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Abstract: The consolidation process of soil stratum is a common issue in geotechnical engineering.
In this paper, the two-dimensional (2D) plane strain consolidation process of unsaturated soil was
studied by incorporating vertical impeded drainage boundaries. The eigenfunction expansion
and Laplace transform techniques were adopted to transform the partial differential equations
for both the air and water phases into two ordinary equations, which can be easily solved. Then,
the semi-analytical solutions for the excess pore-pressures and the soil layer settlement were derived
in the Laplace domain. The final results in the time domain could be computed by performing
the numerical inversion of Laplace transform. Furthermore, two comparisons were presented to
verify the accuracy of the proposed semi-analytical solutions. It was found that the semi-analytical
solution agreed well with the finite difference solution and the previous analytical solution from
the literature. Finally, the 2D plane strain consolidation process of unsaturated soil under different
drainage efficiencies of the vertical boundaries was illustrated, and the influences of the air-water
permeability ratio, the anisotropic permeability ratio and the spacing-depth ratio were investigated.

Keywords: consolidation process; unsaturated soil; semi-analytical solution; impeded drainage
boundary; excess pore-pressures

1. Introduction

The consolidation process of soil stratum is a common issue in geotechnical engineering and it has
captured a great deal of attention in the geotechnical community. In the mid-1920s, Terzaghi [1] put
forward the classical one-dimensional (1D) consolidation process for saturated soil, after which some
researchers derived the solutions to 1D consolidation process for saturated soil subjected to different
loading and boundary conditions [2–5]. With the problem raised in practical engineering, much
attention has been attracted to the consolidation process of unsaturated soil since the 1960s. Scott [6]
discussed the consolidation process of unsaturated soil with occluded air bubbles, and Barden [7,8]
presented a study of the compacted unsaturated soil. Furthermore, Fredlund and Hasan [9] proposed a
1D consolidation theory by driving two partial differential equations (PDEs) to describe the dissipation
processes of excess pore-air and -water pressures. Dakshanamurthy and Fredlund [10] extended this
theory to two-dimensional (2D) plane strain consolidation process by referring the concept of 2D heat
diffusion. These theories have been widely accepted in geotechnical engineering and have inspired
numerous research projects on the consolidation process of unsaturated soil [11–15].

In order to ensure that analytical solutions were available, most of the previous studies treated
the top and bottom drainage boundaries of the soil layer as fully drained or undrained [16]. However,
these boundaries are generally partially drained (i.e., impeded drainage) in most practical consolidation
processes. For example, a sand cushion covered on the top surface of the soil layer, which is commonly
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used to facilitate the drainage, will become partially drained when its drainage capacity is not effective.
The underlying layer will exhibit impeded drainage characteristic when its void ratio is relatively small.
In order to describe the partially drained effect, Gray [17] defined an impeded drainage boundary
using the third type boundary, which can also realize the fully drained and undrained boundaries (i.e.,
the first and second type boundaries) by changing the values of the boundary parameters. Base on
this boundary, a number of solutions have been proposed to solve the 1D consolidation process of
saturated soil [16–20] and that of unsaturated soil [21–23]. These solutions help to understand the
impeding effect (i.e., drainage efficiency) of the covered sand cushion and underlying layer on the
1D consolidation process. However, in the study of the 2D plane strain consolidation processes,
particularly for unsaturated soil, there appears no solution incorporating the impeded drainage
boundaries. The objective of this paper was to develop a general solution to the 2D plane strain
consolidation process of unsaturated soil under such impeded drainage boundaries, that is, the top
surface and bottom base of the soil layer were considered to be partially drained.

Based on the consolidation equations proposed by Dakshanamurthy and Fredlund [10], this paper
attempted to derive semi-analytical solutions to the 2D plane strain consolidation process of
unsaturated soil by incorporating the vertical impeded drainage boundaries. To obtain the final
solutions, the eigenfunction expansion and Laplace transform techniques were used to transform
PDEs of both air and water phases into two ordinary equations. Then, the solutions for the excess
pore-pressures and the soil layer settlement were derived in the Laplace domain, and the final
results can be computed by performing the numerical inversion of Laplace transform. Furthermore,
two comparisons against the finite difference solution and the previous analytical solution were
made to verify the accuracy of the proposed solution. Finally, some computations were conducted to
study the 2D plane strain consolidation process of unsaturated soil incorporating vertical impeded
drainage boundaries.

2. Mathematical Model

2.1. Governing Equations

In geotechnical practice, vertical drain assisted with preloading is one of the most commonly
used techniques to improve the soft soil. The vertical drain can facilitate the consolidation process
by providing a shorter drainage path in the horizontal direction. Figure 1 illustrates a referential
consolidation system of a homogeneous unsaturated soil layer with two installed vertical drains,
in which the vertical boundaries are presumed to be impeded drainage to the air and water phases.
This system extends the problem considered by Ho et al. [14,15].
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Figure 1. Two-dimensional (2D) consolidation system of unsaturated soil with vertical impeded 
drainage boundaries. 

Figure 1. Two-dimensional (2D) consolidation system of unsaturated soil with vertical impeded
drainage boundaries.
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The thickness of the soil layer was H, and the internal spacing of vertical drains was L. In the
soil layer, the coefficients of permeability with respect to the air and water in the x-direction were kax

and kwx, and those in z-direction were kaz and kwz, respectively. On and under the soil layer were two
impedance layers, and their thicknesses were H0 and H1, respectively. These two impedance layers
were considered to be permeable in z-direction only. In the upper impedance layer, the coefficients
of permeability with respect to the air and water were ka0 and kw0, respectively; those in the down
impedance layer were ka1 and kw1, respectively. The external load q0 was assumed to be constant and
uniformly distributed on the top of the upper impedance layer.

