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Abstract: In this work, the influence of the Hurst exponent and Peclet number (Pe) on the temporal
mixing behavior of a conservative solute in the self-affine fractures with variable-aperture fracture
and constant-aperture distributions were investigated. The mixing was quantified by the scalar
dissipation rate (SDR) in fractures. The investigation shows that the variable-aperture distribution
leads to local fluctuation of the temporal evolution of the SDR, whereas the temporal evolution of
the SDR in the constant-aperture fractures is smoothly decreasing as a power-law function of time.
The Peclet number plays a dominant role in the temporal evolution of mixing in both variable-aperture
and constant-aperture fractures. In the constant-aperture fracture, the influence of Hurst exponent on
the temporal evolution of the SDR becomes negligible when the Peclet number is relatively small.
The longitudinal SDR can be related to the global SDR in the constant-aperture fracture when the
Peclet number is relatively small. As the Peclet number increases the longitudinal SDR overpredicts
the global SDR. In the variable-aperture fractures, predicting the global SDR from the longitudinal
SDR is inappropriate due to the non-monotonic increase of the longitudinal concentration second
moment, which results in a physically meaningless SDR.
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1. Introduction

It has been widely recognized that fractures can play an important role in the transport and fate of
contaminants. Characterizing the spreading and mixing processes of conservative solute through the
fractures is very important for the understanding of reaction rates and mass transport rates associated
with nuclear waste disposal, enhanced oil recovery, and bioremediation [1–6]. Although, in recent
decades, many studies have provided new insights into the mechanisms and properties of mixing
processes in homogeneous and heterogeneous porous media [7–17], to date, little attention has been
focused on mixing behavior in fractures.

Since the heterogeneity of geological formations is ubiquitous, a fundamental issue about the
difference between spreading and mixing processes of conservative solute needs to be understood.
Several authors [9,12,18] emphasized the difference between spreading and mixing. Spreading
indicates the change of the spatial extent of a solute plume whereas mixing describes the process that
uniformizes the concentration distribution of solute inside the plume. In other words, spreading leads
to the stretching and deformation of a solute plume while mixing gives rise to dilution of a conservative
solute with time. Thus, spreading and mixing are not the same, but complete conservative solute
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transport can be thought of as being composed of both spreading and mixing. For a conservative
solute transport in a spatially variable velocity field, the spreading of the solute plume is driven by
the differences in advection that deform and stretch out the plume along the streamlines, whereas at
the same time molecular diffusion causes the mixing that smooths out the concentration gradients
within the solute plume. There is a complex interaction between the spreading and mixing processes,
especially in heterogeneous flow fields [19,20]. Due to the naturally-coupled property of spreading
and mixing, separating the spreading and mixing process is challenging, but studying the temporal
evolution of mixing is still useful and important for improving predictions of reactive transport and
mixing. Describing conservative solute transport only by the spreading is valid for some applications
(for example, risk analysis). However, due to the influence of the mixing behavior of reactants on rate
of reaction, describing the transport with the mixing-controlled chemical reactions only by spreading
is insufficient [3,21,22].

To this end, many efforts have been made to develop methods for quantifying mixing and
spreading. Following Aris’s method of moments [23], the second central spatial moment of
a conservative solute is a measure of spreading. This is because the spatial extent of the plume can be
easily estimated based on the temporal evolution of spatial moments of the plume and is related to an
apparent dispersion coefficient even for pre-asymptotic times [7,9,24,25]. In a homogeneous flow field,
the second central spatial moment increases monotonically with time, which can be expected as a good
measure for both spreading and mixing. This approach is invalid for a heterogeneous flow field where
the second central spatial moment could decrease due to the convergence of streamlines [14,16,26].
Various metrics for quantifying mixing have been proposed.

Since the dilution caused by mixing is an irreversible process, Kitanidis [12] proposed the dilution
index that measures the volume occupied by the solute plume. The dilution index is obtained from
the statistical entropy (Shannon entropy) of the solute distribution. As opposed to the second central
spatial moment, the dilution index is capable of quantifying true mixing and a mixing rate can be
calculated by the rate of change of the entropy. The dilution index is useful not only for conservative
solute transport but also for reactive transport [27]. The ratio of actual to theoretical maximum dilution
index can be an indicator of the influence of incomplete mixing on reactive transport [15,28]. Moreover,
based on the original concept of the dilution index, the flux-related dilution index that describes
dilution as “act of distributing a given solute mass flux over a larger water flux” was proposed by
Rolle et al. [14] for steady-state transport with continuous injection mode.

