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Abstract: The myogenic response is a key autoregulatory mechanism in the mammalian kidney.
Triggered by blood pressure perturbations, it is well established that the myogenic response is initiated
in the renal afferent arteriole and mediated by alterations in muscle tone and vascular diameter
that counterbalance hemodynamic perturbations. The entire process involves several subcellular,
cellular, and vascular mechanisms whose interactions remain poorly understood. Here, we model
and investigate the myogenic response of a multicellular segment of an afferent arteriole. Extending
existing work, we focus on providing an accurate—but still computationally tractable—representation
of the coupling among the involved levels. For individual muscle cells, we include detailed
Ca2+ signaling, transmembrane transport of ions, kinetics of myosin light chain phosphorylation,
and contraction mechanics. Intercellular interactions are mediated by gap junctions between
muscle or endothelial cells. Additional interactions are mediated by hemodynamics. Simulations of
time-independent pressure changes reveal regular vasoresponses throughout the model segment and
stabilization of a physiological range of blood pressures (80–180 mmHg) in agreement with other
modeling and experimental studies that assess steady autoregulation. Simulations of time-dependent
perturbations reveal irregular vasoresponses and complex dynamics that may contribute to the
complexity of dynamic autoregulation observed in vivo. The ability of the developed model to
represent the myogenic response in a multiscale and realistic fashion, under feasible computational
load, suggests that it can be incorporated as a key component into larger models of integrated renal
hemodynamic regulation.
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1. Introduction

The kidneys are organs in the body of mammals that extract blood waste and regulate the balance
of water, electrolytes, acid-base species, etc. [1]. These tasks are crucial for the whole mammalian
body and are accomplished by complex processes involving, among others, filtration and reabsorption
mechanisms that take place exclusively within the kidney’s nephrons [1]. For these mechanisms to
operate properly, the rate of blood volume that is filtered into each of the nephrons must be maintained
within a narrow range [1]. Indeed, if the filtration rate is high, nephrons may not have sufficient
reabsorbtive capacity and necessary blood substances may be lost in urine. On the other hand, if the
filtration rate is low, unnecessary substances or toxic waste may be retained and leak back into the
general circulation.
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To maintain a stable filtration rate under physiologic conditions, blood supply to the nephrons
is regulated individually by a number of autoregulatory mechanisms [2–5]. All such mechanisms that
have been identified to-date share a common effector, namely the afferent arteriole, which is the vessel
supplying blood to each nephron [5].

One of the strongest mechanisms acting on the afferent arteriole is the myogenic response [6,7].
This mechanism induces vasoconstriction of the arteriole when blood pressure is elevated and
vasodilation when blood pressure is reduced. This way the myogenic response enables the kidney
to actively impede or accelerate blood flow and therefore to adjust the filtration rate in response to
perturbations of blood pressure that otherwise have huge destabilizing effects [7–10].

At the organ or vascular levels, the myogenic response in the kidney has been well characterized
experimentally in vitro as well as in vivo [11–18]. However, theoretically a deeper understanding of
the involved processes is lacking which limits our ability to investigate in silico realistic scenarios
under health or disease conditions. For example, although several models accurately represent
the myogenic response at the vascular or supravascular levels [2,7,11,19–28], and few even at the
cellular level [6,29,30], none of the existing models attempt to model the myogenic response across
multiple scales.

Indeed, multiscale modeling that spans processes ranging from the subcellular up to the organ
level is required to elucidate clinical and experimental findings such as the effects of integrins [31,32],
epithelial sodium channels (ENaCs) [33,34], angiotensin II (AngII) [35–38], nitric oxide (NO) [39,40],
and an array of other vasomodulators [41–44], or the pathophysiology associated with certain chronic
conditions such as hypertension [45,46], diabetes mellitus [47,48], or chronic kidney disease [49,50].
Most of these previous studies have used simple compartmental models (Windkessels), ordinary or
partial differential equations, and more recently, probabilistic methods for reproducing renal vascular
networks [28].

Our previous modeling study [29] considered only a single afferent arteriole smooth muscle
cell and investigated the myogenic response initiated by pressure changes. In [7], we considered
a model exhibiting the myogenic response and consisting of an afferent arteriole segment, glomerular
filtration, and a short loop of Henle. The smooth muscle cell in this study is less realistic than the
model in [29] since it includes a small number of components, such as membrane potential and calcium
concentration. In [30], we extended the model in [29] to a segment of multiple smooth muscle cells
connected through gap junctions; one limitation of this model is that the numerical implementation
(fractional splitting) did not allow us to consider a realistic cell size.

A goal of this study is to gain a better understanding of the interactions developed between
subcellular, cellular, and vascular processes involved in the initiation and development of the myogenic
response. Another goal is to formulate a realistic model entailing a feasible computational cost that
may be further extended to larger scales. To that end, we expand on our existing, highly detailed
mathematical model of Ca2+ signaling within an individual afferent arteriole smooth muscle cell [29]
that represents the transmembrane transport of major cytosolic ions, intracellular Ca2+ dynamics,
the kinetics of myosin light chain phosphorylation, and the mechanical behavior of the entire cell
and local vascular wall. We extend this model to a multi-cell vascular model of the afferent arteriole
and couple it with a representation of hemodynamics, i.e., blood flow and pressure, and intercellular
conduction that also incorporates a layer of endothelial cells. Our model consists of a mixture of
ordinary and partial differential equations and we apply numerical methods for differential-algebraic
systems. We use the resulting model to study myogenically induced responses of the entire afferent
arteriole to characteristic time-independent and also time-dependent pressure perturbations.

