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Abstract: The increasing variability in power plant load in response to a wildly uncertain electricity
market and the need to to mitigate CO2 emissions, lead power plant operators to explore advanced
options for efficiency optimization. Model-based, system-scale dynamic simulation and optimization
are useful tools in this effort and are the subjects of the work presented here. In prior work, a dynamic
model validated against steady-state data from a 605 MW subcritical power plant was presented.
This power plant model was used as a test-bed for dynamic simulations, in which the coal load
was regulated to satisfy a varying power demand. Plant-level control regulated the plant load to
match an anticipated trajectory of the power demand. The efficiency of the power plant’s operation
at varying loads was optimized through a supervisory control architecture that performs set point
optimization on the regulatory controllers. Dynamic optimization problems were formulated to
search for optimal time-varying input trajectories that satisfy operability and safety constraints during
the transition between plant states. An improvement in time-averaged efficiency of up to 1.8% points
was shown to be feasible with corresponding savings in coal consumption of 184.8 tons/day and a
carbon footprint decrease of 0.035 kg/kWh.
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1. Introduction

The excessive emissions of CO2 from fossil-fueled power plants contribute to the greenhouse
effect and global warming. Increasing the efficiency of power generation cycles and integration
with CO2 capture units are nowadays accepted as the most promising short-term approaches to
reducing CO2 emissions while we transition to renewable and carbon free energy sources [1,2].
Efficiency improvements can be achieved through the optimization of power plant operating strategies
or through modification of plant design. For instance, new fossil-fueled power plants use a combination
of steam and gas turbines to generate electricity, resulting in thermal efficiencies as high as 61% [3].
Moreover, modern coal-fired Rankine cycle systems can achieve efficiencies as high as 47% using
ultra-supercritical boilers [4]. For instance, the commercial power plant of Lünen (Germany) burns
low-sulfur hard coal [5] at an efficiency of up to 46% in a 750 MW ultra-supercritical once-through
boiler, operating at steam conditions of 600 ◦C and 280 bar [6]. Nonetheless, subcritical coal-fired
steam power plants that operate on the principle of the Rankine Cycle still supply more than one-third
of the electricity demand in the US [7]. Subcritical power plants operating at pressures lower than
220 bar have a nominal efficiency of 37% [8]. Compared to supercritical and ultra-supercritical plants,
the more common subcritical plants are advantageous in terms of lower installation costs, operating
and maintenance experience [5,7]. Therefore, optimization of the efficiency of subcritical power plants
is the first realistic step in our efforts to reduce CO2 emissions from the power sector.
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Due to seasonal and daily fluctuations in power demand and new deployment programs focused
on renewable energy, dynamic simulations and optimization are required for power plants in order
to respond to the resulting time-varying power demand. The contribution of electricity generation
from renewable energy sources throughout the world will expand from the current 21% to 29.8% by
2040 [7]. The impact of this increase in penetration of renewable sources has been explored by many
researchers. For example, Shah et al. [9] showed that the higher penetration of large-scale photovoltaic
plants in the power grid will lead to significant variation in the power flow across the grid and unstable
power generation profiles for the balancing conventional plants. The work by Edmunds et al. [10]
showed that today’s power plants are subject to more intense ramping operations due to the increasing
variable renewable penetration. Critz et al. [11] focused on the challenges arising from the inability
to accurately forecast renewable power generation. Correspondingly, Eser et al. [12] showed that
the high penetration of renewable energy sources will result in an increase in periodic start-ups of
thermal power plants. Thus, simulation of the dynamic behavior of the integrated electricity sector and,
in particular, the dynamicity of the fossil-fueled power plants, which will provide the balanced power
(between renewables input and market demand), is increasingly of interest to improve productivity
and stability and reduce cost and emissions.

The efficiency of conventional fossil-fueled power plants that are based on the Rankine Cycle
mostly depends on the steam temperature and pressure [4], with the majority of previous work on
efficiency optimization of these plants focusing on steady-state analyses. The work by Fu et al. [13]
showed an average efficiency increase of 0.1% points for every increment of 8 ◦C in boiler feedwater
temperature, every decrement of 4.5 ◦C in flue gas temperature and every increment of 10 bar in
main steam pressure, compared to a reference case with an efficiency of 45.5%. Sanpasertparnich and
Aroonwilas [14] presented potential efficiency improvements of up to 8.88% points for subcritical
coal-fired power plants. They identified the preheated air temperature, main steam temperature and
pressure of stream extracted from the high-, intermediate-, and low-pressure turbines (HP, IP and
LP, respectively), as being the most critical variables in the optimization of power plant performance.
In work by Tzolakis et al. [15], an absolute net efficiency gain of 0.55% was shown to be feasible
by reducing the mass flow rate of the steam exiting the HP turbines and increasing the mass flow
rate of the steam exiting the IP and LP turbines. These significant efforts in the area of steady-state
optimization of power plants paved the way for future work on dynamic optimization. Moreover,
advancements in process modeling tools, such as Dymola [16] and gPROMS [17], have made it easier
to simulate these processes dynamically. For instance, Chen et al. [18] developed a Dymola [16]
dynamic model of a combined cycle power plant integrated with chemical-looping combustion,
with the combustion process optimized in gPROMS [17] to maximize the power plant efficiency.
Franke et al. [19] presented a model-based, dynamic optimization framework exploiting the Modelica
language [20] to improve power plant performance. Their work illustrated the efficiency benefits of
applying offline optimization results to online power plant operations. Lind and Sallberg [21] used
modern acausal simulation and optimization tools to optimize the start-up procedure of a combined
cycle power plant. Their analysis showed that the thermal stress in the heat recovery steam generator
is the major constraint limiting the rapid start-up of the gas turbines to full load.