From the view of stochastic hydrogeology, the concentration distribution of a solute plume can
be decomposed into a cross-sectional mean and a fluctuation about that mean. The concentration
variance method has been proposed as a measure of mixing [11,29,30]. In addition to the dilution
index and concentration variance, the mixing can be alternatively quantified by the scalar dissipation
rate (SDR) which is determined from the time derivative of the integral of squared concentration
within the solute plume [22,31]. Although the SDR was proposed for the study of turbulent flow
and combustion, several studies [32] have shown that the SDR can be also applied to a variety
of problems of subsurface contaminant transport (e.g., compound-specific transport, conservative
solute transport, and multicomponent reactive transport). Le Borgne et al. [31] investigated the
temporal evolution of the SDR in heterogeneous porous media and demonstrated the occurrence
of a non-Fickian scaling of mixing. Bolster et al. [7] used the SDR to decompose the global mixing
state into a dispersive mixing state and a local mixing state. Jha et al. [33] applied the SDR to
quantify the mixing in a viscously unstable flow. Dreuzy et al. [21] considered that mixing resulted
from competition between velocity fluctuations and local scale diffusion, and they proposed a new
decomposition of mixing into potential mixing and departure rate. This new decomposition of mixing
showed a generic characterization and could offer new ways to establish a transport equation with
consideration of both advection, spreading, and mixing. A comparison of different transport models
can be found in [10]. A series of analytical solutions for the SDR was derived in non-conservative
transport systems by Engdahl, Ginn, and Fogg [32]. Furthermore, previous studies [7,21,31] in porous
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media showed that the transverse mixing generating the concentration gradients in the transverse
direction influenced longitudinal mixing. If the global mixing was dominated by the spreading
at asymptotical time, the transverse mixing could be negligible and the global mixing could be
predicted by the longitudinal mixing. However, these current studies on the SDR are limited to specific
homogeneous or heterogeneous porous media. Since anomalous (non-Fickian) transport has been
observed in single rough fractures [34–38] and mixing and spreading could play an important role in
fractures, the study of the performance, characteristic, and evolution of the SDR in other important
subsurface geological formations (e.g., single rough fractures) needs further investigation.

The primary objective of this work is to investigate the effects of the Hurst exponent (which can
indicate the roughness features of the fracture walls) and Peclet number on the temporal behavior
of mixing. The validity of using longitudinal mixing to predict global mixing was evaluated in
self-affine fractures. Two groups of different self-affine fractures were considered and denoted as
the constant-aperture fracture and the variable-aperture fracture. The computational fluid dynamics
(CFD) simulations of the flow field and solute transport in fractures were implemented. There are
three major contributions here relative to previous work. The first is to show the capability of the
SDR for characterizing the mixing in self-affine fractures. The second is to quantify the influence of
the Hurst exponent and the Peclet number on the SDR scaling in constant-aperture fractures and the
variable-aperture fractures. The third is to test and evaluate the validity of using the longitudinal
mixing to predict the global mixing in self-affine fractures.

2. Methodology

2.1. Fracture Generation

Previous studies [39] on the morphology of natural fracture walls indicated that the walls of
natural fractures could be characterized as statistical self-affine distributions. The mathematical
characterization of the self-affine rough fracture wall was briefly reviewed here. A two-dimensional
single fracture was considered, whose height is defined by a single-value function Z(x) and the
statistical self-affine property of the height can be expressed as:

λHZ(x) = Z(λx) (1)

where H indicates the magnitude of the roughness or the so-called Hurst exponent varying from 0 to 1
and λ is a scaling factor. Z(x) can be thought of as a function of an independent spatial or temporal
variable x. For a self-affine fracture wall, the stationary increment [Z(x + hx)− Z(x)] over the distance
hx follows a Gaussian distribution with mean zero. Thus, for the arbitrary λ, the mean and variance of
the increments can be expressed as:

〈Z(x + λhx)− Z(x)〉 = 0 (2)

σ2(λ) = λ2Hσ2(1) (3)

where 〈·〉 represents the mathematical expectation. For the different distances, the variance σ2(λ) is
defined as a function of λ:

σ2(λ) = 〈[Z(x + λ)− Z(x)]2〉 (4)

σ2(λhx) = 〈[Z(x + λhx)− Z(x)]2〉 (5)

Then, depending on Equation (3):

σ2
λhx

= λ2Hσ2
hx

(6)

σλhx = λHσhx (7)
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where σ2
λhx

and σ2
hx

represent the variances of increments with different distances λhx and
λ, respectively.