2. Mathematical Model

In this section we describe the model equations, the numerical methods developed for the solution
of the model equations, and present values used for the model parameters.
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2.1. Model Description

To represent the processes mediating the initiation and progress of the myogenic response in the
renal afferent arteriole, we model a segment of the mammalian renal vasculature consisting of multiple
cells. We incorporate a simplified geometry (Figure 1) and dimensions consistent with the afferent
arterioles associated with the long nephrons of the rat kidney [51,52].

To obtain reliable predictions of the driving signal of the myogenic response, i.e., blood pressure
profile along the model vessel [7], we represent hemodynamics. Vascular diameter across the model
vessel greatly impacts hemodynamics [7], and we combine the myogenic mechanisms of a large number
of smooth muscle cells that are the main determinants of vascular tone and wall mechanics [3]. For the
myogenic mechanism of each smooth muscle cell we adopt a highly detailed model of subcellular
dynamics that has been previously applied on the renal afferent arteriole myocytes [29]. Additionally,
to represent accurately conducted responses that have been shown, experimentally and theoretically,
to have a significant effect on overall autoregulation [17,24,27,53,54], we incorporate gap junction
coupling directly among neighboring smooth muscle cells as well as among smooth muscle cells and
a layer of endothelial cells. Lastly, in order to maintain a low computational load, we adopt only
a simplified representation of the endothelium similar to existing approaches [7,27,55].

The combined submodels are described in detail below.

2.1.1. Vascular Blood Flow

To obtain an accurate representation of blood flow, i.e., volume flow and pressure profile,
we model a segment of the renal vasculature consisting of an afferent and the associated efferent
arterioles as shown in Figure 1. Consistent with the renal microanatomy, we represent the two
vessels as consecutive straight tubes that extend from the cortical radial artery (x = 0) to the
glomerulus (x = LAA), and from the glomerulus to the entrance of the peritubular capillary network
(x = LAA + LEA), respectively.

Afferent Arteriole Efferent Arteriole

Cortical
Radial
Artery

Peritubular
Capillaries

x=0 x=LAA x=LAA+LEA

QAA QEA

Pa PvGlomerulus

Figure 1. Model vasculature. Blood flows through the afferent arteriole from the cortical radial artery
to the glomerulus and subsequently flows through the efferent arteriole from the glomerulus to the
peritubular capillaries.

Let QAA and QEA denote the blood flow in the model afferent and efferent arterioles, respectively.
In the glomerulus, which is the initial part of the nephron and where filtration takes place [1], a portion
of the supplied blood is removed from the bloodstream. To model glomerular filtration, we assume
a constant filtration fraction fg. Hence, the single nephron glomerular filtration rate equals fgQAA and
conservation of mass reads

QEA = (1− fg)QAA. (1)



Processes 2018, 6, 89 4 of 21

Blood flow in the model vasculature is assumed to obey Poiseuille’s law [56], which, applied to
the two vessels, reads

∂P
∂x

= − 8µ

πR4 QAA, 0 < x < LAA, (2)

∂P
∂x

= − 8µ

πR4 QEA, LAA < x < LAA + LEA. (3)

In the above equations, P and R denote the pressure and radius profiles along the model
vasculature, respectively, and µ denotes the viscosity of blood, which is assumed equal in both
vessels despite a minor difference in the hematocrit caused by filtration [57].

Micro-puncture studies indicate minor pressure differences between the renal artery and the
entrance of the afferent arteriole, as well as between the peritubular capillaries and the renal vein [58,59].
Therefore, we use the boundary conditions

P(t, 0) = Pa, (4)

P(t, LAA + LEA) = Pv, (5)

where Pa and Pv denote the blood pressures in the renal artery and vein, respectively. As in previous
modeling studies [7,55,60], we assume Pa is a prescribed function of time serving as the overall input
to our model, while Pv is fixed. To facilitate the presentation in Section 3, we refer to the pressures
PAA(t, 0) and PAA(t, LAA) as afferent arteriole inflow and outflow pressures, respectively.

Conservation of mass (1), Poiseuille’s law (2) and (3), and the boundary conditions (4) and (5) can
be combined to yield

QAA =
Pa − Pv

WAA + WEA
, (6)

where the vascular resistances WAA and WEA are given by

WAA =
8µ

π

∫ LAA

0

1
R4 dx, (7)

WEA = (1− fg)
8µ

π

∫ LAA+LEA

LAA

1
R4 dx. (8)

Autoregulatory phenomena in the renal vasculature of mammals typically require 1–60 s to
develop [2–4]. On this time scale, the radius of the efferent arteriole appears essentially constant [3],
therefore for x > LAA we assume R(t, x) = REA, where REA is a fixed radius. So (8) reduces to

WEA =
8(1− fg)µLEA

πR4
EA

. (9)

In contrast, over the same time scale, the radius of the afferent arteriole may change considerably
due to either spontaneous contractions of the arteriolar smooth muscles or the operation of the
autoregulatory mechanisms [6,7]. Therefore, to accurately predict the evolution of R(t, x) for x < LAA,
we develop a detailed model of the afferent arteriolar wall, including the constituting myocytes, which
is described below.