One practical approach to improve the efficiency of existing fossil-fueled power plants is to deploy
supervisory control schemes targeted to efficiency optimization. Supervisory control architectures are
often used to perform tasks of process optimization without changing the plant infrastructure and
design. Skogestad [22] presented a systematic procedure for designing advanced control structures at
the supervision level for complex chemical plants. The critical first steps in designing a supervisor logic
are to define the operational and economic objectives and the available degrees of freedom. Common
degrees of freedom include the set points of the regulatory controllers, system boundaries not controlled
and system parameters tuned to a particular operating scheme. For instance, Lestage et al. [23]
presented a linear supervisory control design for constrained real-time optimization of an ore grinding
plant in which they optimized the set points of the local controllers to maximize throughput. Baillie and
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Bollas [24] presented the key steps in the development of a high-fidelity model for a chiller plant which
was used in supervisory resilient control architectures for plant optimization under fault scenarios by
Mittal et al. [25]. Obviously, supervisory control is a promising approach for the efficiency optimization
of power plants, wherein there exists a large number of regulatory controllers that must be maintained
for safety and performance reasons. In one such effort, Sáez et al. [26] developed a supervisory
algorithm based on adaptive predictive control to optimize the operation of the gas turbine of
a combined cycle power plant in Chile. They showed the potential of 3% fuel consumption savings
by manipulating variables such as the fuel flow, air flow and steam flow. Ponce et al. [27] presented
a dynamic simulator of an integrated solar combined cycle power plant, incorporating a supervisory
control strategy. Fuel savings of 1.7–3.7% were shown to be feasible through the manipulation of set
points of the regulatory controllers of the steam pressure, gas turbine power and steam turbine power.
These efforts focused mostly on the optimization of a few power plant components instead of solving
a problem that maximizes the power plant efficiency by using all or most of the degrees of freedom.
In this work, the optimization problem serving the supervisory controller deals with the integrated
coal-fired steam power plant.

In prior work [28], a power plant model was developed and validated against steady-state data
from a fossil-fueled subcritical power plant with a reheat, regenerative cycle [29]. The power plant
modeled exhibited a full-load power generation of 605 MW at efficiency of 38.7%. The modeled
power plant operates with nominal steam turbine conditions of 174 bar and 538 ◦C, generated by the
combustion of bituminous B coal. Conventional proportional-integral-derivative (PID) controllers
were incorporated into the system model. Dynamic simulation of the power plant operating with step
changes in fuel load showed that the controllers are robust in maintaining the controlled variables at
set point. In this work, open-source data of time-varying power demand along with its forecast from
the New England area are used to study this plant under realistic operating conditions [30]. A fuel
load controller is implemented to meet the time-varying power demand, and controllers are added to
adjust the air flow and water flow for a time-varying load. Supervisor control strategies are applied for
static and dynamic optimization of the power plant’s efficiency. This optimization is accomplished by
manipulating the set points of the regulatory controllers of the temperature of the superheated steam
and preheated air, and the mass flow rates of steam extracted from the steam turbines. Steady-state
and dynamic optimization results are compared and discussed in an effort to explore the value
proposition of each. Previous work on power plant optimization focused on steady-state simulation
and optimization. The main contribution of this work is to use dynamic optimization with embedded
plant-level control to optimize the transient operation of power plants. This can enable plant operators
to operate power plants efficiently at variable load demands which becomes increasingly important
with the higher grid-penetration of renewables.

2. Power Plant Studied and Plant Model

The power plant studied and simulated in prior work [28] was the fossil fuel-fired subcritical
power plant, shown in Figure 1, with operating conditions at full load, as reported by Singer [29].
The plant employs a reheat, regenerative cycle to produce 605 MW of electricity by burning fossil-fuel,
with nominal turbine conditions of 174 bar and 538 ◦C steam. The combustion of bituminous B coal [5]
with preheated air produces hot flue gas that evaporates and superheats water. The feedwater is
converted to high temperature superheated steam through a series of heat exchange steps in the boiler,
including the economizer, evaporator, reheater, and superheater. The superheated steam produced in
the boiler is expanded in a series of high-pressure (HP), intermediate-pressure (IP) and low-pressure
(LP) turbines connected to a generator to convert the heat to mechanical torque and produce electricity.
The steam exiting the last LP turbine is condensed in the condenser. The condensate is preheated
in four heat exchange steps, including a deaerator and three water preheaters, which are supplied
with steam streams extracted from the HP, IP and LP turbines. Three pumps, namely the condensate
booster pump, condensate pump and boiler feed pump, are used to re-circulate the water after being
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condensed in the condenser. The preheated condensate re-enters the boiler under high pressure and
closes the loop.
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Figure 1. Reheat regenerative cycle: 605 MW subcritical-pressure fossil power plant with a control
system design [29].

