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Abstract: Achieving emulsion stability in the petroleum industry is a major challenge due to several
problems encountered in the oil refining process, such as corrosion in equipment, high-pressure drops
in pipelines, and catalyst poisoning in upstream facilities. Thus, several methods are applied for
emulsion treatment and chemical treatment using surface-active agents, a fundamental method in
the petroleum industry. The present work investigated the performance of a non-ionic surfactant in
separating water in a crude oil emulsion via the bottle test technique. Then, a Fractional Factorial
Design (2K−1) was used to characterise the effect of significant variables. In particular, a Pareto chart
was employed and factors such as demulsifier dosage, toluene concentration, pressure, sitting time,
and temperature were investigated. Accordingly, the parameters applied were further analysed using
a Central Composite Design (CCD) based on the Response Surface Method (RSM). The experimental
results based on analysis of Variance (ANOVA) show that demulsifier dosage, temperature, and
sedimentation times were the main variables affecting the dehydration process, with the highest
F-values being 564.74, 94.53 and 78.65 respectively. The increase in the surfactant dosage before critical
concentration, temperature and sitting time leads to boosting dehydration efficiency. In addition,
a mathematical model was established for the variables, with a coefficient of determination value of
0.9688. Finally, numerical optimisation was performed on the variables and the results show that
the optimal values are 1000 ppm, 15.5 mL, −400 mmHg, 120 min, and 90 ◦C, for demulsifier dosage,
toluene concentration, pressure, sitting time, and temperature, respectively.
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1. Introduction

A major challenge that the oil and gas industry faces is the presence of more than 80% water during
the production process on oil and gas platforms. This water naturally comes from two sources—the
reservoir and from being injected during hydrocarbon extraction [1]. Most of the water in the wells is
produced as an emulsion in the surface facilities, the pipelines, and the wellbore. The percentage of
water produced from wells increases with the increasing age of wells [2]. The physical and chemical
characteristics of the water produced affect the hydrocarbon composition, the water injection history,
and the geographical location of the oil reservoir geology [3]. In addition, the emulsion contains organic
and inorganic compounds (Na+, Cl−, CO3

2−, SO4
2−, HCO−, etc.), chemical materials used during

the extraction process, and heavy metals (Zn, Cd, Pb, Cu, etc.). Accordingly, all these compounds
cause serious problems in petroleum refineries such as fouling, corrosion in equipment and pipelines,
and toxicity of catalysts in the upstream facility [4,5]. Thus, emulsions should be divided into two
phases—water and oil [6]. Crude oil contains several hydrocarbon compounds such as aromatic
compounds, alkenes, carboxylic acids, phenols, naphthenes, etc. Asphaltenes are considered the
heaviest components in the mixture. Asphaltenes stabilise the interfacial phase between the water
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and oil phases by creating a protective layer and strengthening the stability of the interfacial film [7].
However, there are many techniques that can be used for the dehydration of crude oil from water.
The chemical demulsification method is considered a common method that employs surface active
agents (surfactant) as chemical additives [6,8]. The main challenge in the petroleum refining process is
to identify the most effective variables to destabilise water-in-crude oil emulsions. Recently, many
studies on chemical demulsification have been conducted. Wolf-Pet et al. [9] used chemical demulsifiers
to break up water-in-oil emulsion with a 50:50 (v/v) mixing ratio. The demulsifiers were based on
natural Alginite. The study recycled the Alginite via thermal treatment. The results showed that
the emulsion was successfully broken down into two phases. By adding 0.5 wt% of demulsifiers,
the viscosity of emulsion decreased and the size of water droplets increased. Recycling the Alginite
had a negative effect, though; it reduced the efficiency of the demulsifier in comparison with the
native compounds. Wanli Kang et al. [10] studied the demulsification efficiency of non-ionic surfactant
in water in light crude oil. The results showed that the demulsifiers significantly destabilised the
emulsion and enhanced the dehydration process. Abdurahman et al. [11] investigated the influence
of microwave heating in destabilising a water-in-oil emulsion. The results showed that microwave
radiation had a significant effect on demulsification performance. Kedar et al. [12] investigated the
influence of salts, several demulsifiers, and the dynamic interfacial tension (DIFT) of the interfacial film
between water and crude oil. The result showed that salts more effectively reduced the interfacial film
tension, accelerating the demulsifier molecule migration towards the interface film and enhancing the
chemical recovery of crude oil. Maaref et al. [13] focused their research on the influence of seawater
salinities, investigating water from the Persian Gulf, the Red Sea, the Mediterranean Sea, and the North
Sea on the stability of a water-in-crude-oil emulsion. It was concluded that increased salt concentration
in water led to reduced stability of the emulsion, due to the rising rate of coalescence and aggregation
of water droplets. Rajak et al. [14] studied the influence of pH, demulsifier dosage, temperature, and
sedimentation time on dehydration performance. Accordingly, their result showed that increased sitting
time, pH, demulsifier dosage, and temperature broke up emulsions more effectively via improvement
in water droplet coalescence. Fávero et al. [15] designed and created a new approach to study the
asphaltene deposition mechanism. They concluded that the new method helped them understand
asphaltene deposition in a viscous flow system at nano-metre scale. Painter [16] investigated the
ability of several solvents in dissolving soluble asphaltenes; the selection or classification of the
solvent was based on the hydrogen bonds in the solvent or its capability to self-associate as well as its
polarity. The experimental results showed that toluene had the highest rate in dissolving asphaltene,
as compared to other solvents. Nastaran Hazrati et al. [17] investigated the effect of ionic liquids in
the break-up of a water-in-oil emulsion. Full Factorial Design was used for screening and optimising
three variables, including anion type, alkyl chain length, and surfactant dosage based on three levels.
They concluded that the demulsification performance was increased with increasing demulsifier
dosage, length of alkyl chain, and hydrophobicity of ionic liquids. Sara Nageeb et al. [18] used Full
Factorial Design for screening several factors. Anil Kumar et al. [19] used Factorial Design for selecting
significant parameters in the demulsification of water-in-crude oil emulsion using a green emulsion
ionic liquid membrane. Biniaz et al. [8] investigated the effect of demulsifier concentration using three
ionic surfactants. The pH, temperature, water percentage from dehydration performance, modelling,
and optimal value were determined using Central Composite Design (CCD) based on Response Surface
Methodology (RSM). The results showed that the maximum separation of water could be achieved
with high temperature and pH close to neutral value. Hussain et al. [20] studied the influence of
surfactant-polymer, alkali-surfactant, and alkali polymer demulsifier on the destabilisation of the
water-in-crude-oil emulsion. They concluded from the results that the interaction between alkali and
polymer surfactant had the highest impact on the demulsification performance. Fouladitajar [21]
applied CCD based on RSM to design the modelling process and optimise the microfiltration of gas
in an oil-in-water emulsion. Roshan et al. [22] investigated the effect of different surfactants on the
dehydration process of water-in-crude oil emulsion using the bottle test technique. CCD was applied
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based on RSM to establish mathematical models for optimisation, while Analysis of Variance (ANOVA)
was used to conduct the statistical analysis. The experimental result showed that all surfactants had a
significant impact at high temperature and dosage of surfactant. Thus, RSM was utilised for designing
the experimental, analysing the parameters dependent on analysis of variance, and developing the
quadratic polynomial formal based model to study the influence of parameters on response and
optimisation of the condition of process [23,24].