2.1.2. Vascular Wall

The afferent arteriole wall model consists of a chain of NAA smooth muscle cells oriented
circumferentially along the vascular lumen as shown in Figure 2. In our formulation, the muscle cells
are centered at

xi =

(
i− 1

2

)
h, i = 1, . . . , NAA, (10)
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where h = LAA/NAA is the axial muscle width, i.e., individual smooth muscles are located between
xi − h/2 and xi + h/2.

SMCi-1 SMCi SMCi+1

QAA QAA

Pi, Ri

xi

h

conduction through
smooth muscles

conduction through
endothelium

Twall
i

TP
i

vivi-1 vi+1
uiui-1 ui+1

Figure 2. A segment of the model afferent arteriole. The vascular wall consists of a chain of smooth
muscle cells (SMC). The local vascular radius Ri is determined by the balance of Ti

P and Ti
wall which

depend on local blood pressure Pi and the contractile state of the surrounding myocyte, respectively.
Along the vascular wall, signals are conducted directly through the smooth muscles (vi−1 ↔ vi ↔ vi+1)
or indirectly through the endothelium (shaded region, ui−1 ↔ ui ↔ ui+1). For simplicity, we only
show selected intercellular currents. See Section 2.1.2 for complete equations.

For each smooth muscle cell we adopt the model of [29] which represents in detail subcellular
processes such as transmembrane ionic transport, Ca2+ dynamics, and kinetics of myosin light chain
phosphorylation. For convenience, we include a schematic of the myogenic mechanism in Figure 3, and
refer the reader to [29,30] for complete details on model equations. Among other variables, the smooth
muscle cell model predicts muscle membrane potential vi, cytosolic concentrations [k]i for k = K+,
Na+, Cl−, Ca2+, and the fraction ψi of phosphorylated myosin light chains.

Figure 3. Illustration of the myogenic mechanism of an individual vascular smooth muscle cell
in the renal afferent arteriole. For details on the model compartments and equations see [29,30].
(Figure reproduced with permission from [29]).
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Given our focus on the representation of vascular responses, which are greatly influenced by
intercellular communication [17,27,53,55,61,62], we modify the model of [29] which studies cells in
isolation and so it ignores signals shared between different smooth muscles. In the present study we
consider the addition of gap junctional coupling motivated by the models of [27,30,55].

To represent gap junctions, we model two pathways: a direct one where ions pass between the
cytosol of adjacent smooth muscles, and an indirect one where electrical currents pass between the
smooth muscles and the endothelium [53,61,63,64]. For the former, we compute the ionic fluxes
according to the well established Goldman-Hodgkin-Katz model similar to [63]. For the latter,
we assume each smooth muscle is associated with a phenomenological endothelial compartment with
local membrane potential ui, and compute the electrical fluxes according to Ohm’s law similar to [27].
We note that on the timescales of the myogenic response that we are interested in, i.e., 1–10 s [3,4,7],
the endothelium merely acts as a low-resistance pathway between the membranes of distant
cells [3,53,62], and thus we formulate only this aspect. Accordingly, in the present study we ignore
vasomodulatory effects mediated by the endothelium such as production and secretion of various
vasomodulators such as NO [4,5], which in the mammalian vasculature develop over considerably
slower time scales [3,4]. We note that including a full model of the endothelium, for example similar
to [63–66], would considerably add to the computational cost, without providing further autoregulatory
insight. Additionally, the experimental observations that exist currently do not suffice for a more
elaborate formulation that is specific to the renal microcirculation.

In summary, the modified muscle dynamics are given by

Cm
dvi
dt

= −Ii
net(Pi)− Ii

m↔m − Ii
m↔e (11)

Vcyt
d[k]i

dt
= Ji

net,k(Pi) + Ji
m↔m,k (12)

for k = K+, Na+, Cl−, Ca2+ and the potential dynamics of the endothelial nodes ui are given by

Ce
dui
dt

= Ii
m↔e − Ii

e↔e (13)

Above, Cm and Ce denote the capacitances of the smooth muscle membrane and the endothelial
compartments, respectively; Vcyt denotes the volume of the muscle cytosol; Ii

net(Pi) denotes the net
sum of the currents passing through membrane channels [29]; Ii

m↔m, Ii
e↔e, and Ii

m↔e denote the
currents passing through gap junctions developed between muscles and the endothelium [27,63];
and Ji

net,k and Ji
m↔m,k denote the corresponding ion fluxes [29,63]. For the above equations, we assume

no-flux boundary conditions at both end points of the afferent arteriole.
The model muscle cells represent the myogenic response under the assumption that the afferent

arteriole responds directly to changes in blood pressure [6]. For this, (11) and (12) incorporate in
Ii
net(Pi) and Ji

net,k(Pi), respectively, contributions from pressure sensitive membrane channels whose
activation depends on local blood pressure