For a constant external load instantaneously applied, the governing equations for 2D plane strain
consolidation process of unsaturated soil can be expressed as follows [10,14,15]:

∂ua

∂t
+ Ca

∂uw

∂t
+ ca

vx
∂2ua

∂x2 + ca
vz

∂2ua

∂z2 = 0 (1a)

∂uw

∂t
+ Cw

∂ua

∂t
+ cw

vx
∂2uw

∂x2 + cw
vz

∂2uw

∂z2 = 0 (1b)

where ua and uw are the excess pore-air and -water pressures, respectively (kPa); Ca and Cw are
the interactive constants associated with the air and water phases, respectively; ca

vx and cw
vx are the

consolidation coefficients with respect to the air and water phases in x-direction, respectively (m2/s);
and ca

vz and cw
vz are the consolidation coefficients with respect to the air and water phases in z-direction,

respectively (m2/s). These consolidation parameters can be expressed as follows:

Ca =

[(
2ma

1
ma

2
− 1
)
− n(1− Sr)

ma
2
(
u0

a + uatm
)]−1

(2a)

ca
vx =

kaxRΘ
gM

[
ma

2

(
u0

a + uatm

)(2ma
1

ma
2
− 1
)
− n(1− Sr)

]−1
(2b)

ca
vz =

kazRΘ
gM

[
ma

2

(
u0

a + uatm

)(2ma
1

ma
2
− 1
)
− n(1− Sr)

]−1
(2c)

Cw =
2mw

1
mw

2
− 1 (2d)

cw
vx =

kwx

mw
2 γw

(2e)

cw
vz =

kwz

mw
2 γw

(2f)

where ma
1 and mw

1 are the coefficients of air and water volume change with respect to the change of the
net normal stress, respectively (kPa−1); ma

2 and mw
2 are the coefficients of air and water volume change

with respect to the change of suction, respectively (kPa−1); n is the soil porosity; Sr is the degree of
saturation; uatm is the atmospheric pressure (kPa); Θ is the absolute temperature (K); R is the universal
air constant (8.314 J·mol−1·K−1); g is the gravitational acceleration (9.8 m/s2); M is the molecular mass
of air phase (0.029 kg/mol); and γw is the unite weight of water (9.8 kN/m3).

2.2. Initial and Boundary Conditions

It was assumed that immediately after the application of the external load, the initial excess
pore-air and -water pressures were distributed uniformly throughout the entire stratum. That is:

ua(x, z, 0) = u0
a, uw(x, z, 0) = u0

w (3)

where u0
a and u0

w are the values of the initial excess pore-air and -water pressures, respectively.
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The horizontal (i.e., left and right) boundaries, which were defined by two vertical drains, were all
considered to permeable to the air and water phases. That is:

ua(0, z, t) = ua(L, z, t) = uw(0, z, t) = uw(L, z, t) = 0 (4)

The vertical (i.e., top and bottom) boundaries, which were separately defined by sand cushion
and underlying layer, were considered to be partially permeable to the air and water phases. That is:

∂ua(x,0,t)
∂z − Rta

H ua(x, 0, t) = 0, ∂uw(x,0,t)
∂z − Rtw

H uw(x, 0, t) = 0 (5a)

∂ua(x,H,t)
∂z + Rba

H ua(x, H, t) = 0, ∂uw(x,H,t)
∂z + Rbw

H uw(x, H, t) = 0 (5b)

where Rta = kaz0H/kazH0 and Rtw = kwz0H/kwzH0, and they are two dimensionless characteristic
factors describing the drainage efficiency of the top surface to the air and water phases, respectively;
Rba = kaz1H/kazH1 and Rbw = kwz1H/kwzH1, and they are two dimensionless characteristic factors
describing the drainage efficiency of the bottom base to the air and water phases, respectively. When it
is assumed that Rta = Rtw = ∞ and Rba = Rbw = ∞, the vertical boundaries are double drainage
(i.e., top-base drainage [14,15]). For this scenario, both the top and bottom surfaces were permeable to
the air and water phases. When it is assumed that Rta = Rtw = ∞ and Rba = Rbw = 0, the vertical
boundaries are single drainage (i.e., top drainage [14,15]). For this scenario, the top surface was
permeable to the air and water phase, whereas the bottom base was impermeable to the air and
water phases.

3. Solution Formulation and Verification

In general, unsaturated soil is complex in natural property and engineering behavior due to the
lack of homogeneity, the complicate texture, the interaction of multiphase and the nonlinear feature.
In order to handle the mathematical derivation easily, some essential assumptions were made along
with those used in the 2D plane strain consolidation theory of unsaturated soil [10,14,15].

The prominent assumptions are listed as follows:

(1) The soil stratum was considered to be homogeneous;
(2) The soil particle and pore water were incompressible;
(3) The flows of the air and water phases were continuous and independent, and simultaneously,

they only took place in two directions (i.e., the x- and z-directions);
(4) During the consolidation process, the deformation occurring was small and the coefficients of the

volume change for the soil stratum remained constant;
(5) The consolidation parameters with respect to the air phase (i.e., Ca, ca

vx and ca
vz) and those with

respect to the water phase (i.e., Cw, cw
vx and cw

vz) remained constant during the consolidation
process; and

(6) The effect of air diffusing through water, air dissolving in water, the movement of water vapor
and temperature change were ignored.

The above assumptions were not completely accurate for all cases. The consolidation parameters
may change because of the variations in the soil properties, such as the permeability coefficients,
degree of saturation and porosity, and moreover, the modulus for the soil and the water phase were
nonlinear. However, in order to obtain the solution to the consolidation equations of unsaturated
soil more easily, it may be acceptable to assume that these soil properties remain constant during
the transient process for a small stress increment. Moreover, these constant properties have been
commonly adopted to study the consolidation process of unsaturated soil in some existing analytical
and semi-analytical methods proposed by Lo et al. [11,14,15], Zhou et al. [12], Shan et al. [13] and
Wang et al. [21–23].
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3.1. Solution Formulation

Equations (1a) and (1b) can be rewritten as follows:

∂ua

∂t
=

1
1− CaCw

[
Cacw

vz

(
κw

∂2uw

∂x2 +
∂2uw

∂z2

)
− ca

vz

(
κa

∂2ua

∂x2 +
∂2ua

∂z2

)]
(6a)

∂uw

∂t
=

1
1− CaCw

[
Cwca

vz

(
κa

∂2ua

∂x2 +
∂2ua

∂z2

)
− cw

vz

(
κw

∂2uw

∂x2 +
∂2uw

∂z2

)]
(6b)

where κa = kax/kaz and κw = kwx/kwz, and they are two anisotropic permeability ratios of the air and
water phases, respectively. Through defining two alternative variables φ1 and φ2, Equations (6a) and
(6b) can be transformed into:

∂φ1

∂t
= Q1

(
∂2φ1

∂z2 + ρ11
∂2φ1

∂x2 + ρ21
∂2φ2

∂x2

)
(7a)

∂φ2

∂t
= Q2

(
∂2φ2

∂z2 + ρ12
∂2φ1

∂x2 + ρ22
∂2φ2

∂x2

)
(7b)

where:
φ1 = ua + c21uw, φ2 = c12ua + uw (8)

ρ11 =
κwc12c21 − κa

c12c21 − 1
, ρ21 =

κac21 − κwc21

c12c21 − 1
, ρ12 =

κwc12 − κac12

c12c21 − 1
, ρ22 =

κac12c21 − κw

c12c21 − 1
(9)

The details of derivation process and meanings of c21 and c12 can be found in Appendix A. It is
noteworthy that Equations (7a) and (7b) will become two uncoupled PDEs when κa = κw, and their
solutions can be obtained more easily than coupled ones. However, for the sake of generality the
solutions are derived below for the coupled case of Equations (7a) and (7b).

