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Abstract: The demand for noble metals is increasing, owing to their excellent chemical and physical
properties. In order to meet the demand, the recovery of noble metals with high purity from diverse
secondary resources, which contain small amounts of noble metals, is of immense value. In this work,
the possibility of the separation of Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV) by solvent extraction from
a synthetic HCl solution is investigated. Only Au(III) was selectively extracted by Cyanex 272 in
the HCl concentration range from 0.5 M to 9 M, leaving the other metal ions in the raffinate. The
loaded Au(III) in Cyanex 272 was efficiently stripped by (NH2)2CS. The other four noble metals
were sequentially separated on the basis of the procedures reported in the previous work. The mass
balance showed that about 98% of each metal, except Pt(IV), was recovered by the proposed process.
An efficient process for the recovery of the five noble metal ions from the HCl leaching solution of
secondary resources containing these metals can be developed.

Keywords: solvent extraction; gold; platinum group metals; HCl

1. Introduction

Noble metals are indispensable for the manufacture of advanced materials, which are employed
in the automobile, chemical, electronic, and medical industries, owing to their excellent chemical and
physical properties [1,2]. Considering the demand for these metals and environmental protection, the
secondary resources resulting from the above-mentioned industries have attracted much attention [3–5].

Many processes have been proposed for the recovery of noble metals from secondary resources [1].
Since the contents of noble metals in the secondary resources are very low, smelting of these secondary
resources together with other metal ores is effective in recovering noble metals. For example, diverse
secondary resources containing noble metals can be treated by a smelting operation in a copper smelter
when the secondary resources do not contain components harmful to the operation of copper smelting.
Anode slimes are produced from the electro-refining of the impure anodes, which contain most of
the noble metals present in the ores, as well as the secondary resources. Therefore, it is important to
develop an efficient process to recover noble metals with high purity from the anode slimes.

Anode slimes are generally treated by systems such as cyanide [6], halide [7], and
biotechnologies [8]. The noble metal ions in the leaching solution are separated by precipitation [9],
activated carbon adsorption [10,11], ion exchange [12,13], and solvent extraction [14–17]. Among these
methods, solvent extraction has been employed in commercial plants for a long time. In the case of
solvent extraction, some kinds of ionic liquids have been investigated for noble metal separation in the
laboratory scale [15,18–20]. Considering the cost of ionic liquids and the possibility of their application
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in the industrial scale, solvent extraction with commercial extractants has more advantages, in terms of
commercial scale applications. Among the noble metals, the solubility of silver metal in a HCl solution
is very low and other leaching solutions like HNO3 and H2SO4 are firstly employed to dissolve silver
metal [21,22]. In general, ruthenium(Ru) and osmium(Os) are separated from other platinum group
metals (PGMs) by oxidative distillation [23,24].

Plenty of work has been reported on the separation of two or three noble metal ions by solvent
extraction from a hydrochloric acid solution [25–29]. After the recovery of ruthenium and osmium by
oxidative distillation, six noble metals remain in the anode slimes. When silver is separated as silver
chloride, by leaching with an HCl solution in the presence of some oxidizing agents, the remaining
five noble metal ions (Au(III), Pt(IV), Pd(II), Ir(IV), and Rh(III)) are present in the leaching solution.
Although several solvent extraction processes have been reported to separate these five noble metal
ions [5,14,18,30], they have some disadvantages, such as incomplete separation among the metal ions in
each solvent extraction step and the low extraction percentage of Au(III) and Pd(II) from concentrated
acid solutions.