Based on the self-affine scaling law given by Equations (1)–(7), a number of algorithms
(e.g., the successive random additions, the randomization of the Weierstrass-Mandelbrot function,
and the Fourier transformation) have been developed for synthetic self-affine fracture generation.
In the present study, the successive random addition algorithm [40] was used to generate the synthetic
self-affine fracture wall. It should be noted that to generate the self-affine fracture wall, the desired
Hurst exponent must be selected. For this, the rough surface morphology of the bottom fracture
wall of a single-fracture dolomite rock block (of 280 × 210 × 70 mm in size) was measured by using
a 3D stereo-topometric measurement system (ATOS II from GOM mbH, Braunschweig, Germany).
Preparation of this single-fracture dolomite rock block has been described in [41]. A 3D model of the
fracture wall surface was generated by ATOS II using non-contact optical scanning technique [42].
A raw dataset of fracture surface heights from the dolomite rock fracture sample was obtained with
a spatial resolution of ~250 µm (See Figure 1). From variogram analysis [43], the self-affinity of
dolomite rock surface was evaluated. The distribution of Hurst exponent values was examined over
200 profiles along the longitudinal direction (for example, A-B profile in Figure 1). The calculated
Hurst exponent values were between 0.55 and 0.91, where Hurst exponent between 0.6 and 0.8 covers
~90% of profiles. Thus, due to the computational cost, three different Hurst exponents were selected
(i.e., H = 0.6, H = 0.7, and H = 0.8).
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Once the desired Hurst exponent was selected, the self-affine fracture wall was generated by the
successive random addition algorithm. Figure 2 shows the generated self-affine fracture walls with
H = 0.8, H = 0.7, and H = 0.6, respectively. It can be seen from Figure 2 that the larger Hurst exponent
leads to a higher spatial correlation and a smoother wall.Processes 2018, 6, x FOR PEER REVIEW  5 of 18 
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Figure 2. Self-affine fracture walls with the different Hurst exponents. (a) The self-affine fracture walls
with H = 0.6, H = 0.7, and H = 0.8, respectively. (b) The zoom-in self-affine fracture wall with H = 0.6
between x = 80 mm and x = 90 mm.

In self-affine fractures, the aperture distribution can have a significant influence on the spreading
and mixing processes. The reconstruction of the aperture field from a pair of generated fracture walls
is dependent upon the way in which the walls are oriented relative to each other. Note that the Hurst
exponent could be different for the top and bottom fracture walls. However, our aim here is not to
perform an exhaustive investigation for all possibilities. It is assumed that the reconstructed fracture
is two-dimensional, uniform mineral component, there is no contact area (no zero-aperture region),
and the Hurst exponent for both of the top and bottom fracture walls is the same. Two possibilities to
reconstruct the rough fracture aperture field from the specific self-affine fracture walls were considered.
First, a constant-aperture rough fracture was introduced, where the top fracture wall was a replica
of the bottom fracture wall translated a distance b normal to the mean plane (See Figure 3a). In this
case, the fracture walls are rough and self-affine, but the local aperture b(x) is constant and equal
to b. Alternatively, the variable-aperture rough fracture was studied, where the top fracture wall
was a replica of the bottom wall. The bottom wall was sheared along the horizontal direction by
a displacement d0 and then translated a distance b normal to the mean plane (See Figure 3b). Obviously,
the two walls of the reconstructed fracture with shear displacement d0 do not overlap and the local
aperture is a function of the horizontal location x. Based on the self-affine scaling law, Wang, et al. [44]
developed the shear displacement model to obtain the aperture field with Gaussian distribution.
The local aperture b(x) is given by:
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S2(x) = S1(x + d0) + b (8)

b(x) =

{
S2(x)− S1(x)

