, the resistance layer thickness of the three coal samples is 0.39 mm, 0.36 mm, and 0.29 mm
at a collision angle of 0–20◦, and the resistance layer thickness of low-density particles at each collision
angle is larger than that of high-density particles.
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In addition, when the particle collides with the bubble at different collision angles, the particle
velocity changes with the collision angle. The terminal velocity of the six particles in Figure 8 is around
3 ± 0.5 mm/s. The particle velocity at the collision point increases with the increase of collision angle.
Figure 12 shows the relationship between particle velocity at the collision point and collision angle.
The relationship between the decreased ratio of particle velocity at the collision point and the collision
angle is shown in Figure 13.
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Figure 13. Reduction ratio of particle velocity at collision point.

When the collision angle is less than 50◦, the particle velocity at the collision point increases
approximately linearly with the increase of collision angle. When the collision angle is greater than
50◦, the particle velocity at the collision point tends to be stable and the decreased particle velocity
ratio accounts for about 20% of the terminal velocity. The reduction of particle velocity at the collision
point is related to the particle density, and the velocity reduction of low-density particles is larger than
that of high-density particles, but the difference is not obvious. When the collision angle is 0–10◦, the
decreased velocity ratio of three coal samples is 89.78%, 87.39%, and 83.84%, respectively. When the
collision angle increases to 50–60◦, the decreased velocity ratio is 20.54%, 19.20%, and 17.20%.

3.3. Collision Angle versus Adhesion Efficiency

The particle will slide along the surface of the bubble after colliding with the bubble. If the
particle–bubble interaction force can puncture the thin liquid film during the sliding period, a
three-phase contact will be formed, and the particle will adhere to the bubble. Conversely, the
particle will slide from the surface of the bubble.

Adhesion efficiency is the ratio of the number of particles adhering to the bubble at a certain
position to the total number of particles at that position. The adhesion efficiency of the three coal
samples was fitted by logistic model, and the adjusted R-square is above 0.95. This means that the
fitting equation can reflect the change of adhesion efficiency with the collision angle (Figure 14).
Taking the 1.4–1.5 g/cm3 coal samples as an example to analyze, when the collision angle is less
than 20◦, the adhesion efficiency is over 90%; as the collision angle increases, the adhesion efficiency
decreases rapidly. When the collision angle increases to 40–50◦, the adhesion efficiency drops to 37.82%.
At this collision angle, it is hard for the particle to adhere to the bubble. When the collision angle is
greater than 60◦, the adhesion efficiency is almost 0.
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Analysis shows that the differences of the particles in the same coal sample are not huge.
According to the experimental results of Section 3.2, if the particle collides with the bubble at a
small collision angle, the particle velocity at the collision point is very small, which means there is a
big loss of the particle’s kinetic energy. This kinetic energy is used to drain the thin liquid film. As the
collision angle increases, the particle velocity at the collision point increases gradually, which means
the particle’s ability to puncture the thin liquid film decreases, so the adhesion efficiency decreases
with the increase of collision angle. The adhesion efficiency of the three coal samples decreases with
the increase of coal sample density under the same collision angle.

To quantify adhesion efficiency, the area enclosed by the adhesion efficiency curve is calculated
by the Gauss–Legendre numerical integration method, which is used to indicate the level of the coal
sample’s adhesion efficiency. This value is defined as the static water adhesion angle. The static water
adhesion angles of the three coal samples were 38.35◦, 33.62◦, and 22.70◦. This means that the static
water adhesion angle decreases with the increase of coal sample density.

Analysis shows that adhesion behavior is affected by the hydrophobicity of the particle.
Nguyen used AFM (Atomic Force Microscope, Veeco, Santa Barbara, CA, USA) to determine the
interaction force between hydrophobic glass beads and bubbles, and found that there was a strong
attraction force between them. This force will break the thin liquid film and make the glass beads
adhere to the bubbles, but the interaction force between hydrophilic glass beads and bubbles is
expressed as repulsion [23]. Xie [24] confirmed the results by measuring the interaction force between
sphalerite and bubbles.

The static contact angles of the three coal samples were 100.5◦, 87.1◦, and 65.6◦. This means that
the hydrophobicity of particles decreased with the increase of particle density. As the particle density
increases, the proportion of hydrophilic part in the coal increases. The probability of contacting the
bubble increases, thereby causing the adhesion efficiency of the coal sample to decrease.

4. Conclusions

The study of the relative motion between particles and bubbles is very important for the
understanding of flotation mechanism. A device was used to study the collision and attachment
processes between particles and bubbles. A large number of coal particles were tracked and the
relationship between the collision angle and the particle initial settling position, the particle velocity
and the adhesion efficiency was studied.

1. The number of particles in different collision angles varies greatly. The particles are mainly
distributed in the range of 20–50◦. With the increase of collision angle, both the initial settlement range
and the central distribution interval of the particles expand outward gradually.
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2. Particle velocity is affected by the distance between the particles and the bubbles. After the
particles enter the resistance layer, the velocity decreases immediately. The thickness of the resistance
layer keeps constant and then slowly thins as the collision angle increases. The thickness of the
resistance layer of low-density particles is larger than that of high-density particles at all positions.
With the increase of collision angle, the particle velocity at the collision point decreases. The proportion
is reduced.

3. Adhesion efficiency decreases with the increase of collision angle, and the adhesion efficiency
of low-density particles is higher than that of high-density particles.
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