We have reported solvent extraction processes to separate Pt(IV)-Pd(II)-Ir(IV)-Rh(III) and
Au(III)-Pt(IV)-Pd(III) from hydrochloric acid solutions [26–29]. According to these works, Pd(II)
can be selectively extracted over Pt(IV), by LIX 63, from a concentrated hydrochloric acid solution.
Extraction of Au(III)-Pd(II)-Pt(IV), with Cyanex 272, from a concentrated hydrochloric acid solution
results in the selective extraction of Au(III). Moreover, Au(III) has been successfully separated from
Ag(I) and other base metal ions, by Cyanex 272, from the leaching solution of anode slimes [31].
Therefore, it is reasonable that a combination of the above two solvent extraction systems (Cyanex 272
and LIX 63) would lead to selective extraction of Au(III) and Pd(II) from the other noble metal ions.
In order to verify this proposed process, the data on the mass balance and the purity of the obtained
solution are necessary. For this purpose, solvent extraction experiments were done in a synthetic
HCl solution containing Au(III), Pd(II), Pt(IV), Ir(IV) and Rh(III). In this work, gold was successfully
separated over the other four metals by solvent extraction, with Cyanex 272, from the hydrochloric acid
concentration, from 0.5 M to 9 M. Separation of the other four metals, by LIX 63, TBP, and Aliquat 336,
was tried on the basis of the obtained conditions reported in the previous work [28]. Compared with
the previous processes for separating the five metals, the process reported in this work does not need a
scrubbing stage. The mass balance, purity, and recovery of each metal from the synthetic solution were
obtained from the process proposed in this work.

2. Experimental

2.1. Chemicals and Reagents

The synthetic solution was prepared by dissolving certain amounts of HAuCl4 (30 wt.% in dilute
HCl, Sigma-Aldrich, St. Louis, MO, USA), H2IrCl6 (99.5%, Alfa-Aesar, Ward Hill, MA, USA), RhCl3
(99.9%, Alfa-Aesar, Ward Hill, MA, USA), PtCl4 (99.9%, Alfa-Aesar, Ward Hill, MA, USA), and PdCl2
(99.9%, Alfa-Aesar, Ward Hill, MA, USA) in a HCl solution with the required concentration. Extractants
employed in this work were 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (Cyanex 272, 85%,
Solvay Cytec Industries, Woodland Park, NJ, USA), 5,8-diethyl-7-hydroxydodecan-6-one oxime (LIX
63, 70%, BASF Co., Ludwigshafen, Germany), tributyl phosphate (TBP, 98%, Yakuri Pure Chemical
Co., Ltd., Kyoto, Japan), and tricaprylmethylammonium chloride (Aliquat 336, 100%, BASF Co.,
Ludwigshafen, Germany). All the chemicals were of analytical grade. Commercial grade kerosene (Dea
Jung Chemical Co., Siheung, Korea) was used as a diluent. In the whole experiment, the concentration
of the metals in the synthetic solution was fixed at 100 mg/L.

2.2. Experimental Process

Solvent extraction experiments were performed in a 50 mL screw-cap bottle. Equal volume of
organic and aqueous phase (10 mL) was shaken for 30 min by employing a wrist action shaker. After
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shaking, the two phases were separated in a separate funnel. All the experiments were done at room
temperature. The concentration of the metals in aqueous phase was measured by ICP-OES (Inductively
coupled plasma-optical emission spectrometer, Spectro Arcos) and the metal concentration in the
organic phase was calculated by mass balance. The extraction and stripping percentage of a metal was
calculated by the following Equations (1) and (2). The error in the extraction and stripping percentage
reported in this work was within ±5%.

Extraction percentage =
Equilbrium mass of metal in the organic

Initial mass of metal in the aqueous
× 100%, (1)

Stripping percentage =
Equilibrium mass of metal in the aqueous

Initial mass of metal in the organic
× 100%. (2)

3. Results and Discussion

3.1. Effect of HCl Concentration on the Extraction Au(III) by Cyanex 272

In general, the acidity of a solution has a great effect on the extraction behavior of the metal ions.
Therefore, it is necessary to investigate the effect of HCl concentration on the selective extraction of
Au(III), by Cyanex 272, in the presence of other noble metal ions. For this purpose, HCl concentration
of the synthetic solutions containing Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV) varied from 0.5 M to 9 M.
During the experiments, the concentration of Cyanex 272 was fixed at 0.2 M. The results in Figure 1
show that the extraction of Au(III) increased slowly, from 80% to 99.9%, as the HCl concentration
increased and remained constant from 5 M to 9 M of HCl concentration. All the other metals, except
Au(III), remained in the aqueous solution at all conditions employed in this work. Our results indicate
that it is possible to extract only Au(III) over Pd(II), Pt(IV), Ir(IV), and Rh(III) in the HCl concentration
range from 0.5 M to 9 M. Since no other metal ions except Au(III) were extracted, scrubbing is not
necessary, which would be of immense value in commercial applications.
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Figure 1. Effect of HCl concentration on the extraction of metals in a HCl solution containing Au(III),
Pd(II), Pt(IV), Rh(III), and Ir(IV). ([HCl] = 0.5–9 M, [Cyanex 272] = 0.2 M, O/A = 1, [Au(III)] = [Pd(II)] =

[Pt(IV)] = [Rh(III)] = [Ir(IV)] = 100 mg/L).