0
if S2(x) > S1(x)

otherwise
(9)

where S1(x) and S2(x) are the top and bottom fracture walls, respectively. Figure 3c shows that when
the Hurst exponent of the self-affine fracture wall is H = 0.7, the aperture field of the variable-aperture
rough fracture follows a Gaussian distribution with the mean aperture b = 0.5 mm and the standard
deviation of the aperture σb = 0.17 mm.
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In this study, the total length of the generated self-affine fracture wall is set as 100 mm and
the horizontal distances between two adjacent points in the self-affine fracture wall were equal to
0.1 mm (see Figure 2b). Three self-affine fracture walls with H = 0.6, H = 0.7, and H = 0.8 were
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generated by the successive random addition algorithm. Each self-affine fracture wall was used
to reconstruct the constant-aperture fracture and the variable-aperture fracture, respectively. Thus,
there were six fractures in this study. The coefficient of variation (COV) was set to 0.35 for the
variable-aperture fracture.

2.2. Computational Fluid Dynamics (CFD) Simulations of the Flow Field and Solute Transport in Single Rough
Fractures

Since the mixing behavior is highly dependent on the flow field [8,9,16,45], the flow field in
a single rough fracture was solved directly by using the Navier-Stokes and continuity equations for
isothermal, incompressible, and homogenous single Newtonian steady flow:

∇·u = 0 (10)

ρ(u·∇u)−∇(µ∇u) = −∇p (11)

where ρ is the density of fluid, u = [u, w] is the velocity vector, p is the fluid pressure, and µ is the
dynamic viscosity of fluid. Two given pressure values were implemented at the inlet and outlet
boundary. The steady-state flow field was solved by the pressure drop over the entire fracture.

Transient solute transport in a single self-affine fracture was described by the advection-diffusion
equation for conservative non-sorbing solute transport:

∂c
∂t

= −∇·(uc) + Dm∇2c (12)

where c is the solute concentration, t is time, and Dm is the molecular diffusion coefficient. The velocity
vector in Equation (12) is from the flow field based on solution of Equations (10) and (11). It is assumed
that the initial concentrations were given by:

c(x, t = 0) =

{
m0

b(x)∗∆L∗W if x∗L < x < x∗L + ∆L
0 otherwise

(13)

where m0 is the mass of injected solute, b(x) is the local aperture, W is the width of fracture in the out
of plane direction (equal to 1 m in the 2D problem) and ∆L is the width of injected solute. The ∆L
is constant for all of simulations and assumed as ∆L/L = 0.001, where the L is the length of the
whole fracture. To avoid boundary effects, the initial injection location of the solute e mass is shifted
downstream from the fracture inlet by a distance of x∗L = 0.01L. The inlet and outlet boundary
conditions for transient solute transport were specified as:

c(0, t) = 0 t ≥ 0 (14)

∂c(L, t)/∂n = 0 t ≥ 0 (15)

where n represents the normal direction to the outlet boundary.

2.3. Mixing: Scalar Dissipation Rate (SDR)

Mixing can be described by the SDR that is a global mixing measure based on the integral of
concentration gradients. Recently, several studies have focused on the SDR evolution and scaling
properties during solute transport in porous media [7,10,13,21,27,31,32,46]. However, all of those
studies on SDR were restricted to porous media. The study on the SDR evolution in rough fractures is
still limited, which motivates our investigation. The SDR of a conservative scalar is given by:

χ(t) =
∫

Ω
Dm∇c(x, t)·∇c(x, t)dx (16)
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To obtain the SDR by using the Equation (16), the local concentration gradients needs to be
determined. However, due to the occurrence of the sharp concentration gradient over small distances
in the relatively heterogeneous flow field, a very fine numerical discretization for both of the flow
and the concentration field is required to obtain an accurate quantification of concentration gradients,
which results in the huge computational cost. Le Borgne et al. [31] showed that the SDR can be
approximated from the concentration second moment (the integral of the squared concentrations).
After multiplying Equation (12) by c(x, t) and integrating over the entire domain:

1
2

∂
∂t

∫
Ω c(x, t)2dΩ + 1

2

∫
Ω∇·[uc(x, t)2]dΩ = 1

2 Dm
∫

Ω∇·∇c(x, t)2dΩ
−
∫

Ω Dm∇c(x, t)·∇c(x, t)dΩ
(17)

Assuming that the fractured domain is infinite, there is no mass flux out of the domain, and the
flow field is divergence-free, the terms involving a divergence operator in Equation (17) are zero. Then
it can obtain:

χ(t) = −1
2

dM2(t)
dt

= Dm

∫
Ω
∇·∇c(x, t)2dΩ (18)

where M2(t) is the concentration second moment and can be expressed as:

M2(t) =
∫

Ω
c(x, t)2dΩ (19)

Le Borgne et al. (2010) reported that the results from using Equation (18) instead of Equation (16)
are more accurate than from using Equation (16) directly and the calculation for Equation (18) is
computationally more efficient. In this study, the temporal mixing state is obtained from Equation (18).