The plant in Figure 1 was simulated with a dynamic power plant model developed in
Dymola [16] using the Modelon ThermalPower library [31]. The Modelica language used in Dymola
is a non-proprietary, object-oriented, equation-based language for the modeling of complex physical
systems [20] that is well-suited for the objective of large-scale dynamic simulation of power plants.
A comprehensive list of the operating data of the power plant was provided in prior work, and the
plant model was provided as Supporting Information to that work [28]. The model of the plant
operating at full load was shown to be in excellent agreement with steady-state data from the reference
power plant. Figure 1 also shows the design of the control system of that plant, including controllers
for safety regulation (marked with black solid lines), plant-level controllers (marked with blue dashed
lines) and controllers for plant optimization (marked with red dotted lines). The regulatory control
system, including the controllers of superheated steam temperature and of the water levels in the drum,
condenser and deaerator, was discussed in detail in prior work [28]. This regulatory control system
was tuned using bump tests and the dynamic responses of the model were assessed qualitatively in
terms of robustness and plant stability. The multilayer control scheme designed in this work and the
controllers required to meet the time-varying power load are discussed in the following text.

3. Power Plant Under Time-Varying Power Demand

Extensive studies of the power demand and its forecasting have resulted in excellent models
of the power demand per market sector, such as gray-box prediction models, to forecast real-time
electricity demand with an error less than 8% [32,33]. The forecasted power demand is typically used
by utility companies to predict the grid load and maintain service reliability. In this work, the data of
power demand (along with its forecast) in the New England area were used. In particular, the data
from 17 April 2016 were used as a realistic sample of power demand fluctuations [30]. The duration
for the temporal forecasted power demand studied was 24 h. To meet the full power load of the
reference power plant (605 MW), the ISO New England data (maximum value is 18,000 MW) was
uniformly scaled-down, as shown in Figure 2a. The underlying assumption in this normalization
was that the power demand from one power plant is proportional to the total power consumed.
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Therefore, it was considered that a fraction of the total power demand (scaled by a constant factor) and
its daily fluctuation needed to be met by one power plant. The reality with renewable inputs in the
grid is, as mentioned, a more abruptly fluctuating load for the power plant. It is thus anticipated that
the efficiency gains from the analysis presented herein are a lower bound to the potential efficiency
gains when renewable energy becomes a more dominant contribution to the electric grid.

Time
19:0016:0011:0006:0001:0020:00

(a)

Power demand Model

Po
w

er
 (M

W
)

300
400
500
600
700
800

(b)

M
as

s f
lo

w
 (k

g/
s)

40
50
60
70

400

600

Coal
Preheated air

Feedwater

(c)

D
ru

m
 le

ve
l (

m
)

−0.4

−0.2

0

0.2

0.4

(d)

C
on

de
ns

er
 le

ve
l (

m
)

0.3

0.35

0.4

0.45

0.5

Next day

(e)

D
ea

er
at

or
 le

ve
l (

m
)

−0.2

−0.1

0

0.1

0.2

Figure 2. Dynamic performance of the power plant model: (a) power demand and power generated by
the plant model; (b) mass flow rates of coal, preheated air and feedwater; (c) water level in the drum;
(d) water level in the condenser; (e) water level in the deaerator.

In prior work [28], the power plant model was validated dynamically, showing fast responses to
sudden changes in coal load. The regulatory control system incorporated in the power plant model
was shown to be robust in maintaining controlled variables at set points. Here, plant-level controllers
were added to the plant model, as shown in Figure 1, to adjust the coal load, preheated air flow and
feedwater flow so that the plant met the time-varying power load of Figure 2a. The mass flow rate of
feedwater (ṁFW) circulating in the plant and the mass flow rate of preheated air (ṁAir) mixed with
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the fuel were assumed to be proportional to the power load [34]. The mass flow rates of feedwater
and preheated air were set to adjust with the plant load, by multiplying the nominal ṁAir and ṁFW
by the temporal power load change ratio. The mass flow rate of coal was adjusted by a PID fuel
load controller to match the temporal power demand. Table 1 presents the tuning parameters of the
feed-forward control of water and air feed rates and the PID controller of fuel load. The measurement
for the fuel load controller was the power generation (P), the manipulated variable was the coal
mass flow (ṁCoal), and the set point was the temporal profile of the normalized power demand of
the New England area [30]. These new controllers were tuned following standard methodologies
discussed elsewhere [28]. The plant time scale and response times to load changes were studied
and shown to be in the order of seconds and always less than a minute. Figure 2a shows that the
power generated by the plant model matched the power demand of the normalized New England
area data [30]. Figure 2b shows the transient responses of ṁCoal , ṁAir and ṁFW to the dynamically
varying power demands of Figure 2a. Figure 2c–e show that the safety-critical regulated variables
(water levels in the drum, condenser and deaerator) were robustly controlled and exhibited negligible
oscillations. The dynamic performance of the plant model over the entire 24-hour period suggests that
the model provides a robust test-bed of the plant physics and its controls and thus, it was used in the
following experiments for steady-state and dynamic optimization. Figure 2 also shows that power
demand was rapidly and accurately matched by the feed-forward controller, as tuned with the settings
of Table 1.

Table 1. Controllers for the power plant in response to a time-varying power load *.

Feed-Forward Control: Air and Feedwater Controllers

Controlled variables ṁAir ṁFW

PID (Proportional-Integral-Derivative) Control: Fuel Load Controller

Controlled variables Manipulated variables Kp Ki Kd

P ṁCoal 1× 10−8 1× 10−10 1× 10−6

* P: power generation; ṁAir : mass flow rate of air; ṁFW : mass flow rate of feedwater; ṁCoal : mass flow
rate of coal; Kp: coefficient of the proportional term; Ki : coefficient of the integral term; Kd: coefficient
of the derivative term.