3.2. Effect of Cyanex 272 Concentration on the Extraction of Au(III)

Figure 1 shows that Au(III) was completely extracted by 0.2 M Cyanex 272 when HCl concentration
was higher than 3 M. The effect of Cyanex 272 concentration on Au(III) extraction was investigated in a
5 M HCl solution (see Figure 2). In the course of extraction experiments, Cyanex 272 concentration
varied from 0.01 to 0.25 M. When Cyanex 272 concentration increased from 0.01 to 0.05 M, the extraction
of Au(III) rapidly increased from 42% to 93% and then slowly rose to 99.9% and remained at a constant
value with the further increase of Cyanex 272 concentration. In these experiments, only Au(III) was
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extracted and, thus, it was possible to separate Au(III) from the 4 PGMs present in the solution.
Therefore, 0.2 M Cyanex 272 was selected as the optimum concentration for the separation of 100 mg/L
Au(III) from other metal ions.
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The composition of the anode slimes resulting from smelting depends on the nature of the ores
and the secondary resources. Our data clearly indicates that only Au(III) is to be extracted by Cyanex
272 when the concentration of HCl in the leaching solution containing Pt(IV), Pd(II), Ir(IV), and Rh(III)
is higher than 0.5 M. Therefore, pure Au(III) can be obtained by selective extraction, resulting in a
much-improved efficiency, compared to the reported solvent extraction processes.

In our previous work [29,31], Au(III) concentration was varied from 100 to 1000 mg/L in the
presence of Pd(II) and Pt(IV). Even though the concentration ratio of Au(III) to Pd(II) was varied from
unity to 10, only Au(III) was extracted over Pt(IV) and Pd(II), by Cyanex 272. Moreover, the presence of
some base metals has little effect on the extraction of Au(III), by Cyanex 272, from the leaching solution.
Although 0.2 M Cyanex 272 was selected as an optimum concentration for the selective extraction of
100 mg/L Au(III), the concentration of Cyanex 272 can be adjusted according to the concentration of
Au(III) in the leaching solution because only Au(III) is extracted by Cyanex 272.

In a concentrated HCl solution (>4 M), the predominant species of Au(III), Pd(II), Pt(IV) and
Ir(IV) are supposed to be AuCl42−, PdCl42−, PtCl62−, and IrCl62−, respectively [32–34]. The distribution
of Rh(III) is complicated and depends on the concentration of chloride ions. In a concentrated HCl
solution, Rh(III) exists as either RhCl63− or RhCl5(H2O)2− [35]. Figures 1 and 2 imply that the difference
on the charge densities of the above complexes could not explain the selective extraction of Au(III)
by Cyanex 272 over the 4 PGMs. More fundamental work is needed for the identification of the
extraction mechanism. The probable reaction has been proposed in a previous work as Equation
(3) [29], as follows:

H+ + AuCl4− + 2HAorg = [HAuCl4·2HA]org. (3)