For an infinite 1D homogeneous domain with zero velocity Fick’s Law of diffusion can be used to
describe the spatial distribution of solute concentration. The corresponding analytical solution for the
concentration distribution in the absence of reaction is given by:

c0(x, t) =
m0√

4πDmt
exp (− x2

4πDm
) (20)

By integrating the square of Equation (20) over all domains, the corresponding concentration
second moment can be expressed as:

∫
Ω

c0(x, t)2dΩ =
m2

0√
8πDmt

= M0(t) (21)

From Equation (18), the analytical 1D SDR solution can thus be expressed as:

χ0(t) = −
1
2

dM0(t)
dt

=
1
8

m2
0√

2πDm
t−

3
2 (22)

3. Results and Discussion

3.1. Model Setup

In this study, the water with standard properties at 20 ◦C (e.g., ρ = 998.2 kg/m3 and
µ = 1.002 × 10−3 Pa·s) was used to saturate the void space in the fractures. The typical conservative
solute transport (e.g., Cl− in water) and the corresponding Dm = 2.03× 10−9m2/s were assumed
depending on the reference of [47]. The matrix of the fracture was assumed impermeable and the
rough fracture walls were considered as non-slip boundaries. As background flow, the steady-state
flow was induced by a given pressure drop over the entire fracture. The solved flow field serves as the
input for the transient solute transport model. The flow field and transient solute transport models
based on Equations (10)–(16) were implemented in the COMSOL Multiphysics package version 5.2
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(COMSOL Inc., Burlington, MA, USA) using the Galerkin finite-element method [48]. In order to
ensure numerical stability and accuracy, the fracture domain was discretized into ~152,000 triangular
elements. The number of triangular elements was determined by the mesh independence analysis.
Under the same pressure gradient (−∇p = 185 Pa/m), the steady-state flow rate changes about 0.95%
(from 9.550 ×10−4m3/s to 9.641 ×10−4m3/s) as the number of triangular elements increases by about
104% (from 152,000 to 310,000). This indicates that 152,000 triangular elements are sufficient to provide
stable and accurate numerical results.

The Peclet number, Pe = τD/τa = ub/Dm, was defined by the ratio of the characteristic diffusion

time (τD = b
2
/Dm) to the characteristic advection time (τa = b/u) where the u is the mean flow

velocity in the fractures. In each simulation, three different Pe values (Pe = 10, Pe = 100, and Pe = 1000)
were considered. Without loss of generality, Figure 4 shows the flow fields in variable-aperture and
constant-aperture fractures for a self-affine fracture wall with H = 0.6 and Pe = 1000. Figure 5 shows
the results for both constant-aperture and variable-aperture fractures when the Pe is set as 1000 and
Hurst exponent is equal to 0.6.
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3.2. Influence of the Roughness of Fracture Walls on the Temporal Behavior of the Global SDR

To investigate the influence of the roughness of fracture walls on the temporal behavior of
the global SDR, the conservative solute transport in self-affine rough fractures with different Hurst
exponents and Peclet number values were simulated. Figure 6 shows the evolution of SDR in the
constant-aperture fracture and variable-aperture fracture for Hurst exponents of 0.6, 0.7, and 0.8 and
Peclet number values of 10, 100, and 1000. In Figure 6, the time is normalized by the characteristic
advection time τa and the temporal SDR χ(t) is normalized by χ0(τa). It can be seen from Figure 6
that the SDR in general decreases with time for all conditions considered. The temporal evolution of
the SDR in the variable-aperture fracture fluctuates more than that in the constant-aperture fracture.
This indicates that the spatial distribution of local apertures and the corresponding spatial changes in
velocity have a significant influence on the temporal evolution of the SDR. Since mixing is the only
process of solute mass exchange between the different streamlines, the distribution of streamlines
significantly impacts the mixing [8]. In the constant-aperture fracture, the streamlines are uniform over
the entire fracture, whereas the streamlines in the variable-aperture fracture are deformed and bent
due to the spatial distribution of local apertures (see Figure 4). The deformed and bent streamlines lead
to changes in the transverse concentration gradients during transport along the fracture. In contrast,
in the constant-aperture fractures, the transverse concentration gradients are smoothed out by diffusion