4. Optimization of an Integrated Power Plant

4.1. Objective and Optimization Variables

The objective of plant-level optimization is to maximize the efficiency of the power plant while
operating at steady-state or to optimize the integral of the efficiency over time if the power plant
is operating in a transient fashion. Another objective for plant-level optimization can be to reduce
the plant’s settling time, but, as shown previously [28], the time scale of the plant studied here is
small, making settling time reduction a secondary concern. This was accomplished by calculating the
optimal set points for the regulatory controllers without violating the operability and safety constraints.
The plant efficiency was calculated as [29]

η =
PST − PPumps

ṁCoal LHVCoal
, (1)

where η is the efficiency of the plant; ṁCoal is the mass flow rate of coal; LHVCoal is the lower heating
value of coal; PST is the power generated by steam turbines; and PPumps is the power consumed
by pumps. Here, high-volatile bituminous B coal with an average LHV of 28 MJ/kg was used [5].
Other auxiliary energy losses were not not considered in Equation (1), as previous work has shown that
auxiliary efficiency losses are small, often in the order of ∼2 MW for coal-fired steam cycles for plant
sizes similar the one studied here [29,35]. As discussed in the introduction, the power plant efficiency
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of Equation (1) can be improved by manipulating several plant variables. Table 2 summarizes the
optimization variables, range of variability and efficiency improvements achieved in relevant previous
work. In the majority of previous analyses [13–15,36–44], plant efficiency optimization was performed
by manipulating the temperature of superheated steam (TSH). For example, Xiong et al. [41] showed
that the higher superheated steam temperature increases the power generated by the HP turbine,
improving cycle efficiency. Several other variables have been explored in the literature in regard to their
capability to improve plant efficiency. Sanpasertparnich et al. [14,36] presented the impact of preheated
air temperature (TAir) on power plant efficiency. Tzolakis et al. [15,42] optimized the plant efficiency at
full load, by manipulating the mass flow extracted from steam turbines (ṁST , which included ṁHP,
ṁIP and ṁLP). Other optimization variables, such as the moisture content of coal [45], the mass flow
rate of feedwater [42], the isentropic efficiency of turbines [41], the temperature of flue gas exiting the
boiler [43], and the pressure of steam extracted from turbines [14,36] require changes in the existing
infrastructure and were not considered here. In summary, the common plant efficiency optimization
variables TSH , TAir, and ṁST were chosen in this work. For the purpose of illustration, two optimization
cases were considered. Case Study I presents plant optimization by manipulating TSH and TAir within
an operation horizon of 24 h. Case Study II presents plant optimization by manipulating ṁST with
an operation horizon of 4 h. This separation of optimization variables was done to allow for easy
comparison with the trends reported in the literature and presented in Table 2. The results of each
optimization problem are discussed in detail in the following section.

4.2. Supervisory Control

The control system of a plant is usually divided into several layers, typically separated by different
time scale requirements and objectives. The control architecture includes regulatory control (seconds),
supervisory control (minutes), local optimization (hours), site-wide optimization (days) and scheduling
(weeks) [22]. Supervisory control can be designed to manipulate regulatory control set points and the
remaining degrees of freedom of the plant (if any) to optimize the plant’s efficiency within constraints
imposed by the local controllers [46]. The critical first steps in designing a supervisor logic are to define
the operational and economic objectives and the available degrees of freedom. Common degrees
of freedom include the set points of the regulatory controllers, uncontrolled system boundaries and
system parameters tuned to a particular operating scheme.

Figure 3 illustrates a scheme for such a supervisory control strategy for the power plant studied.
The control system includes the supervisory control, regulatory control and plant level control.
The regulatory control structure includes optimization controllers (marked as red dotted lines in
Figure 1), which are the regulatory controllers used for plant optimization and safety controllers (marked
as black solid lines in Figure 1), which regulate the level of water in the drum, condenser and deaerator.
The main function of the supervisory control is to update the set points of the optimization controllers
(ysp

O ) to maximize the plant’s efficiency as shown by Equation (1). The plant level controllers (marked
with blue dashed lines in Figure 1) adjust the mass flow rates of coal, preheated air and feedwater
according to the market power demand (ysp

P ). The set points of the control system include the set points
of the safety controllers, plant-level controllers and optimization controllers, i.e., ysp = {ysp

S , ysp
P , ysp

O }.
These controllers manipulate the control inputs (u = {uS, uP, uO}) to maintain the controlled variables
at their set points. In principle, one should consider the disturbance (ωx) and measurement noise
(ωy), which are responsible for a difference (e) between the model (ypred) and power plant outputs
(ymeas). An estimator could update the model’s parameters (θ̂) and filter plant states (x) to eliminate this
model-plant mismatch. In this work, disturbance and measurement noise were not considered, mostly
to simplify the analysis, as the efficiency benefits are not affected by them (although the robustness
of the supervisor will be). Therefore, ωx andωy were considered negligible, and data filtering and
state estimation (blocks in gray in Figure 3) are not discussed. The supervisory control updates the
optimal ysp

O according to an objective function maximizing Equation (1) in a formulation that includes
the system model equations as discussed in the following text.
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Table 2. Review of power plant optimization efforts and respective variables *.