Pi(t) = P(t, xi), i = 1, . . . , NAA (14)

where P(t, x) is the pressure profile of (2).
We denote the fraction of myosin light chains that are phosphorylated by ψi and refer to [29,30]

for its dependence on the model variables. Given ψi and pressure Pi, the model of [29] predicts the
local vascular radius Ri in the vicinity of the ith smooth muscle. In particular, Ri is determined by the
balance of apparent hoop stresses Ti

P and Ti
wall (actual hoop stresses are proportional to Ti

P and Ti
wall)

that are exerted across the muscle,

η
dRi
dt

= Ti
P(Pi, Ri)− ξiTi

wall(ψi, Ri) (15)
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The transmural pressure Ti
P depends on Pi and tends to stretch the smooth muscle, causing

passive vasodilation. The wall stress Ti
wall depends on ψi and tends to compress the muscle, causing

active vasoconstriction [29]. As the pressure Pi decreases along the vessel [55], the stress Ti
P is lower

near the glomerulus than near the cortical radial artery. To achieve a baseline radius profile that is
approximately flat, similar to [7,27,60], we introduce a parameter ξi in (15) which downscales Ti

wall
similar to a baseline Ti

P. That is, we set

ξi = 1 +

(
Pref

g

Pref
a
− 1

)
xi

LAA
(16)

where Pref
a and Pref

g denote reference values for the afferent arteriole inflow and outflow pressures.

2.2. Numerical Methods

To obtain solutions of the model equations presented in the previous section we need to solve
a large system of (stiff) ordinary differential equations that describes the combined dynamics of the
individual smooth muscle cells. This system can be put in the form

dXi
dt

= Fi(Xi−1, Xi, Xi+1, Pi), i = 1, . . . , NAA (17)

where Xi combines the state variables of the ith smooth muscle cell (for example Xi combines vi, ui,
[k]i, ψi, Ri, etc.). We implement no-flux boundary conditions assuming ghost cells X0 = X1 and
XNAA+1 = XNAA .

The system in (17) is coupled to the blood flow representation of Section 2.1.1, which is
discretized spatially. For this we assume that the radius profile is locally approximated by the smooth
muscle predictions

R(t, xi) = Ri(t), i = 1, . . . , NAA. (18)

Given (6)–(8), blood flow in the afferent arteriole is computed by

QAA =
π

8µ

Pa − Pv

∑i
h

R4
i
+ (1− fg)

LEA
R4

EA

. (19)

Pressures at the discrete locations Pi are obtained via (2) using an upwind approximation of the
gradient ∂P/∂x. Namely, the pressures are given by

P1 = Pa −
4µh
π

QAA

R4
1

, (20)

Pi+1 = Pi −
4µh
π

(
1

R4
i−1

+
1

R4
i

)
QAA, i = 2, . . . , NAA. (21)

To compute numerical solutions we cast the resulting system of semi-discrete Equations (17)
and (19)–(21) in the differential-algebraic form

dY
dt

= G1(t, Y, Z), (22)

0 = G2(t, Y, Z), (23)

where Y = (X1, . . . , XNAA) and Z = (QAA, P1, . . . , PNAA). For the time evolution of (22) and (23),
we apply standard numerical methods for initial value problems in differential-algebraic form [67,68]
implemented in MATLAB (The MathWorks, Natick, MA) using implicit solvers that can efficiently
treat the stiffness inherent in (17). Specifically, we opt for the solver ode15s, and supply the Jacobian
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matrix to improve the solver’s efficiency. We note that this built-in MATLAB method is adaptive,
so that we expect that the numerical error arising from time discretization is controlled. The absolute
and relative tolerances we use for ode15s are both 10−7.

2.3. Parameter Values

2.3.1. Vascular Geometry and Hemodynamics

Throughout this study, we consider an afferent arteriole of total length LAA = 60 µm that consists
of cells with axial length h = 3 µm approximately of the same dimensions as reported in [69,70].
Based on the estimated LAA and h, the model afferent arteriole is discretized into NAA = 20 cells.
We note that while the axial length h used is realistic, in order to keep the overall computational costs
low, the vessel length LAA used is near the smallest measured experimentally in the rat kidney.

Values for the model parameters are listed in Table 1. These are chosen based on previous
modeling studies or have been computed assuming reference physiological values for the afferent
arteriole inflow and outflow pressures Pref

a and Pref
g , afferent arteriole radius Rref

AA, afferent arteriole
blood flow Qref

AA, and single nephron glomerular filtration rate Qref
g . We set the radius of the efferent

arteriole REA to 10% larger than Rref
AA as reported in [71], and we compute the length of the efferent

arteriole LEA such that the resulting pressure drops along the afferent and efferent arterioles at reference
are Pref

a − Pref
g and Pref

g − Pv, respectively. The value µ is adjusted to ensure that, for the dimensions of
our system and physiological values of the parameters as listed in Table 1, we reproduce a reference
pressure drop of 50 mmHg in Equation (19) in agreement with experimental observations [56].

Table 1. Model parameter values.