after the characteristic diffusion time (i.e., > b
2
/Dm). In addition, the trend in the temporal evolution

of the SDR for the variable-aperture fractures reveals that the magnitude of this fluctuation is affected
by the Hurst exponent. For the smaller Hurst exponents (H = 0.6 and H = 0.7), the fluctuation of the
SDR around the corresponding power-law fitting line exists over the entire interval of the transport
time. However, the fluctuation is much less when H = 0.8 for t < 10τa.
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Each SDR in Figure 6 was fitted with a power-law function of the dimensionless time over the
entire temporal range (10−1 < t/τa < 103). For both constant-aperture and variable-aperture fractures,
the SDR scaling for a given Peclet number is generally independent of the Hurst exponent of the fracture
wall, while the Peclet number has a significant influence on the SDR scaling. When the Hurst exponent
ranges from H = 0.6 to H = 0.8 the exponents in the power law fit are very similar for a particular
Peclet number value in both constant-aperture and variable-aperture fractures. For one-dimensional
fractures, the analytical SDR scaling follows the Fickian scaling χ(t) ∝ t−1.5, as shown in Equation (22).
Thus, as per the definition by Le Borgne et al. [31], the results in Figure 6 indicate that the SDR scaling
is non-Fickian and the exponent of the best-fit power law equation for the SDR increases as the Peclet
number decreases. This indicates that predicting the temporal evolution of the SDR over the entire
temporal range in both constant-aperture and variable-aperture fractures using the one-dimensional
analytical SDR scaling is inappropriate as this underpredicts the SDR, especially for the cases with the
high Peclet number. Furthermore, it can be seen from Figure 6a–c that in constant-aperture fractures,
for a given Peclet number, the results are similar for H = 0.6, H = 0.7, and H = 0.8. This implies that
the roughness of the self-affine fracture walls, as characterized by Hurst exponent, is not a dominant
influence on the temporal evolution of the SDR in the constant-aperture fractures. In contrast, as
shown in Figure 6d–f, for a given Peclet number, the exponent of the best-fitting power law decreases
as the Hurst exponent increases and spatial correlation increases.

The characteristic of the mixing can be seen from the SDR scaling over the different temporal
ranges. For the cases with Pe = 10 and Pe = 100 in both constant-aperture and variable-aperture
fractures, the SDR scaling is approximately Fickian at late time (t > 10τa), but becomes non-Fickian for
the temporal range examined for Pe = 1000. The transition time between the Fickian and non-Fickian
temporal evolution of the SDR is important for predicting the mixing process. Before the transition time,
the temporal evolution of the SDR shows non-Fickian mixing behavior [31,49]. In constant-aperture
fractures (see Figure 6a–c) the transition time increases as the Peclet number increases while the
transition time is insensitive to the Hurst exponent. For the cases with Pe = 100 the corresponding
transition time is equal to 30τa, whereas for the cases with Pe = 1000 it is more than 100τa. In the
variable-aperture fractures, both the Hurst exponent and the Peclet number influence the transition
time. It fails to capture the exact transition time for the cases with Pe = 1000 due to the limitation of
fracture length scale. For a given Peclet number and Hurst exponent, the occurrence of non-Fickian
mixing in fractures depends on both the aperture distribution and the fracture length scale.
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3.3. Validity of Predicting Global SDR from the Longitudinal SDR