Ref. ∆η (%)
Optimization Variables

TSH (◦C) ṁIP1/ṁIP2/ṁLP1/ṁLP2 (kg/s) TAir (◦C) ṁFW (kg/s) pSH (bar) β (%) Others

[14,36] 7.8 [530,600] [3.9,19.6]/ [6.2,43.3]/ [15.1,28.7]/ [11.1,42.1] [166,190] [250,350] [166,190] [11.1,17.6]
[15] 0.55 [0,30.8]/ [0,51.2]/ [0,21.1]/ [0,0.94]
[37] 0.41 [600,625] [16,26]/ [14,24]/ [12.6,24]/ [34,57] [400,475] [20,30]

[38,39] 2.8 [550,700] [35,275] [230,350] Excess air ∈ [0,25%], TRH ∈ [580,620]
[40] 2 [550,700] [230,350] ηST ∈ [0.75,0.87], pHP/IP/LP(bar) ∈ [60/9/0.0356, 80/25.5/2.68]
[13] 5.9 [487,1076] [150,450]
[41] 2.5 [535,545] ηST ∈ [0.8,0.95]
[42] 1.3 [485,537] [45,57]
[43] 0.79 [115,278] [21,38.4] TFG( ◦C) ∈ [85,125]
[44] 3.5 [460,530] [64,110] pCON(bar) ∈ [0.01,0.05]

* TSH : temperature of superheated steam; ṁHP: mass flow rates of steam extracted from high-pressure turbine; ṁIP: mass flow rates of steam extracted from intermediate-pressure turbine;
ṁLP: mass flow rates of steam extracted from low-pressure turbine; pSH : pressure of the superheated steam; TAir : temperature of the preheated air; ṁFW : mass flow rate of feedwater;
β: coal moisture content; ηST : isentropic efficiency of steam turbines; TRH : temperature of reheated steam; TFG : temperature of flue gas; pHP,IP,LP: pressure of streams extracted from the
HP, IP and LP steam turbines; pCON : condenser pressure.
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Figure 3. Multilayer control scheme for the reheat regenerative cycle of a 605 MW subcritical-pressure
coal-fired power plant. ysp

O : set points of the optimization controllers; ysp
S : set points of the safety

controllers; ysp
P : set points of the plant level controllers; uO: control input of the optimization controllers;

uS: control input of the safety controllers; uP: control input of the plant level controllers; u: control
input;ωx: disturbance;ωy: measurement noise; ypred: predicted outputs; ymeas: measured outputs;
y: system outputs; e: error; θ̂: estimated model parameters; f: system model.

4.3. Optimization Formulation

As described previously, the set points of the optimization controllers are manipulated by
the supervisory layer as first-level variables to improve the plant’s efficiency (η), Equation (1).
This efficiency optimization also translates to coal consumption reduction and decrease of the plant
carbon footprint. The intent of this work was to compare the steady-state and dynamic optimization
results of the plant shown in Figure 2 to those of the plant operating under nominal conditions.
This comparison also included an exploration of the added benefits of dynamic optimization, compared
to those from steady-state optimal operation. First, steady-state optimization of the power plant
operating at a full load of 605 MW was performed by calculating the optimal set points (constant
with time) for the optimization controllers (ysp

O ) and specifically, the set points of the superheat steam
temperature controller, preheated air temperature controller and mass flow controllers of steam
extracted from the steam turbines. The steady-state optimization problem formulation is shown in
Equation (2):

max
ysp

O

η(y, uP)

subject to:

f(x, u,θ) = 0,

u = F(ysp
O , y)

y = h(x, u,θ),

xmin ≤ x ≤ xmax,

umin ≤ u ≤ umax,

ysp,min ≤ ysp ≤ ysp,max,

ymin ≤ y ≤ ymax,

(2)

where the plant efficiency η is a function of power plant outputs (y) and admissible variable values
(uP) determined by the updated optimization controller set points ysp

O ; f(·) is the vector of steady-state
equations describing the system in terms of states, x, admissible inputs, u, and parameters, θ; and
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F describes the controller functions at steady-state to account for controller offset with y being the
measured system outputs, mapped to x, u, and θ through h(·). All variables including unmeasured
variables are constrained so that they do not violate plant safety and operability constraints.

Dynamic optimization was performed for the reference power plant operating under time- varying
power demand normalized from the New England area data [30]. The objective was to maximize
the integral of plant efficiency over a predetermined time horizon, τ. This was accomplished by
calculating time-varying optimal set points for the optimization controllers. The generic formulation of
the dynamic optimization problem solved for the power plant of Figure 1 is presented in Equation (3),
where f is the system of differential algebraic equations describing the conservation of mass and energy;
x is the vector of temporal state variables; x0 is the vector of initial state variables; ysp

O is the temporal
set points of the optimization controllers; y are the temporal system’s outputs; tn is the vector of control
action time points with a constant interval, τn; τ is the optimization horizon; and t is the time.

max
ysp

O (tn)

∫ τ

0
η(ysp

O (t), uP(t))dt

subject to:

f(ẋ, x, u,θ, t) = 0,

u = F(ysp
O (tn), y(t), t),

y = h(x, u,θ, t),

x(t = 0) = x0,

xmin ≤ x ≤ xmax,

umin ≤ u ≤ umax,

ysp,min ≤ ysp ≤ ysp,max,

ymin ≤ y ≤ ymax,

t ∈ [0, τ], tn ∈ [0, τ].