Substituting Equation (4) into Equation (8) gives:

φ1(0, z, t) = φ1(L, z, t) = φ2(0, z, t) = φ2(L, z, t) = 0 (10)

These boundary conditions above are homogeneous; thus, the general solutions of Equations (7a)
and (7b) can be expressed as follows:

φ1(x, z, t) =
∞

∑
i=1

ϕi
1(z, t) · sin(µix) (11a)

φ2(x, z, t) =
∞

∑
i=1

ϕi
2(z, t) · sin(µix) (11b)

where ϕi
1 and ϕi

2 are the generalized Fourier coefficients of φ1 and φ2 with respect to x, respectively;
and µi = iπ/L.

Substituting Equations (11a) and (11a) into Equations (7a) and (7b) result in:

∂ϕi
1

∂t
= Q1

(
∂2 ϕi

1
∂z2 − ρ11µ2

i ϕi
1 − ρ21µ2

i ϕi
2

)
(12a)

∂ϕi
2

∂t
= Q2

(
∂2 ϕi

2
∂z2 − ρ12µ2

i ϕi
1 − ρ22µ2

i ϕi
2

)
(12b)

Implementing the Laplace transforms on Equations (12a) and (12b), and rearranging gives:

Q1
d2 ϕ̃i

1
dz2 =

(
s + Q1ρ11µ2

i

)
ϕ̃i

1 + Q1ρ21µ2
i ϕ̃i

2 − ϕi0
1 (13a)
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Q2
∂2 ϕ̃i

2
∂z2 = Q2ρ12µ2

i ϕ̃i
1 +

(
s + Q2ρ22µ2

i

)
ϕ̃i

2 − ϕi0
2 (13b)

where:
ϕi0

1 = ϑi

(
u0

a + c21u0
w

)
, ϕi0

2 = ϑi

(
c12u0

a + u0
w

)
(14)

and ϑi = 2
[
1− (−1)i

]
/(µiL).

The solutions of Equations (13a) and (13b) subjected to the impeded drainage boundaries are:

ϕ̃i
1 = χ1eλ1z + χ2e−λ1z + ψ2

(
χ3eλ2z + χ4e−λ2z

)
+ χ5 (15a)

ϕ̃i
2 = ψ1

(
χ1eλ1z + χ2e−λ1z

)
+ χ3eλ2z + χ4e−λ2z + χ6 (15b)

The derivation details and meanings of χ1~χ6, λ1, λ2, ψ1 and ψ2 can be found in Appendix B.
Implementing the Laplace transform on Equation (A22) gives:

ũa =
∞

∑
i=1

(
ϕ̃i

1 − c21 ϕ̃i
2

1− c12c21

)
sin(µix), ũw =

∞

∑
i=1

(
ϕ̃i

2 − c12 ϕ̃i
1

1− c12c21

)
sin(µix) (16)

By substituting Equations (15a) and (15b) into Equation (16), the solutions for the excess pore-air
and -water pressures can be obtained in the Laplace domain. The results are:

ũa =
∞

∑
i=1

sin(µix)
1− c12c21

[
α1

(
χ1eλ1z + χ2e−λ1z

)
+ α2

(
χ3eλ2z + χ4e−λ2z

)
+ α5

]
(17a)

ũw =
∞

∑
i=1

sin(µix)
1− c12c21

[
α3

(
χ1eλ1z + χ2e−λ1z

)
+ α4

(
χ3eλ2z + χ4e−λ2z

)
+ α6

]
(17b)

where α1~α6 are presented in Equation (A26).
According to the method of two stress-state variables, the volumetric strain of unsaturated soil

induced by a constant external load instantaneously applied during the 2D plane strain consolidation
process is [14]:

εv(x, z, t) = (ms
2 − 2ms

1)
[
ua(x, z, t)− u0

a

]
−ms

2

[
uw(x, z, t)− u0

w

]
(18)

where εv is the volumetric strain; ms
1 = mw

1 + ma
1, is the coefficient of the soil volume change with

respect to the change in net normal stress; ms
2 = mw

2 + ma
2 is the coefficient of the soil volume change

with respect to the change in suction.
Applying the Laplace transform to Equation (18) gives:

ε̃v(x, z, s) = (ms
2 − 2ms

1)
[
ũa(x, z, s)− u0

a/s
]
−ms

2

[
ũw(x, z, s)− u0

w/s
]

(19)

Integrating Equation (19) along both the x- and z-directions, we can obtain the average settlement
of the soil layer in the Laplace domain (denoted as W̃) as follows:

W̃ =
∫ H

0

∫ L
0 ε̃v(x, z, s)dxdz

=
∞
∑

i=1

1−(−1)i

(1−c12c21)µi

{[
(α1 − α3)ms

2 − 2α1ms
1
](

χ1eλ1 H − χ2e−λ1 H − χ1 + χ2
)
/λ1

+
[
(α2 − α4)ms

2 − 2α2ms
1
](

χ3eλ2 H − χ4e−λ2 H − χ3 + χ4
)
/λ2 − 2α5ms

1H
+(α5 − α6)ms

2H
}
−
[(

ms
2 − 2ms

1
)
u0

a −ms
2u0

w
]
HL/s

(20)
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3.2. Solution Verification