Description Parameter Value Units Reference

Reference afferent arteriole inflow pressure Pref
a 100 mmHg [55,60]

Reference afferent arteriole outflow pressure Pref
g 50 mmHg [55,60]

Reference afferent arteriole radius Rref
AA 10 µm [29,60]

Reference afferent arteriole flow Qref
AA 300 nL/min [55,60]

Reference glomerular filtration rate Qref
g 30 nL/min [7,60]

Pressure in renal vein Pv 4 mmHg [7]
Axial length of smooth muscle cell h 3 µm [69]
Number of smooth muscle cells NAA 20 - present study
Afferent arteriole length LAA 60 µm [69]
Efferent arteriole length LEA 60 µm present study
Efferent arteriole radius REA 11 µm [71]
Filtration fraction fg 0.1 - [72]
Blood viscosity µ 6.68 mmHg ·µs present study
Muscle contraction time constant η 1.71 s [29,30]

2.3.2. Electrophysiology

Values for the parameters modeling the currents Ii
net and ion fluxes Ji

net,k of (11) and (12) are
adopted from [29,30], while values for the parameters modeling Ii

m↔m and Ji
m↔m,k are adopted

from [63]. For the currents Ii
m↔e and Ii

e↔e modeling endothelial gap junctions, we use Ohmic
conductances gme and gee, respectively. We compute these values based on the estimated dimensions
of the model afferent arteriole, namely

gme =
Ame

ρme`me
, (24)

gee =
Aee

ρee`ee
, (25)
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where Ame = 2πhRref
AA is the contact area between the muscles and the endothelium, Ame = πRref

AA`me

is the endothelial cross-section area, `me is half of the afferent arteriole wall thickness, and `ee equals h.
For the resistivities ρme and ρee we adopt the values from [65].

3. Model Results

Having described the formulation of our model and the necessary numerical methods in the
earlier sections, here we show characteristic simulations. Specifically, we examine the model’s behavior
when the inflow pressure, denoted Pa(t), is (i) set to a constant value (time-independent); (ii) perturbed
by an instantaneous rise or drop (time-dependent); and (iii) perturbed by sinusoidal oscillations
(time-dependent). We focus our presentation only on Pa(t), which essentially represents the renal
perfusion pressure, due to its physiological and experimental importance [2–5,56].

3.1. Responses to Steady Perturbations

We first compare our model to the previous models of [29] and [30] by studying the base
case situation when the inflow pressure Pa is set to a constant value of 100 mmHg (baseline).
Figure 4A shows predicted oscillations for the first cell in the afferent arteriole for the membrane
potential v1. The mean value is −35.96 mV, which is similar to the values found in both [29,30] and
which approximates the measured value of −40 mV well [73]. Figure 4B shows the cytosolic Ca2+

concentration, which varies between approximately 200 and 360 nM, a somewhat larger range than as
predicted in [29,30]. The frequency of the oscillations is 0.15 Hz, the same as in [30] and slightly smaller
compared to [29], but well within the range of experimental measurements, for example see [26].
Figure 4C shows the local vascular diameter in the proximity of the first cell of the afferent arteriole,
which has an average of 19.7 µm with an oscillation amplitude of 0.6 µm. Both values are in agreement
with previous model predictions [29] and also experimental observations of spontaneous vasomotion,
for example [4,71].

To investigate the myogenic response of the model’s afferent arteriole, we computed the outflow
pressure and time- and space-averaged diameter of the afferent arteriole given different constant inflow
pressures Pa. For a comparison, the dotted line in Figure 5 indicates the values expected in the absence
of autoregulation (i.e., inflow perturbations are transmitted unattenuated to outflow perturbations)
and the dashed line indicates the values expected in the presence of perfect autoregulation (i.e., inflow
perturbations are not transmitted to outflow perturbations). We emphasize that, as these lines are
shown only for visual purposes, their computation is not based on the present model and instead
they can be directly derived from basic principles [56]. As seen in Figure 5, our results indicate
that as Pa increases, the predicted outflow pressure of the afferent arteriole increases only when Pa

is below ≈80 mmHg or above ≈180 mmHg. The predicted pressure response lies below the line
representing perfect autoregulation for low Pa, coincides with the line for a wide range of inflow
pressures (≈80–180 mmHg), and then lies above the line for large Pa. A similar autoregulatory
plateau is predicted for QAA (not shown). We note that this plateau is in almost complete agreement
with Figure 8 in [11], where renal blood flow is measured in vivo over a range of arterial blood
pressures in whole kidney preparations. Our model is able to achieve almost perfect autoregulation
for a physiologically relevant range of inflow pressures that is larger than the corresponding range
predicted by the cellular models of [30,55].
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Figure 4. Predicted oscillations for the first cell in the afferent arteriole at an inflow pressure of
100 mmHg for the (A) membrane potential; (B) cytosolic concentration of Ca2+; and (C) afferent
arteriole local diameter.
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Figure 5. Predicted myogenic response (blue) compared to perfect autoregulation (red) and no
autoregulation (purple) of blood flow through the vessel for a range of blood pressures. For illustrative
purposes, we show a straight line for the case of no autoregulation that qualitatively captures the
response under this assumption (actual slope may differ).