(3)

Table 3 shows the optimization variables’ bounds and time interval constraints for the problems
of Equations (2) and (3) for the two cases studied. The set points of the controllers regulating TSH , TAir
and ṁST (including ṁIP1, ṁIP2, ṁLP1 and ṁLP2) were manipulated by the supervisory control layer
as degrees of freedom to seek an optimal input. In Case Study I, only the set points of TSH and TAir
were manipulated. Although not shown in Figure 2, preheating of the air fed to the combustor to
TAir was accomplished by manipulating the mass flow of the economizer exhaust gas sent to the air
preheater (with the balance being waste heat). In Case Study II, plant optimization was performed
by manipulating the set points of ṁST , i.e., the set points of the mass flow rates of steam streams
extracted from the first IP turbine (IP1), the second IP turbine (IP2), the first LP turbine (LP1), and the
second LP turbine (LP2) (ṁIP1, ṁIP2, ṁLP1, and ṁLP2, respectively). The ranges of the admissible
inputs, shown in Table 3, were based on common practice and previous work [13–15,27,36,38,41–43,45].
The optimization horizon, τ, was set to 24 h in Case Study I and 4 h in Case Study II, and the control
action interval, τn, was set to 1 h. Large control actions were not penalized in the solved optimization
problems, as the plant load profiles matched during the real-time plant optimization were relatively
smooth. For instance, the temperature of the superheated steam feeding the steam turbine was seen to
change gradually over time in response to load changes which is adequate for the protection of the
steam turbines by thermal stress [14,36].
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Table 3. Inputs for the studied optimization problems.

Case I

Admissible Inputs (ysp
O ) Tsp

SH (◦C) Tsp
Air(◦C)

Min 520 150
Max 610 250

Case II

Admissible Inputs a (ysp
O ) ṁsp

IP1 (kg/s) ṁsp
IP2 (kg/s) ṁsp

LP1 (kg/s) ṁsp
LP2 (kg/s)

Min 16 10 10 28
Max 28 28 28 47

Temporal Inputs b

τn(h) 1
τ(h) 24 for case I (4 for case II)

a ṁIP1: mass flow rate of steam stream extracted from the IP1 turbine; ṁIP2: mass flow rate of steam stream extracted
from the IP2 turbine; ṁLP1: mass flow rate of steam stream extracted from the LP1 turbine; ṁLP2: mass flow rate
of steam stream extracted from the LP2 turbine; sp: set point; b if the plant is operating under a time-varying
power load.

5. Results

For each case study, the static optimization of the power plant operating at full load with the
optimization formulation of Equation (2) is discussed first, followed by the dynamic optimization of
the power plant operating under a time-varying power load with the optimization formulation of
Equation (3). For the results discussed in the following text, the power plant was formulated with
the object-oriented language Modelica [20], in the commercial software Dymola [16], and set point
optimization was performed in Matlab [47] using an interior-point algorithm. The model developed in
Dymola was flattened (from its object-oriented structure) and translated to a Functional Mockup Unit
(FMU) file which includes all the variables and equations of the original plant model. Model exchange
between the software packages of Dymola and Matlab was accomplished with use of the Functional
Mockup Interface, a tool-independent standard for seamlessly integrating models in various simulation
environments [48]. The Functional Mock-up Interface (FMI) enables model exchange of dynamic
models in the form of xml-files and compiled C-code.

5.1. Case Study I: Optimization Variables TSH and TAir

Table 4 presents the steady-state optimization results at full load using the superheated steam
temperature set point, Tsp

SH , and that of the preheat air temperature, Tsp
Air, as the optimization variables.

The manipulation of Tsp
SH and Tsp

Air led to a power plant efficiency improvement from 38.3% to 40.23%.
This efficiency improvement translates to a fuel saving of 3.78%, with the fuel flow rate decreasing
from 56.38 kg/s to 54.25 kg/s. The carbon footprint of the plant also decreased from 0.8 kg/kWh to
0.77 kg/kWh. This efficiency optimization was accomplished by increasing TAir from 200 ◦C to 248 ◦C,
and increasing TSH from 538 ◦C to 560 ◦C. This is consistent with earlier reports [13,14,27,38,41–43],
showing that increasing TSH and TAir translates to efficiency improvements. The higher TSH enabled
the HP turbine to produce the same mechanical torque at a lower rate of coal consumption, while
increasing TAir recovered more waste heat from the boiler exhaust gas. It should be noted that the
nominal steady-state data used as baseline in Table 4 were as reported by Singer [29] for the reference
power plant and corresponded to the design point of this plant. In principle, the set points for
TSH and TAir reported by Singer refer to an optimal plant configuration. The further improvement
presented here could relate to better integrated plant-level optimization, model-plant differences and
relaxation of plant constraints compared to the study reported in [29]. For an off-design operating
point, the efficiency benefits of solving Equation (2) would, of course, have been much higher.
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Table 4. Steady-state optimization results of Case Study I.

System Output Nominal Optimal

Tsp
SH (◦C) 538 560

Tsp
Air (◦C) 200 248
η (%) 38.3 40.23

ṁCoal (kg/s) 56.38 54.25
carbon footprint (kg/kWh) 0.8 0.77

The results of dynamic optimization for a horizon of 24 h of plant operation are presented in
Figure 4. The data and plant performance results represent the response to the time-varying power
demand normalized from the New England area data [30] shown in Figure 4a. In the absence of
disturbances and noise, the solution to Equation (3) in the period t = 0− τ(= 24 h) is equivalent
to an off-line optimal control problem and is valid for the entirety of the time horizon considered.
The optimization variables were Tsp

SH and Tsp
Air, but, in this case, they were updated in time intervals,

τn = 1 h. Figure 4 presents the dynamic power plant performance under nominal and optimal
operation conditions. The nominal dynamic operation is the result of constant Tsp