Using Crump’s method (see Appendix C) [24] to implement the numerical inversion of Laplace
transform (NILT) on Equations (17a), (17b) and (20), the semi-analytical solutions for the excess pore-air
and -water pressures and the soil layer settlement were obtained in the time domain. In this part,
two comparisons against the previous analytical solution [14] and the finite difference solution were
performed to verify the accuracy of the semi-analytical solution. The details of finite difference solution
to Equations (1a) and (1b) with vertical impeded drainage boundaries are presented in Appendix D.
The soil properties adopted in these comparisons were assumed as follows [14]: L = 2 m, H = 4 m,
n = 0.50, Sr = 80%, kwz = 10−10 m/s, kaz = 10−7~10−12 m/s, ms

1 = −2.5 × 10−4 kPa−1, ms
2 = 0.4 ms

1,
mw

1 = −0.5 × 10−4 kPa−1, mw
2 = 4 mw

1 , u0
a = 20 kPa, u0

w = 40 kPa, uatm = 100 kPa and Θ = 293 K.
As stated, when the values of Rta = Rtw = Rt and Rba = Rbw = Rb approach infinity,

the vertical impeded drainage boundaries can be degenerated into those of the top-base drainage
system; when Rt = ∞ and Rt = 0, the vertical impeded drainage boundaries can be simplified into
those of the top drainage system. Compared with the results from Ho et al. [14], the variations of the
excess pore-air and -water pressures were computed using the semi-analytical solution. Because of
limited space, only the isotropic permeability condition for the air and water phases (i.e., κa = κw = 1)
was considered. For the graphic presentation, the point of investigation was located at x = 1 m and z
= 4 m. Figure 2 shows the variations of the excess pore-air and -water pressures under the top-base
drainage system, and those under the top drainage system are illustrated in Figure 3. In these two
figures, the semi-analytical solution and the previous analytical solution were individually abbreviated
to SAS and PAS, respectively. It can be observed that the results of the semi-analytical solution with
Rb = Rt = ∞ were the same as those of previous analytical solution for the top-base drainage system,
while the results of the semi-analytical solution with Rb = 0 and Rt = ∞ were identical to those of the
previous analytical solution for the top drainage system.
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In order to verify the accuracy of the semi-analytical solution under vertical impeded drainage
boundary, another comparison against the finite difference solution was performed. The excess pore-air
and -water pressures under the vertical boundaries with Rb = Rt = 10 were computed using both
the semi-analytical solution and the finite difference solution. For the graphic presentation, the point
of investigation also was located at x = 1 m and z = 4 m. Figure 4 illustrates the variations of the
excess pore-air and -water pressures, where finite difference solution is abbreviated to finite difference
solution (FDS). It can be found that the excess pore-air and -water pressures calculated from the
semi-analytical solution were in line with those of the finite difference solution.Processes 2018, 6, x FOR PEER REVIEW  9 of 21 
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Figure 4. Excess pore-pressures under impeded drainage boundary calculated from semi-analytical
solution (SAS) and finite difference solution (FDS): (a) air phase and (b) water phase.

Therefore, these comparisons showed that the proposed semi-analytical solution incorporating
the vertical impeded drainage boundaries was correct and it is also feasible for the 2D plane strain
consolidation processes of unsaturated soil with top-base drainage and top drainage boundaries.

4. 2D Consolidation Process of Unsaturated Soil with Vertical Impeded Drainage Boundaries

Based on the proposed semi-analytical solution above, some computations were performed to
illustrate the 2D plane strain consolidation process of unsaturated soil with the vertical impeded
drainage boundaries. The variations of the excess pore-air and -water pressures and the average
settlement of the soil layer were presented, and the influences of the drainage efficiency of vertical
boundary, the air-water permeability ratio, the anisotropic permeability ratio and the spacing-depth
ratio were investigated. Because of limited space, the drainage efficiencies of top surface and bottom
base for air phase were only considered to be the same as those for water phases, that is, Rta = Rtw = Rt

and Rba = Rbw = Rb. The parameters of the soil property were assumed to be the same as those used
in the previous section.

4.1. Consolidation Process with Different Drainage Efficiencies

The vertical drainage boundaries can be classified into symmetrical and asymmetrical ones
according to the drainage efficiencies of top and bottom boundaries (i.e., Rt and Rb). When Rt = Rb,
the vertical drainage boundaries are symmetrical; they are asymmetrical when Rt 6= Rb. For these two
types of vertical boundaries, the excess-pore pressures and the soil layer settlement were computed
using the proposed semi-analytical solutions considering different drainage efficiencies. For the
graphic presentation, the point of investigation on the excess-pore pressures was located at x = 1 m
and z = 2.5 m. Figures 5 and 6, respectively, show the variations of the excess pore-pressures and the
soil layer settlement under the symmetrical impeded drainage boundary, in which Rt = Rb vary from
0.2 to 100.
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Figure 5. Variations of excess pore-pressures under symmetrical vertical impeded drainage boundary
with different drainage efficiencies: (a) air phase and (b) water phase.
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It can be observed that the drainage efficiency has a significant influence on the dissipation
processes of the excess pore-pressures and the development of the soil layer settlement. Larger Rt = Rb
generally resulted in a greater dissipation rate of the excess pore-pressures and a larger settlement
rate of the soil layer. Figure 5a graphically indicates that the normalized curves of the excess pore-air
pressures gradually shifted to the left with the increase of Rt = Rb. Figure 5b illustrates the dissipation
pattern of water phase and it exhibits the typical double inverse S curves, in which the influence of
the drainage efficiency can be separated into two stages: the first one emerged during the dissipation
process of the excess pore-air water, and the second one was caused by the dissipation process of
the excess pore-air water. Between these two stages, the plateau period emerged on the dissipation
curve of the excess pore-air water. Similarly, the influence of the drainage efficiency on the soil layer
settlement can also be divided into two stages based on the typical double inverse S curves, as shown
in Figure 6. In addition, it can be also found that the differences of the excess pore-pressures and
the soil layer settlement induced by different drainage efficiencies decreased with the increase of
Rt = Rb. When Rt = Rb were close to 100, the differences of the excess pore-pressures and the soil layer
settlement were negligible. This indicates that the corresponding boundary can be considered to be
permeable to air and water phases.