Figure 6A shows the steady-state diameters (time- and space-averaged across afferent arteriole
cells) for different constant inflow pressures. As in [30,55], the model predicts vasodilation for small
inflow pressures and vasoconstriction for large inflow pressures. Our model predicts a larger mean
diameter for small inflow pressures (≤80 mmHg) than [30,55] and approximately the same mean
diameter for large inflow pressures (≥160 mmHg).
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As can be seen from Figure 6A, vasoresponses to either reduced of elevated inflow pressure are
considerably stronger near the distal part of the model afferent arteriole. For example, at 180 mmHg,
vasoconstriction of the distal cells is nearly twice that of the proximal cells. For all inflow pressures,
according to Figure 6B, attenuation of the perturbations occurs throughout the length of the model
afferent arteriole. As a result of the stronger distal responses, the attenuation becomes gradually
stronger as perturbations travel downstream.
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Figure 6. (A) Predicted steady-state diameter (calculated by time-averaging for the first and last cells
and calculated by space- and time-averaging for the mean) across the afferent arteriole cells for a range
of time independent blood pressures; (B) Predicted myogenic response of blood flow for five cells in
the afferent arteriole for a range of blood pressures.

3.2. Responses to a Step Perturbation

To gain insights into the behavior of the model under time-dependent pressure perturbations we
simulate changes in inflow pressure as illustrated in Figure 7, first row. We simulate a pressure pulse by
introducing an almost instantaneous rise (respectively drop) in inflow pressure, maintaining the pulse
pressure for 20 s, and returning back to the baseline through an almost instantaneous drop (respectively
rise). The system is then allowed to stabilize after the return to the baseline inflow pressure over a
period of 50 s. This framework allows us to analyze the predicted responses of the model afferent
arteriole over a short-term period for both increases and decreases in blood pressure and is intended
to simulate step-pressure experimental conditions [74].

Rows 2–5 of Figure 7 show the evolution of flow QAA, membrane potential, cytosolic Ca2+

concentration, and local vascular diameter for the first cell in the modeled afferent arteriole under
a pressure pulse decrease to 80 mmHg (left) and a pressure pulse increase to 120 mmHg (right).
The pressure decrease leads to a reduction in membrane potential, which triggers a rapid decrease in the
amplitude of the Ca2+ concentration oscillations and subsequently a slower drop in the local vascular
diameter [29,30]. This reduction in the local vascular diameter corresponds to passive constriction of
the model afferent arteriole due to the sudden pressure drop, which is followed by a slower dilation
due to the activation of the myogenic response (Figure 7A5) [29]. The short pressure pulse does not
allow the local vascular diameter to fully dilate to a diameter larger than the baseline 20.1 µm during
the pressure decrease. However, the local vascular diameter returns to a larger mean amplitude of
oscillations after the return to baseline pressure at 40 s that stabilizes slowly (�40 s) to the pre-step
value. Qualitatively, our model predicts correctly this active response [3,4]. Furthermore, although
somewhat slower than reported in the renal experimental literature [3,4], our predicted time course is
also quantitatively similar to the predictions of existing vascular models, for example [23,75,76].
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Figure 7. Predicted time profiles of (1) inflow pressure; (2) blood flow; (3) membrane potential;
(4) cytosolic Ca2+ concentration; and (5) local diameter for the first cell in the model afferent arteriole
under (A) pressure pulse decrease to 80 mmHg; and (B) pressure pulse increase to 120 mmHg.
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In the pressure pulse increase, pressure-activated Ca2+ and Na+ membrane channels open up,
allowing the influx of cations, which in turn lead to an increase in membrane potential as well as
cytosolic Ca2+ concentration [29,30]. Following the initial passive dilation, this triggers a rapid active
constriction (Figure 7B4, at 20 s). The short pulse period does not allow us to visualize complete
constriction in the case of this pressure up-step.

To investigate the propagation of the pressure pulses (Figure 7, first row) throughout the length
of the model afferent arteriole, we show the time evolution of membrane potential, cytosolic Ca2+

concentration, and local vascular diameter of 5 different cells located throughout the length of the
model vessel during a pressure pulse increase to 140 mmHg in Figure 8. As a result of including
the gap junctions (see Section 2.1.2), the membrane potential profiles are similar for all cells. On the
other hand, the Ca2+ concentration oscillation amplitude after the pulse shows that the distal cells
(cells spanning the terminal ∼20% of the afferent arteriole) differ considerably from their neighbors.
The Ca2+ fluctuations further affect the local muscle dynamics such that the diameters of the last
model afferent arteriole cells also illustrate larger differences from the proximal and middle cells.
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Figure 8. Predicted time profiles of (A) membrane potential; (B) cytosolic Ca2+ concentration; and (C)
local diameter for five cells in the afferent arteriole at an inflow pressure pulse increase to 140 mmHg.
For clarity, we only show one in 5 cells along the AA; the behavior of neighboring cells is summarized
in Section 3.2.