SH at 538 ◦C and Tsp
SH

at 200 ◦C. Figure 4d,e shows that the controlled variables, TSH and TAir, were robustly controlled at
their optimal set points by the regulatory controller. The values of TSH and TAir from the dynamic
optimization solution were always higher than their respective nominal values. In particular, Figure 4d
shows that the optimal Tsp

SH trajectory was inversely proportional to that of the plant load. The optimal
temporal, Tsp

SH , for a plant load higher than maximum, was higher than the 560 ◦C of the optimal
steady-state at full load. This enhanced heat transfer from the flue gas side to the steam side
in the superheater under low plant loads. Figure 4e shows that the optimal temporal profile of
the temperature of air preheated by the flue gas exiting the boiler varyied proportionally to the
plant load. The temperature of the exhaust gas was also proportional to the power load due to the
time-varying mass flow rates of the feedwater, air and coal load. As Figure 4c shows, the improvement
in time-averaged efficiency was 1.8% points. This efficiency improvement translates to a coal saving of
184.8 tons/day (Figure 4d) and time-averaged carbon footprint decrease of 0.0351 kg/kWh (Figure 4e).
In summary, the optimized power plant can operate at a higher TAir(t) and TSH(t), and this is consistent
with the results of steady-state optimization.

Figure 5 presents the dynamic performance of the power plant operating with constant nominal
set points for TSH and TAir, constant optimal Tsp

SH and Tsp
Air (from the steady-state optimization solution),

and with time-varying optimal Tsp
Air and Tsp

SH (set by the dynamic optimization solution). The coal
consumption and carbon footprint of the power plant operating with set points calculated by the
static and dynamic optimization problem formulations were both lower those for the power plant
under nominal operation conditions. The power plant operating with set points determined by
dynamic optimization was the most efficient with the lowest coal consumption and the smallest carbon
footprint. As shown in Table 5, the fuel saving accomplished by the power plant with steady-state
optimization was 160.9 tons/day, whereas the fuel saving accomplished with dynamic set point
optimization was 184.8 tons/day. The reduction in coal load and decrease in the carbon footprint
of the dynamically optimal operation were pronounced when the power plant was operating at
lower loads. At different loads, the plant had slightly different optimal regulatory control points
compared to those of the steady-state optimization at full load, which are exploited by the formulation
of Equation (3). As shown in Figure 4d, the values of Tsp

SH calculated from Equation (3) at low loads
were higher than the constant Tsp

SH calculated from Equation (2) at full load. Dynamically optimizing
Tsp

SH improved the heat transfer in the superheater at low loads and converted more heat from the
superheated steam to mechanical torque. This increase in mechanical torque led to improved power
generation and efficiency. Moreover, the temperature profile of the preheated air in Figure 4e shows
that the values of Tsp

Air calculated from Equation (3) at low loads were lower than the constant Tsp
Air

calculated from Equation (2) at full load. At low loads, heat transfer between the water side and flue



Processes 2018, 6, 114 13 of 19

gas side in the boiler is enhanced, leading to a lower flue gas temperature, which, in turn, is used
to preheat the air. Thus, the supervisor drives Tsp

Air down to satisfy system constraints. Depending
on the dynamic response times of the plant and the selection of the interval between control actions,
τn, a multistep steady-state optimization problem could result in similar performance benefits to
those of Equation (3). Nonetheless, Equation (3) is more generic and robust for use with a dynamic
system. It should be noted that one could execute the same analysis but with an objective function that
maximizes the profit for varying electricity prices. This would result in different plant load profiles,
but the optimization procedure (not the objective function) and results would be similar.
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Figure 4. Dynamic optimization results of Case Study I: (a) time-varying power load; (b) coal load;
(c) carbon footprint; (d) temperature of preheated air; (e) temperature of superheated steam; (f) power
plant efficiency.

Table 5. Comparison of static and dynamic optimization of the power plant for Case Study I *.

Output Static Optimization Dynamic Optimization

∆ṁcoal (tons/day) 160.9 184.8
∆c̄ f (kg/kWh) 0.0303 0.0351

∆ṁCO2 (tons/day) 440.2 511.9

* ∆ṁcoal : coal savings; ∆c̄ f : decrease in the time-averaged carbon footprint;
∆ṁCO2 : reduction of CO2 emissions.
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Figure 5. Comparison of the dynamic performance of the power plant with nominal operation set points,
steady-state optimal set points, and dynamic optimal set points: (a) coal load; (b) carbon footprint.

5.2. Case Study II: Optimization Variables ṁIP1, ṁIP2, ṁLP1 and ṁLP2

As shown in Figure 1, four proportional–integral (PI) controllers were used to regulate the mass
flow rates of steam extracted from the turbines. The parameters of these controllers are presented in
Table 6. These controllers manipulate the respective valves to regulate the mass flow rates of streams
extracted from the IP1, IP2, LP1 and LP2 turbines. In this case study, the supervisory control variables
were the set points of the mass flow controllers of steam extracted from turbines, namely the set points
of ṁIP1, ṁIP2, ṁLP1, and ṁLP2.

Table 6. Proportional–integral (PI) controllers regulating the mass flow rates of steam extracted
from turbines.