3.3. Stripping of Au(III) from Loaded Cyanex 272

NH4Cl, (NH4)2S2O3 and (NH2)2CS are found to be effective in the stripping of Au(III) from the
loaded Cyanex 272 [29,34]. On the basis of the stability and the cost of these reagents [36], stripping
of Au(III) with NH4Cl and (NH2)2CS was tried. For this purpose, the loaded 0.2 M Cyanex 272
was prepared by contacting the synthetic solution with 5 M HCl. More than 99.9% of Au(III) was
extracted and, thus, the concentration of Au(III) in the loaded Cyanex 272 was around 99.9 mg/L. The
concentration of NH4Cl and (NH2)2CS was varied from 0.1 to 1.2 M and 0.1 to 0.5 M, respectively.
The concentration of the two stripping agents did not affect the stripping percentage of Au(III) (see
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Figure 3). More than 98.5% of Au(III) was stripped by (NH2)2CS, while about 70% of Au(III) was
stripped by NH4Cl, in the experimental range. A previous work reported that Au(III) is completely
stripped by NH4Cl from the loaded Cyanex 272, which contains Sn(II) [31]. Sn(II) can take part in a
redox reaction between Sn(II) and Sn(IV), which facilitates the stripping of Au(III) from the loaded
Cyanex 272.
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3.4. Integrated Procedure

After selective extraction of Au(III) from the other 4 PGMs, Pd(II) can be selectively extracted
from the raffinate with LIX 63, as reported in the separation of Pt(IV) and Pd(II) [29]. Then, Pt(IV),
Ir(IV), and Rh(III) can be sequentially separated by the extraction steps reported in the literature [28].

Figure 4 shows the proposed process for the separation of noble metals from a 5 M HCl solution
containing Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV). The mass balance of the metal ions during
each step is listed in Table 1. First, Au(III) was separated by Cyanex 272 and the loaded Au(III)
was completely stripped by (NH2)2CS. Based on the previous report [28], Pd(II), Pt(IV), Ir(IV), and
Rh(III) were sequentially extracted by LIX 63, TBP, and Aliquat 336 from the Au(III) free raffinate,
respectively. Meanwhile, the stripping of these noble metals was successfully accomplished. Therefore,
the five noble metals in the synthetic solution can be separated in each step. According to Table 1,
the recovery percentage of Au(III), Pd(II), Ir(IV), and Rh(III) was higher than 98% and that of Pt(IV)
was 94%. Considering the recovery percentage and the purity of the respective solution of each
noble metal, the process proposed in this work can be very efficient in the treatment of HCl leaching
solutions of secondary resources containing noble metals. In general, the anode slimes resulting from
electro-refining do not contain base metals. Since only Au(III) was extracted by Cyanex 272 over
Pt(IV), Pd(II), Ir(IV), and Rh(III), this process can be applied to HCl leaching solutions with variable
compositions of Au(III) and the PGMs.
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Stripping: 0.01 M HCl, O/A = 1, 3 stages, % / / 95.7 / /
Raffinate, mg/L / / 1.3 100 100

Ir(IV)
separation

Extraction: 0.03 M Aliquat 336, 5% TBP,
O/A = 1, % / / / 98.1 /

Stripping: 0.3 M HClO4, A/O = 1, % / / / 99.9 /
Raffinate, mg/L / / / 5.7 100

Results
Extraction percentage, % 99.9 99.8 1 98.6 1 98.1 1 99.9
Stripping percentage, % 99.9 99.9 95.7 1 99.9 99.9
Recovery, % 99.8 99.7 94.4 98.1 99.9

1 Pd(II) extraction: 2 stages; Pt(IV) extraction: 2 stages, stripping 3 stages; Ir(IV) extraction: 2 stages.

Further work needs to be done to elucidate the extraction mechanism of Au(III) by Cyanex 272.
Moreover, long term operation of the solvent extraction by employing real leaching solutions of anode
slimes is necessary to verify this process.
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4. Conclusions

A solvent extraction process was developed for the separation of noble metals from concentrated
hydrochloric acid solutions containing Au(III), Pd(II), Pt(IV), Rh(III), and Ir(IV). In the process proposed
in this work, Au(III), Pd(II), Pt(IV), Ir(IV), and Rh(III) were sequentially separated by solvent extraction.
The optimum conditions for the extraction and stripping of the metal ions from the respective extractants
were reported for a synthetic solution with 5 M HCl, where the concentration of all the metal ions was
fixed at 100 mg/L. Successive employment of Cyanex 272, LIX 63, TBP, and Aliquat 336 resulted in a
raffinate containing only Rh(III). The mass balance for the whole process indicated that the recovery
percentage of the noble metal ions, except Pt(IV), was higher than 98%. This process could be applied
to the recovery of noble metals with high purity from the hydrochloric acid leaching solutions of the
secondary resources.
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