Figure 9 further illustrates the effect of the myogenic response on the outflow diameter and
pressure for the short pulse simulations. Figure 9A corresponds to the steady-state diameter of the
afferent arteriole (calculated by time- and space- averaging across all cells). These predictions show that
some vasodilation at small inflow pressure pulses and some vasoconstriction at large inflow pressure
pulses are observed even when investigating short-term responses to pressure changes. Figure 9B
shows that a similar behavior is observed for the time-averaged diameter of the last cell in the model
afferent arteriole, as predicted in [55] as well. These predictions indicate that the autoregulatory
plateau is conserved, though to a lesser degree, even when considering short-term responses.
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Figure 9. Predicted (A) steady-state diameter (time- and space-averaged across all cells); and (B) time-
averaged outflow pressure (for the last afferent arteriole cell), for a range of luminal pressure pulses.

3.3. Responses to Sinusoidal Perturbation

Motivated by experimental studies reporting influences of oscillatory pressure on blood flow [20],
we next examined the model afferent arteriole’s behavior under sinusoidal perturbations in the inflow
pressure Pa(t). After setting the inflow pressure to a constant value of Pref

a for t < 0, we perturb the
inflow pressure in the form

Pa(t) = Pref
a + A sin(2π f t), t ≥ 0, (26)

where A is the amplitude of the sinusoidal inflow pressure and f is the frequency. We studied the
model’s response to the perturbations for amplitudes A = 10 mmHg and A = 20 mmHg and for
a range of frequencies between 0.01 Hz (slower) and 1 Hz (faster).

For each inflow amplitude A and frequency f , we observe that the oscillations in the outflow
pressure contain two or more different frequencies. Three such examples are given in Figure 10,
where the first row shows the perturbed inflow pressure, the second row shows oscillations in the
local vascular diameters for the first and last cells in the afferent arteriole, and the third row shows
the resulting outflow pressure. To facilitate the comparison between the induced Pa(t) and predicted
QAA(t) perturbations we normalize the corresponding time courses by their respective baseline values
and combine them in Figure 11.
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Figure 10. (1) Inflow pressure; and predicted oscillations in (2) local diameter for the first and last
cells in the afferent arteriole; and (3) outflow pressure when a sinusoidal perturbation is applied to the
inflow pressure with amplitude A = 20 mmHg and frequency (A) 0.01 Hz; (B) 0.1 Hz; and (C) 1 Hz.
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Figure 11. Normalized inflow pressure Pa/Pref
a and normalized blood flow QAA/Qref

AA when
a sinusoidal perturbation is applied to the inflow pressure with amplitude A = 20 mmHg and
frequency (A) 0.01 Hz; (B) 0.1 Hz; and (C) 1 Hz.

The larger the frequency f , the more distinct that a “faster oscillation” with a larger frequency
as well as a “slower oscillation” with a smaller frequency appears in the outflow pressure curves
(Figure 10, third row). The faster oscillation has approximately the same frequency as the inflow
frequency f . As f increases the frequency of the slower oscillation increases and then plateaus
around the value of approximately 0.15 Hz for f ≥ 0.5 Hz (for both amplitudes A = 10 mmHg and
A = 20 mmHg), which is the natural frequency of the afferent arteriole spontaneous vasomotion
reported in Section 3.1.

The amplitude of the outflow pressure is larger or equal to the inflow amplitude A for
small frequencies and decreases as the inflow frequency f increases. When the inflow frequency
f ≥ 0.25 Hz, for A = 10 mmHg, the outflow amplitude converges to approximately 7.8 mmHg, and
for A = 20 mmHg, the outflow amplitude converges to approximately 13.5 mmHg. Thus, for smaller
inflow frequencies f , the sinusoidal perturbation leads to irregular oscillations in the local vascular
diameters and outflow pressure, and for large inflow frequencies f , the perturbation leads to sustained
vasoconstriction [6,20,21,55]. According to the analyses in [26], this behavior is expected since, due to
absence of tubuloglomerular feedback (TGF) in the present formulation, dynamic autoregulation at
low frequencies f is not incorporated.

Assuming that the afferent arteriole behaved like a rigid tube, a linear relationship between Pa

and QAA is expected. To see this, we note that (7) reduces to a constant resistance WAA, and therefore
(6) implies the linear dependence. For example, under the assumption of a rigid afferent arteriole,
a 10% increase of inflow pressure Pa, as in Figures 10 and 11, would result in a 10% increase of QAA

and the sinusoidal oscillations in Pa and QAA would be in phase. However, the afferent arteriole is not
a rigid tube, so our simulations indicate a non-linear relationship between these variables. We find
that, similar to the outflow pressure amplitude, the amplitude of the normalized blood flow QAA/Qref

AA
decreases as the inflow frequency f increases and plateaus to approximately 0.17 for A = 10 mmHg
and approximately 0.29 for A = 20 mmHg. Thus, a 10% increase in inflow pressure results in a 17%
increase in blood flow rate, and a 20% increase in inflow pressure results in a 29% increase in blood
flow rate. The blood flow leads the inflow pressure (Figure 11) since our model does not have a venous
system and we have a rigid tube at the end of the afferent arteriole, not a compliant tube. For small
input frequencies f , QAA has a phase shift in front of Pa, but as f increases, QAA is shifted after Pa.