Figures 7 and 8, respectively, illustrate the variations of the excess pore-pressures and the soil layer
settlement under the asymmetrical vertical impeded drainage boundary, in which Rb = 0 or ∞ and Rt

= 1 or 25. Being the same as those in Figures 5 and 6, a bigger Rt delivered a larger dissipation rate
of the excess pore-pressure, and further resulted in a larger settlement rate. The dissipation patterns
of the excess pore-air pressure are typical inverse S curves, whereas those of the excess pore-water
pressure and the soil layer settlement are typical double inverse S ones with two obvious affected stages.
Compared with the results under the symmetrical vertical impeded drainage boundary, Figure 7a,b
indicate that the excess pore-pressures under the vertical boundaries of Rb = 0 dissipated more slowly
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and consequently resulted in a smaller settlement rate (see Figure 8a). In contrast, Figure 7c,d show that
the excess pore-pressures under the vertical boundaries of Rb =∞ dissipated faster and consequently
induced a larger settlement rate (see Figure 8b). This phenomenon happened because of the different
bottom boundaries. The bottom boundary with Rb = 0 was impermeable and it might impede the
drainage of the air and water phases; the bottom boundary with Rb = ∞ was permeable and could
accelerate the drainage process of the air and water phases.Processes 2018, 6, x FOR PEER REVIEW  11 of 21 
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Figure 7. Variations of excess pore-pressures under asymmetrical vertical impeded drainage 
boundary with different drainage efficiencies: (a,b) b 0R = and (c,d) bR = ∞ . 
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Figure 8. Variations of soil layer settlement under asymmetrical vertical impeded drainage boundary 
with different drainage efficiencies: (a) b 0R =  and (b) bR = ∞ . 
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Figure 8. Variations of soil layer settlement under asymmetrical vertical impeded drainage boundary 
with different drainage efficiencies: (a) b 0R =  and (b) bR = ∞ . 
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4.2. Consolidation Process with Different Air-Water Permeability Ratios

The air-water permeability ratio was defined as the ratio between the vertical permeability
coefficient of air phase and that of water phase, i.e., kaz/kwz. Moreover, the anisotropic permeability
conditions of these phases were assumed to be the same, i.e., κa =κw. Figure 9 shows the changes of
the excess pore-pressures under different values of kaz/kwz, in which the vertical impeded drainage
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boundaries are given by Rb = Rt = 5 and Rb = Rt = ∞, respectively. The corresponding variations of
the soil layer settlement are shown in Figure 10. It can be observed that the air-water permeability ratio
had a great influence on the dissipation processes of the excess pore-pressures and the development of
the soil layer settlement. Larger kaz/kwz delivered faster dissipation of the excess pore-air pressure at
the later stage, and resulted in faster dissipation of the excess pore-water pressure at the intermediate
stage. After that, the excess pore-air pressure was fully dissipated, the plateau period emerged on the
normalized curve of the excess pore-water pressure, and then, different curves tended to gradually
convergence into a single one (see Figure 9b). A similar characteristic can be found in the normalized
curves of the soil layer settlement (see Figure 10). Moreover, the bigger kaz/kwz can obviously prolong
the plateau periods above. In comparison with the results obtained when Rb = Rt = ∞, the excess
pore-pressures and soil layer settlement obtained when Rb = Rt= 5 were smaller; that is, it needed
more time to complete the consolidation process. This phenomenon happened as a result of the
impeding effects of the top and bottom drainage boundaries given by Rb = Rt= 5, and it was identical
to the results under 1D consolidation with the impeded drainage boundaries [21].
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4.3. Consolidation Process with Different Anisotropic Permeability Ratios

In this part, for simplicity, the anisotropic permeability ratio of air phase was only considered
to be the same as that of water phase, i.e., κa = κw. The vertical impeded drainage boundaries are
given by Rb = Rt = 5 and Rb = Rt = ∞. Figures 11 and 12 illustrate the variations of the excess
pore-pressures and the soil layer settlement under different values of κa = κw, respectively. It was
obvious that the anisotropic permeability ratio had a great effect on the dissipation processes of the
excess pore-pressures and the development of the soil layer settlement. The dissipation with a larger
κa = κw tended to progress relatively faster than that with a smaller one. The reason is that the vertical
drains installed in the soil layer provide a shorter drainage path in the horizontal direction, and they
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allow the excess pore-pressures dissipate faster when κa = κw is larger. Being the same as the results in
Figures 5 and 6, the normalized curves of the excess pore-air pressures were a group of typical inverse
S ones with single influence stage while those of the excess pore-water pressures and the soil layer
settlements were typical double inverse S curves with two obvious influence stages (see Figures 11
and 12). These curves shifted to the left with an increase of κa = κw. Being the same as those observed
in Figures 9 and 10, under a given value of κa = κw, the vertical boundary condition of Rb = Rt = 5
induced slower dissipations of the excess pore-pressures and slower development of the soil layer
settlement than the condition of Rb = Rt = ∞. For these two boundary conditions, it can be observed
that the larger κa = κw was, the smaller the difference between these results was. That is, the drainage
efficiencies of the vertical impeded boundaries affected the 2D consolidation behavior more slightly
when κa = κw was larger (e.g., 4). The reason is that for the scenario of larger κa = κw, most of the
excess pore-pressures were dissipated horizontally, and the vertical drainage effect was small and
could even be neglected.
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4.4. Consolidation Process with Different Spacing-Depth Ratios

For simplicity, only the isotropic permeability condition for air and water phases was considered
in this part, and the vertical impeded drainage boundaries were assumed to be symmetrical. Figures 13
and 14, respectively, illustrate the changes in the excess pore-pressures and soil layer settlement under
different spacing-depth ratios (i.e., L/H), in which the vertical impeded drainage boundaries are given
by Rb = Rt = 5 and Rb = Rt = ∞. It can be observed that a smaller L/H delivered a faster dissipation
of the excess-pore pressures due to a shorter horizontal drainage path. As a result, the soil layer
settlement develops more quickly. Being the same as the results in Figures 5 and 6, there was a single
influence stage on the dissipation pattern of the excess pore-air pressure while there were two obvious
influence stages on the dissipation of the excess pore-water pressure and on the development curve of
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the soil layer settlement (see Figures 13 and 14). Under a given L/H, the excess pore-pressures under
the vertical boundary condition of Rb = Rt = 5 dissipated more slowly that those under the vertical
boundary condition of Rb = Rt = ∞. The phenomenon was similar to that observed in Figures 9
and 10. For these two boundary conditions, it was obvious that the difference between their results
decreased with the increase of L/H. That is, the drainage efficiencies of vertical impeded boundaries
had fewer effects on the 2D consolidation behavior when the horizontal drainage path was shorter
(e.g., L/H = 0.5). The reason is that most of the excess pore-pressures were dissipated horizontally for
the scenario of shorter horizontal drainage path.
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5. Conclusions

In this paper, a semi-analytical solution to 2D plane strain consolidation process of unsaturated soil
incorporating vertical impeded drainage boundaries was obtained using eigenfunction expansion and
Laplace transform techniques. By performing the inversion of Laplace transform, some computations
were performed to study the consolidation processes under different drainage efficiencies of the
vertical boundaries, air-water permeability ratios, anisotropic permeability ratios and spacing-depth
ratios. As a result of the analysis the following conclusions can be drawn.