Controllers IP1 IP2 LP1 LP2

Controlled variables ṁIP1 ṁIP2 ṁLP1 ṁLP2
Manipulated variables Valve opening Valve opening Valve opening Valve opening

Kp 0.1 0.1 0.1 0.1
Ki 0.0001 0.0001 0.0001 0.0001

As before, steady-state optimization was first performed for the plant operating at full load.
The set points of ṁIP1, ṁIP2, ṁLP1 and ṁLP2 were manipulated by the supervisory control layer to
maximize the plant’s efficiency, as shown by Equation (2). The bounds of admissible inputs are shown
in Table 3, with the optimal values presented in Table 7. The power plant efficiency was improved from
38.3% to 38.78%. The corresponding coal load decreased from 56.38 kg/s to 55.68 kg/s, and the carbon
footprint decreased from 0.8 kg/kWh to 0.79 kg/kWh. Compared with the nominal case, the optimal
case had a lower ṁsp

IP1 and higher ṁsp
IP2, ṁsp

LP1 and ṁsp
LP2, as shown in Table 7. The mass flow rate of

steam extracted from the IP1 turbine was less than that of other steam turbine extractions. The IP1
turbine extraction had the highest pressure and temperature of all steam extractions. Thus, it would
be better utilized for electricity production than water preheating. Meanwhile, the steam extracted
from the IP2, LP1 and LP2 turbines would be better utilized for preheating the condensed feedwater to
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reach a higher temperature before entering the boiler. These results are consistent with the findings of
the study by Chaibakhsh and Ghaffari [49] who proposed reducing (or removing) the high pressure
and temperature steam extraction stream and increasing the steam extracted from the remaining IP
and LP turbine stages.

Table 7. Steady-state optimization results for Case Study II.

System Output Nominal Optimal

ṁsp
IP1 (kg/s) 27.4 16.8

ṁsp
IP2 (kg/s) 14 23.1

ṁsp
LP1 (kg/s) 16.5 23.7

ṁsp
LP2 (kg/s) 30 43.8

η (%) 38.3 38.78
ṁCoal (kg/s) 56.38 55.68

Carbon footprint (kg/kWh) 0.8 0.79

Dynamic optimization was performed for an optimization horizon of 4 h. The time period
from 5 a.m. to 9 a.m. was used for the New England power demand data, as shown in Figure 6a.
In this interval, the power plant iwa operating in response to a abrupt increase in power demand,
with a power load change from 79.9% to 98.1%, followed by a decrease from 98.1% to 95.2%. This time
interval includes the most abrupt change in power demand of the New England ISO data used as well
as a change in the sign of change in power demand. To solve this problem, the power plant model was
first initialized to steady-state at a load of 79.9% (t = 0 in Figure 6). As shown in Figure 6a, the power
generated by the plant model matched the time-varying power demand which was accomplished by
the plant load controllers shown in Figure 1.
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Figure 6. Time-varying power demand and plant load for Case Study II.

Figure 7 presents the transient operation of the virtual power plant in response to nominal inputs
and to those calculated with dynamic optimization for the power plant load of Figure 6. The supervisor
updated the set points of the controllers regulating ṁIP1(t), ṁIP2(t), ṁLP1(t) and ṁLP2(t) to seek the
maximum integral of efficiency over a time horizon of 4 h. The nominal operation of the power plant
corresponds to constant set points for the mass flow rate of turbine extraction streams, shown in
Table 7. For the optimal dynamic operation, these set points were treated as dynamic optimization
variables that were updated every hour by the supervisory controller. Figure 7a shows that the mass
flow rate of the steam streams extracted from the turbines was robustly maintained at the respective
temporal set points (updated in 1 h intervals), set according to the dynamic optimization solution
of the supervisor. Dynamic optimization requires the mass flow rate of IP1 steam extraction to be
lower than that of the other steam extractions, similarly to the results for steady-state optimization.
The optimal mass flow rates of all the steam extraction streams followed the load profile. This is
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because the total mass flow rate of water circulating in the steam cycle is proportional to the power
load. The improvement in the time-averaged efficiency was 0.43% points, as shown in Figure 7b–d,
which shows that the coal saving for four hours and the decrease in the time-averaged carbon footprint
were 7.72 tons and 0.00859 kg/kWh, respectively. These benefits became more profound at higher
plant loads which is in accordance with the relative contribution of the steam side of the plant to the
overall power production.
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Figure 7. Dynamic optimization results of Case Study II: (a) dynamic measurements and set points of
mass flow rates of steam extracted from turbines; (b) coal load; (c) efficiency; (d) carbon footprint.

6. Conclusions

A dynamic power plant model was used as a test-bed for dynamic simulation and optimization
in response to a variable plant load. Plant-level controllers were added to the plant model to meet
the transient market power demand. Thereafter, optimization problems were formulated and solved
with the objective of optimizing power plant efficiency at steady-state and dynamically. A supervisory
control architecture was designed to manipulate the set points of regulatory controllers according to
the solution of the optimization problems explored. The optimization variables Tsp

SH and Tsp
Air, and ṁsp

ST ,
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chosen in this work after a comprehensive literature review, enabled an improvement in time-averaged
efficiency of up to 1.95% points with corresponding savings in coal consumption of 184.7 tons/day and
a carbon footprint decrease of 0.0352 kg/kWh. A comparison of the static and dynamic optimization
formulations serving the supervisory controller showed that dynamic optimization offers higher
time-averaged efficiency, fuel savings and CO2 reduction. Although the power plant model and
regulatory control architecture have been validated in previous work [28], validation against transient
power plant data would benefit this work in terms of the validity and accuracy of the estimated
efficiency benefits.
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