Since Taylor’s work [23,50] demonstrated that solute transport in an asymmetrical shear flow
field can be reduced to a one-dimensional dispersion process by using a longitudinal effective
dispersion coefficient, this idea has been proven useful and effective among a wide range of fields
and applications [37,51–54]. The spatially variable velocity field dominates the behavior of solute
spreading process, while the local diffusion process can smooth concentration gradients at the same
time. These two coupled processes lead to the incomplete mixing inside the plume and reflect the
fact that the mixing can be considered as a result of both the local diffusion and solute spreading.
Le Borgne et al. [31] pointed out that the incomplete mixing inside the plume, which generates
the concentration gradients in the transverse direction, results in the non-Fickian scaling of mixing.
Bolster et al. [7] distinguished the two coupled process of mixing by expressing the concentration
as the sum of the average of the concentration over the transverse cross-section and the deviation
about it. In order to investigate the validity of predicting the global SDR by the longitudinal SDR
in both constant-aperture and variable-aperture fractures, the method in [31] was used to obtain the
mean longitudinal concentration projected in the transverse direction c(x, t) and then calculate the
longitudinal SDR:

c(x, t) =

∫ b(x)
0 c(x, t)dx

b(x)
(23)

The validity of predicting the global SDR by the longitudinal SDR can be evaluated by comparing
the longitudinal SDR to the global SDR. The longitudinal SDR can also be considered as the contribution
of the transverse concentration gradients to the global SDR. For the cases in the constant-aperture
fractures, Figure 7 shows the global SDR estimated from the full concentration field and the longitudinal
SDR estimated from Equation (23). In general, regardless of the influence of the Hurst exponent and
Peclet number, the temporal evolution of the longitudinal and global SDR both decrease as power-law
functions of time. For the cases with Pe = 10, the longitudinal SDR is very close to the global SDR, which
indicates that the longitudinal SDR is capable of predicting the global SDR in the constant-aperture
fractures. This also reveals that the transverse concentration gradients, in this case, do not play
a dominant role in global mixing. Thus, both of the longitudinal and global SDR follow Fickian scaling
(χ(t) ∝ t−1.5).
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Figure 7. The global SDR estimated from the full concentration field and the longitudinal SDR estimated
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For the cases with Pe = 100 and Pe = 1000, the longitudinal SDR is smaller than the global
SDR for most of the temporal range, indicating that the longitudinal SDR underpredicts the global
SDR at that time. In contrast to the cases with Pe = 10, the transverse concentration gradients are
relatively large and make significant contributions to the temporal evolution of the global SDR. As the
transverse concentration gradients decrease due to diffusion, the concentration distribution inside the
plume becomes more homogeneous. The characteristic time for diffusion smoothing the transverse
concentration gradients depends on the Peclet number. For the case with Pe = 100, the longitudinal SDR
gradually converges towards the global SDR around t/τa = 100, which implies that the longitudinal
SDR appears to be valid for predicting the global SDR when the influence of transverse concentration
gradients becomes negligible. Moreover, Figure 7 shows that the Hurst exponent has little influence
on the relationship between the longitudinal and the global SDR. These results indicate that in the
constant-aperture fractures, the Hurst exponent is not a dominant factor in the development of
transverse concentration gradients.

To predict the global SDR from the longitudinal SDR, it is essential that the temporal evolution of
the longitudinal SDR has the same tendency as the global SDR, which implies that the longitudinal
concentration second moment should decrease as a power-law function of time. This would be true
for the cases in the constant-aperture fracture, however, it is not necessary in the variable-aperture
fractures where the abruptly changing aperture leads to the convergence of streamlines. The temporal
evolutions of both the longitudinal and global concentration second moments in the variable-aperture
fractures were investigated. The longitudinal and global concentration second moments is associated
with the temporal evolutions of longitudinal and global SDR, respectively, as shown in Figure 8. Unlike
the temporal evolution of the global concentration second moment, the temporal evolution of the
longitudinal concentration second moment does not follow a strictly monotonic decrease with time for
all conditions considered. Consequently, the longitudinal SDR in the variable-aperture fractures has
a negative value (corresponding to the discontinuities in the lines in Figure 8b,d,f) though this is not
possible as per the definition of Equation (16). This negative longitudinal SDR results from the fact
that the longitudinal concentration second moment increases when the plume is transported in the
small-aperture regions. For conservative solute transport, the mixing is an irreversible process and
associates with the entropy of the mixing system towards its maximum. Although the longitudinal
SDR generally decrease as a power-law function of time in the variable-aperture fractures, the negative
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value in SDR is physically meaningless. Therefore, predicting the global SDR by the longitudinal SDR
is inappropriate in the variable-aperture fractures.
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Figure 8. (a,c,e) represent the global concentration second moment estimated from the full
concentration field and the longitudinal concentration second moment estimated from the average
of the concentration over the transverse cross-section in the variable-aperture fractures with H = 0.6,
H = 0.7, and H = 0.8, respectively. (b,d,f) represent the global SDR estimated from the full concentration
field and the longitudinal SDR estimated from the average of the concentration over the transverse
cross-section in the variable-aperture fractures with the Hurst exponent H = 0.6, H = 0.7, and H = 0.8
for the Pe = 10, 100, and 1000, respectively.
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4. Summary and Conclusions