(a) The present semi-analytical solution was validated to be consistent with the finite difference
solution and the previous analytical solution in the literature, and it is more general in the
drainage boundary compared with the existing analytical solution.

(b) The drainage efficiency of the vertical boundary had a great influence on the dissipation processes
of the excess pore-pressures and the development of the soil layer settlement. The larger drainage
efficiency delivered the faster dissipation of the excess pore-pressures and the faster development
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of the soil layer settlement. When the drainage efficiency was large enough (i.e., Rt ≥ 100 or
Rb ≥ 100), the corresponding boundary can be considered to be fully drained.

(c) The consolidation process with a larger air-water permeability ratio tended to progress more
quickly than that with a smaller one. Either a larger anisotropic permeability ratio (i.e., larger
horizontal permeability coefficient) or a smaller spacing-depth ratio delivered faster dissipation
of the excess pore pressures and faster development of the soil layer settlement. In comparison
with the results under top-base drainage boundary, the impeded drainage boundary with limited
drainage efficiency slowed down the consolidation process significantly.
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Appendix A : Transformation of Equations (6a) and (6b)

There has been a common alternative variable method that has been used to rewrite the 1D
consolidation equations of unsaturated soil [12,21–23]. In this appendix, it was adopted to transform
the governing equations of 2D plane strain consolidation process. Multiplying Equations (6a) and (6b)
by the arbitrary constants c1 and c2, respectively, and then adding them together results in:

∂(c1ua + c2uw)

∂t
= (c2Wa + c1 Aa)

(
κa

∂2ua

∂x2 +
∂2ua

∂z2

)
+ (c1 Aw + c2Ww)

(
κw

∂2uw

∂x2 +
∂2uw

∂z2

)
(A1)

where:
Aa = − ca

vz
1− CaCw

, Aw =
Cacw

vz
1− CaCw

, Wa =
Cwca

vz
1− CaCw

, Ww = − cw
vz

1− CaCw
(A2)

Introducing a constant Q that satisfies the following relationships:

Qc1 = c2Wa + c1 Aa (A3)

Qc2 = c1 Aw + c2Ww (A4)

In order to make these relationships above hold true, the constant Q must satisfy:

(Q− Aa)(Q−Ww) = AwWa (A5)

Equation (A5) is a quadratic equation of Q, and its two roots Q1 and Q2 are obtained as follows:

Q1,2 =
1
2

[
Aa + Ww ±

√
(Aa −Ww)

2 + 4AwWa

]
(A6)

When Q = Q1, the solutions of Equations (A3) and (A4) are denoted as c11 and c21; when Q = Q2,
the solutions are denoted as c12 and c22. Moreover, without loss of generality, it is possible to assume
that c11 = c22 = 1, and consequently c21 and c12, can be obtained as follows:

c21 =
Aw

Q1 −Ww
, c12 =

Wa

Q2 − Aa
(A7)

Then, by defining two alternative variables φ1 and φ2 as presented in Equation (8), Equation (A1) can
be transformed into Equations (7a) and (7b), respectively.
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Appendix B : Derivation of Solution to Equations (13a) and (13b)

Equations (13a) and (13b) can be rewritten as the following linear second-order system:

Q
d2ϕ̃

dz2 = Aϕ̃−ϕ0 (A8)

where:

Q =

[
Q1 0
0 Q2

]
, A =

[
s + ρ11Q1µ2

i ρ21Q1µ2
i

ρ12Q2µ2
i s + ρ22Q2µ2

i

]
, ϕ̃ =

{
ϕ̃i

1
ϕ̃i

2

}
, ϕ0 =

{
ϕi0

1
ϕi0

2

}
(A9)

Let ϕ̃∗ = ϕ̃−A−1ϕ0, then, Equation (A8) can be simplified into a homogeneous system:

d2ϕ̃∗

dz2 = Q−1Aϕ̃∗ (A10)

Based on the eigenvalue method for the homogeneous system [25,26], the general non-constant
solutions of Equation (A10) can be constructed using the following vector functions:

ϕ̃∗ = ψeλz (A11)

where λ is a scalar and ψ is a constant vector.
Substituting Equation (A11) into Equation (A10) results in the following eigenvalue problem:(

Q−1A− λ2I
)
ψ = 0 (A12)

where I is a unit matrix, and λ2 is an eigenvalue of Q−1A with corresponding eigenvector ψ.
The characteristic equation with respect to Q−1A is:

det
(

Q−1A− λ2I
)
=

∣∣∣∣∣ s/Q1 + ρ11µ2
i − λ2 ρ21µ2

i
ρ12µ2

i s/Q2 + ρ22µ2
i − λ2

∣∣∣∣∣ = 0 (A13)

where det(·) denotes the determinant of a matrix.
Solving Equation (A13) for the eigenvalue λ2, results in:

λ2
1

λ2
2

=
(Q1 + Q2)s + (ρ11 + ρ22)Q1Q2µ2

i ±
√

η

2Q1Q2
(A14)

where η =
[
(Q2 −Q1)s + (ρ11 − ρ22)Q1Q2µ2

i
]2

+ 4ρ21ρ12Q2
1Q2

2µ4
i .