4. Discussion

We have developed a multiscale mathematical model of the myogenic response of the mammalian
kidney. The model spans subcellular, cellular, and vascular aspects and represents detailed Ca2+

trafficking in each of the afferent arteriole myocytes, as well as the kinetics of myosin light chain
phosphorylation, the mechanics of the vascular wall, and blood flow. The developed model is an
extension of our preliminary arteriolar model [30], which ignores conduction via the endothelial layer.
As of that, the model in [30] might underestimate the effects of conducted myogenic responses [53]
and the impact on the overall autoregulatory behavior of the model vessel [55].
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Similar to our preliminary model [30], the model of the present study is constructed by connecting
a large number of afferent arteriole smooth muscle cells. However, unlike [30], inclusion of the
endothelium and intercellular coupling allows a realistic representation of ion diffusion and electric
conduction along the afferent arteriole. Further, compared with [30], a fluid dynamics model is also
added to relate fluid pressure, fluid flow, and vascular resistance so as to allow accurate predictions
of all variables required for the activation of the myogenic response. It is also worth noting that our
present model also overcomes a numerical limitation on cell size that restricted our approach in [30].

Characteristic simulations show that at physiologic blood pressure, the model predicts
spontaneous oscillations (Figure 4) in cytosolic [Ca2+] and in vascular diameter consistent with
numerous experimental and theoretical findings, for example [2–4,26]. Those oscillations arise
from the dynamic exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum, coupled
to the stimulation of Ca2+-activated potassium and chloride channels, and the modulation of
voltage-activated L-type channels [29,30]. Spontaneous oscillations of the afferent arteriole muscle
tone result in oscillations in vascular resistance, fluid pressure, and flow [7].

As in predecessor models such as [7,29], the present model formulates the myogenic response
under the assumption that the response is initiated by pressure-activated Ca2+ and Na+ channels
found in the cell membrane of the afferent arteriole myocytes [62]. However, the precise molecular
cascade through which pressure changes activate ion channels in renal vascular smooth muscle cells
has not been characterized physically yet [4,5]. Hence, our formulation of this aspect remains only
phenomenological at this point, constructed in such a way that predicted integrated vasoresponses
agree with experimental findings relating luminal blood pressure, cell membrane potential, and
cytosolic Ca2+ and Na+ concentrations [29,55]. Despite this phenomenological assumption,
the developed model afferent arteriole is able to stabilize, to a significant degree, outflow pressure for
a range of steady-state inflow pressure spanning 80–180 mmHg (Figure 5).

Additionally, the afferent arteriole model described here reproduces the myogenic response even
in the dynamic context. Characteristically, the model maintains an autoregulatory plateau even when
challenged with short-term pulses in the inflow pressure (Figure 9). Differences in the distal cells in the
model vessel are observed, and may be explained by the fluctuations in Ca2+ due to the pressure pulses.
Additionally, sinusoidal perturbations in the inflow pressure are also investigated, and the responses
are found to depend on the amplitude and frequency of the perturbation. Since the afferent arteriole is
an actively compliant tube, the effect of different amplitude oscillations are found to influence both the
increase in the blood flow rate and the phase shift between inflow pressure and flow rate.

Among the limitations of the present study is the high computational cost of modeling large
vessels consisting of multiple cells. For this reason, we use a simplified endothelium model similar
to [7,27,55], although physiologically, a more complex model would be necessary to predict dynamics
at slower time scales. The model endothelium compartment does however act as a low-resistance
pathway between the membranes of distant cells, as expected, for the time scales of the myogenic
response under consideration.

In reality, renal hemodynamics is a significantly more complicated process than modeled here,
with dynamics influenced also by inputs from other processes and organs, which we do not currently
incorporate into the model. In addition, our model is fully deterministic, and could benefit from
a study of more realistic stochastic pressure perturbations. While our results agree with baseline
expectations, our work is a modeling study and so it requires experimental validation. Our model
allows for carrying out simulations of realistic scenarios and experiments that may not be easily
performed otherwise. For example, direct assessment of the myogenic response would require single
afferent arteriole or single nephron studies. This requires access to the kidney’s interior, as well as
studying afferent arterioles in isolation; these are challenging experiments, partly because preparation
procedures may significantly alter the afferent arteriole’s behavior.

Alongside the myogenic response, another major mechanism contributing in renal hemodynamic
control is tubuloglomerular feedback (TGF) [1,56]. Independently of the myogenic response which
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is triggered by local blood pressure perturbations, tubuloglomerular feedback is triggered by salt
reabsorption in the downstream nephron that, in turn, depends on filtration rate. As the triggering
signals of the two mechanisms are largely independent but interrelated through blood flow which
influences both local pressure and filtration rate, highly non-trivial interactions among the two
mechanisms are developed [4,7,26,77]. A potential extension of the present afferent arteriole
model would be to include a model of nephron transport (e.g., [78–82]) and tubuloglomerular
feedback (e.g., [7,83–85]). That would result in an integrative model of renal hemodynamics
regulation that can be used for studying the interactions between the myogenic and tubuloglomerular
feedback mechanisms in the context of renal autoregulation and for investigating changes in renal
hemodynamics in pathophysiological conditions, especially under circumstances (e.g., hypertension
and diabetes mellitus) involving complex multilevel responses [5].
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