In this work, the successive random additions technique was applied to generate the 2D self-affine
fracture wall for both the variable-aperture and constant-aperture fractures. The Hurst exponent of
the generated 2D fracture wall was determined by the statistical analysis of the surface heights of the
dolomite rock. Although there was no contact area (zero-aperture zone) in the generated 2D fractures,
the simulations of conservative solute through variable-aperture and constant-aperture fractures
highlighted the influence of the Hurst exponent and Peclet number on the temporal mixing behavior.
It was found that, as in porous media, the SDR, decreased as a power-law function of time, and was
characteristic of the mixing in both variable-aperture and constant-aperture fractures. The Peclet
number had a significant influence on the temporal evolution of the SDR. The variable-aperture
distribution led to the local fluctuation of the temporal evolution of the SDR, even for the small
Pe. For both the variable-aperture and constant-aperture fractures, as the Peclet number increased,
the exponent of the best-fitting power law for SDR scaling decreased significantly, indicating that the
relatively large Peclet number enhanced the mixing process.

The influence of Hurst exponent on the temporal evolution of the SDR was dependent on the
Peclet number and the aperture distribution. For the constant-aperture fracture, the influence of
Hurst exponent on the temporal evolution of the SDR become negligible when the Peclet number was
relatively small. The transition time between Fickian and non-Fickian mixing process was sensitive to
the Hurst exponent, Peclet number, aperture distribution, and fracture lengh scale. For a given Peclet
number and Hurst exponent, the occurrence of the non-Fickian mixing in fractures was dependent on
the aperture distribution and the fracture length scale.

Comparisons of the longitudinal and global SDR showed that the global SDR could be predicted
from the longitudinal SDR for Peclet number values of 100 or less in the constant-aperture fracture,
independent of the value of the Hurst exponent for the self-affine fracture wall. However, for Peclet
number of 1000, the longitudinal SDR would overpredict the global SDR. For the variable-aperture
fracture, predicting the global SDR from the longitudinal SDR was inappropriate for all Peclet number
and Hurst exponents investigated due to the non-monotonic increases of the longitudinal concentration
second moment, which resulted in the physically meaningless SDR (i.e., negative SDR).

This study provides new insights into the temporal mixing behavior in self-affine fractures.
However, the results for the validity of predicting the global SDR from the longitudinal SDR needs to
be extended and tested in 3D real fractures with a comparison with experimental data, particularly
to determine the influence of contact area (zero-aperture zone) and preferential flow on the SDR.
In addition, the complex flow field (i.e., turbulent flow) in fractures would have a significant influence
on the temporal mixing behavior, which also needs to be considered.
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Nomenclature

b(x) The local aperture of the fracture
b The distance normal to the mean plane
c The solute concentration
c(x, t) The mean longitudinal concentration projected in the transverse direction
d0 The shear displacement distance along the horizontal direction
Dm The molecular diffusion coefficient
H Hurst exponent
hx The horizontal distance
L The length of the whole fracture
∆L The width of injected solute
m0 The mass of injected solute
M2(t) The concentration second moment
n The normal direction to the outlet boundary
Pe Peclet number
p The fluid pressure
S1(x) The top fracture wall
S2(x) The bottom fracture wall
t Time
u The velocity vector
W The width of fracture in the out of plane direction
x∗L The initial injection location of the solute mass
Z(x) A function of independent variable x
λ Scaling factor
µ The dynamic viscosity
ρ The density of fluid
σ2(λ) The variance
σ2

λhx
The variance of increments with the distances λhx

σ2
hx

The variance of increments with the distances λ

σb The standard deviation of the aperture
τD The CHARACTERISTIC diffusion time
τa The characteristic advection time
χ(t) The scalar dissipation rate
χ0(t) The analytical 1D SDR solution
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