It should be noted that, using Crump’s method to implement inverse Laplace transform on a
given function, the value of s can be freely chosen according to the poles of the given function and
the requirement of the relative errors. Therefore, the value of s can be reasonably chosen to hold that
η 6= 0 (i.e., λ2

1 6= λ2
2). Thus, the eigenvectors of Equation (A12) can be obtained as follows:

ψ1 =
{

1 ψ1

}T
, ψ2 =

{
ψ2 1

}T
(A15)

where ψ1 and ψ2 two linear-independent vectors; the superscript T represents the transposition of
vector; the parameters ψ1 and ψ2 are:

ψ1 = −
ρ12Q2µ2

i
s + ρ22Q2µ2

i − λ2
1Q2

, ψ2 = −
ρ21Q1µ2

i
s + ρ11Q1µ2

i − λ2
2Q1

(A16)
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Using Equations (A14) and (A15), the general solution of the homogenous system (A10) can be
expressed as:

ϕ̃∗ =

{
χ1eλ1z + χ2e−λ1z + ψ2

(
χ3eλ2z + χ4e−λ2z)

ψ1
(
χ1eλ1z + χ2e−λ1z)+ χ3eλ2z + χ4e−λ2z

}
(A17)

where χ1, χ2, χ3 and χ4 are arbitrary functions of s, and can be determined from the top and bottom
boundary conditions.

Then, the general solution of the original system (A8) (i.e., Equations (13a) and (13b)) can be
obtained as follows:

ϕ̃ =

{
χ1eλ1z + χ2e−λ1z + ψ2

(
χ3eλ2z + χ4e−λ2z)+ χ5

ψ1
(
χ1eλ1z + χ2e−λ1z)+ χ3eλ2z + χ4e−λ2z + χ6

}
(A18)

where:

χ5 =

(
s + Q2ρ22µ2

i
)

ϕi0
1 −Q1ρ21µ2

i ϕi0
2(

s + Q1ρ11µ2
i
)(

s + Q2ρ22µ2
i
)
−Q1Q2ρ12ρ21µ4

i
(A19)

χ6 =

(
s + Q1ρ11µ2

i
)

ϕi0
2 −Q2ρ12µ2

i ϕi0
1(

s + Q1ρ11µ2
i
)(

s + Q2ρ22µ2
i
)
−Q1Q2ρ12ρ21µ4

i
(A20)

Taking the derivation with respect to Equation (A18) gives:

dϕ̃
dz

=

{
λ1
(
χ1eλ1z − χ2e−λ1z)+ ψ2λ2

(
χ3eλ2z − χ4e−λ2z)

ψ1λ1
(
χ1eλ1z − χ2e−λ1z)+ λ2

(
χ3eλ2z − χ4e−λ2z)

}
(A21)

Substituting Equations (11a) and (11b) into Equation (8), and solving it for ua and uw gives:

ua =
∞

∑
i=1

(
ϕi

1 − c21 ϕi
2

1− c12c21

)
sin(µix), uw =

∞

∑
i=1

(
ϕi

2 − c12 ϕi
1

1− c12c21

)
sin(µix) (A22)

By substituting Equation (A22) into Equations (5a) and (5b), the top and bottom boundary
conditions can be expressed as follows:(

∂

∂z
− Rta

H

)[
ϕi

1(0, t)− c21 ϕi
2(0, t)

]
= 0,

(
∂

∂z
− Rtw

H

)[
ϕi

2(0, t)− c12 ϕi
1(0, t)

]
= 0 (A23)

(
∂

∂z
+

Rba
H

)[
ϕi

1(H, t)− c21 ϕi
2(H, t)

]
= 0,

(
∂

∂z
+

Rbw
H

)[
ϕi

2(H, t)− c12 ϕi
1(H, t)

]
= 0 (A24)

Implementing a Laplace transform on Equations (A23) and (A24), and further substituting these
transform results into Equations (A18) and (A21) leads to:

Dχ = R (A25)

where:

D =


α1(λ1H − Rta) −α1(λ1H + Rta) α2(λ2H − Rta) −α2(λ2H + Rta)

α3(λ1H − Rtw) −α3(λ1H + Rtw) α4(λ2H − Rtw) −α4(λ2H + Rtw)

α1(λ1H + Rba)eλ1 H −α1(λ1H − Rba)e−λ1 H α2(λ2H + Rba)eλ2 H −α2(λ2H − Rba)e−λ2 H

α3(λ2H + Rbw)eλ1 H −α3(λ1H − Rbw)e−λ1 H α4(λ2H + Rbw)eλ2 H −α4(λ2H − Rbw)e−λ2 H


R =

{
α5Rta α6Rtw −α5Rba −α6Rbw

}T
, χ =

{
χ1, χ2 χ3 χ4

}T
, α1 = 1− c21ψ1,

α2 = ψ2 − c21, α3 = ψ1 − c12, α4 = 1− c12ψ2, α5 = χ5 − c21χ6 and α6 = χ6 − c12χ5

(A26)

Solving Equation (A25) for χ gives:
χ = D−1R (A27)
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For the case of Rta = Rtw = Rt and Rba = Rbw = Rb, i.e., the effects of impeded drainage on air
and water phases at top and bottom boundaries can be considered to be the same, χ`(` = 1~4) can be
obtained as follows:

χ1 = (χ5 − χ6ψ2)
[
(λ1H − Rb)Rte−λ1 H + (λ1H + Rt)Rb

]
/χ7

χ2 = (χ5 − χ6ψ2)
[
(λ1H + Rb)Rteλ1 H + (λ1H − Rt)Rb

]
/χ7

χ3 = (χ6 − χ5ψ1)
[
(λ2H − Rb)Rte−λ2 H + (λ2H + Rt)Rb

]
/χ8

χ4 = (χ6 − χ5ψ1)
[
(λ2H + Rb)Rteλ2 H + (λ2H − Rt)Rb

]
/χ8

χ7 = 2(ψ1ψ2 − 1)
[(

λ2
1H2 + RbRt

)
sinh(λ1H) + λ1H(Rb + Rt) cosh(λ1H)

]
χ8 = 2(ψ1ψ2 − 1)

[(
λ2

2H2 + RbRt
)
sinh(λ2H) + λ2H(Rb + Rt) cosh(λ2H)

]
(A28)

Appendix C : Inverse Laplace Transform by Crump’s Method

The Laplace transform of a real function f (t), t ≥ 0, is defined as:

F(s) =
∫ ∞

0
e−st f (t)dt (A29)

Throughout, it should be assumed that f (t) is piecewise continuous and of exponential order β

(i.e., | f (t)| ≤ Meβt). In this case, the transform function F(s) is defined for Re(s) > β.
Starting with F(s), Crump’s method estimates the values of the inverse transform f (t) based on

the summation in Durbin’s Fourier series approximation [27]:

f (t) ≈ ebt

T

{
1
2

F(b) +
∞

∑
k=1

Re
[

F
(

b +
jkπ

T

)
e

jkπ
T t
]}

(A30)

where j =
√
−1; b and T are two real parameters. The series in Equation (A29) generally converges

very slowly. In order to evaluate this series efficiently, Crump used the epsilon-algorithm to speed the
convergence. The epsilon-algorithm is given as [24]:

ε
(m)
`+1 = ε

(m+1)
`−1 +

1

ε
(m+1)
` − ε

(m)
`

, for `, m = 1, 2, · · · , 2N + 1 (A31)

where ε
(m)
0 = 0 and ε

(m)
1 is the mth partial sum of the series in Equation (A30). Then, the sequence of

ε
(1)
1 , ε

(1)
3 , ε

(1)
5 , . . . , ε

(1)
2N+1 is a sequence of successive approximations to the sum of the series that will

often better approximate the sum than the untransformed one.
The values of the parameters are chosen as [24,28]: (1) T = 0.8×max(0.01, tmax), where tmax is

the largest t-value that desires the inverse transform; (2) b = βb − ln(0.1× Er)/(2T), where βb should
be specified equal to, or slightly larger than β; Er is the required relative error in the values of the
inverse transform; thus, it must be in the range [0, 1).

Appendix D : Finite difference solution to Equations (1a) and (1b)

The Forward time and central space (FTCS) difference scheme [29,30], as shown in Figure A1,
was adopted to develop the finite difference solution to Equations (1a) and (1b). Using this scheme,
Equations (1a) and (1b) can be expressed as follows:

ui,j,`+1
a − ui,j,`

a

∆t
+ Ca

ui,j,`+1
w − ui,j,`

w

∆t
+

ca
vx

∆x2 f a
x +

ca
vz

∆z2 f a
z = 0 (A32)

ui,j,`+1
w − ui,j,`

w

∆t
+ Cw

ui,j,`+1
a − ui,j,`

a

∆t
+

cw
vx

∆x2 f w
x +

cw
vz

∆z2 f w
z = 0 (A33)
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where:
f a
x = ui−1,j,`

a − 2ui,j,`
a + ui+1,j,`

a , f a
z = ui,j−1,`

a − 2ui,j,`
a + ui,j+1,`

a ,

f w
x = ui−1,j,`

w − 2ui,j,`
w + ui+1,j,`

w , f w
z = ui,j−1,`

w − 2ui,j,`
w + ui,j+1,`

w . (A34)

Equations (A32) and (A33) can be rearranged as follows:

ui,j,`+1
a = ui,j,`

a +
1

1− CaCw
(Caβw

x f w
x + Caβw

z f w
z − βa

x f a
x − βa

z f a
z ) (A35)

ui,j,`+1
w = ui,j,`

w +
1

1− CaCw
(Cwβa

x f a
x + Cwβa

z f a
z − βw

x f w
x − βw

z f w
z ) (A36)

where:
βa

x = ca
vx∆t/(∆x)2, βa

z = ca
vz∆t/(∆z)2, βw

x = cw
vx∆t/(∆x)2, βw

z = cw
vz∆t/(∆z)2 (A37)
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z a a a2i j i j i jf u u u− += − +   ,  

w 1, , , , 1, ,
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a w

1
1

i j i ju u C f C f f f
C C

β β β β+ = + + − −
−
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w w w x x w z z x x z z

a w

1
1

i j i ju u C f C f f f
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where: 

( )2a a
x vx /c t xβ = Δ Δ , ( )2a a

z vz /c t zβ = Δ Δ , ( )2w w
x vx /c t xβ = Δ Δ , ( )2w w

z vz /c t zβ = Δ Δ  (A37) 
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Figure A1. Forward time and central space (FTCS) difference scheme for the governing equations: (a) 
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air phase and (b) water phase.

The initial and boundary conditions can be obtained as follows:

(i) The initial excess pore-air and pore-water pressures ( i = 1 ∼ Nx + 1, j = 1 ∼ Nz + 1):

ui,j,1
a = u0

a, ui,j,1
w = u0

w (A38)

(ii) The permeable drainage boundaries (PB) at both side surfaces ( j = 1 ∼ Nz + 1):

u1,j,`
a = uNx+1,j,`

a = u1,j,`
w = uNx+1,j,`

w = 0 (A39)

(iii) The impeded drainage boundary (IB) at the top surface ( i = 2 ∼ Nx):

ui,1,`+1
a = ui,1,`

a +
1

1− CaCw

(
Caβw

x f w
x, j=1 + Caβw

z f w
zt − βa

x f a
x,j=1 − βa

z f a
zt

)
(A40)

ui,1,`+1
w = ui,1,`

w +
1

1− CaCw

(
Cwβa

x f a
x,j=1 + Cwβa

z f a
zt − βw

x f w
x,j=1 − βw

z f w
zt

)
(A41)

where f a
zt = 2ui,2,`

a + 2(∆zRta/H − 1)ui,1,`
a , f w

zt = 2ui,2,`
w + 2(∆zRtw/H − 1)ui,1,`

w .
(iv) The impeded drainage boundary (IB) at the bottom base ( i = 2 ∼ Nx):

ui,Nz+1,`+1
a = ui,Nz+1,`

a +
1

1− CaCw

(
Caβw

x f a
x,j=Nz+1 + Caβw

z f w
zb − βa

x f a
x,j=Nz+1 − βa

z f a
zb

)
(A42)
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ui,Nz+1,`+1
w = ui,Nz+1,`

w +
1

1− CaCw

(
Cwβa

x f a
x,j=Nz+1 + Cwβa

z f a
zb − βw

x f a
x,j=Nz+1 − βw

z f w
zb

)
(A43)

where f a
zb = 2ui,Nz,`

a + 2(∆zRba/H − 1)ui,Nz+1,`
a , f w

zb = 2ui,Nz,`
w + 2(∆zRbw/H − 1)ui,Nz+1,`

w .

Based on Equations (A32)–(A43), a computer program can be developed to provide the numerical
results of the excess pore-air and pore-water pressures under vertical impeded drainage boundaries.
In order to make the computer scheme converge, the time interval and space internal should be
reasonably chosen and controlled. For the domain as shown in Figure A1, the mesh sizes should satisfy
the following stability conditions [29,30]:

βa
x + βa

z ≤ 0.5, βw
x + βw

z ≤ 0.5 (A44)
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