Moreover, the non-ionic surfactant is less used in demulsification of water in oil emulsion in
comparison with other types of surfactant [2], while the properties of non-ionic surfactant are very
promising. Glycerol based on non-ionic surfactant with the hydrophilic end do not have any negative
or positive charge, do not ionise in aqueous solution and therefore do not have a corrosion effect,
because of no counter ion and natural neutral. Also, glycerol can apply to different types of crude oil
because it is less sensitive to electrolytes and change in pH, which makes it suitable for use with many
sorts of crude oil, including high salinity and acidic crude oil [25,26]. Also, glycerol can be used in
demulsification water in oil emulsion in small dosage, which make it very economical in comparison
to ionic surfactant, as well as contributing low toxicity to the environment [27]. By comparing Glycerol
with other non-ionic surfactants, such as octyl phenol 9-10 ethylene oxide, it is as valuable as any other
non-ionic surfactant and has a good surface activity [28]. The non-ionic surfactant is characterised by
its capability of dispersing in water and its ability to form micelles in water; its thermal stability and
its higher density lends well as a surface active agent in emulsion [29,30]. Glycerol based alcohol is
both hydrophobic and lipophilic, making it preferential for diffusing in the interfacial film between the
two phases; additionally, the glycerol is a hydrophilic surfactant (water soluble) and this gave it the
capacity to make hydrogen bonds with water droplets and force them to link together [26].

Moreover, by conducting an in-depth literature review, it is found that there is still a significant gap
in information for using the other variables with demulsifier that can be used to enhance the oil recovery,
depending on resolving the basic reason for water droplets stability in oil (asphaltenes) and providing
the best condition for the demulsifier to achieve maximum separation in a short time. Additionally,
asphaltenes in crude oil are the most problematic components through absorbing the molecules on the
interface between oil and water which makes a high rigid film. The highest level of stability emulsion
can reach is when the asphaltenes are at precipitation point or close to it [31]. As a result, reduction in
asphaltene precipitation is a promising technique to enhanced oil recovery. Consequently, this study
investigates this hypothesis by using variables that reduce asphaltenes precipitation on the interfacial
film between two phases with a demulsifier to achieve high demulsification efficiency in a short time.
To the best of our knowledge, we could not detect a study on asphaltenes film with using a demulsifier,
which can be a promising technique in maximising the separation efficiency of water from crude oil
and using Glycerol as a demulsifier. Finally, according to previous literature, it can be concluded that
temperature, sitting time, toluene solvent, and demulsifier dosage have a significant impact on the
demulsification of a water-in-oil emulsion. In addition, this study also aims to investigate the pressure
effect on the dehydration process due to a lack of studies in this area [32]. The present work studies the
influence of demulsifier dosage, toluene concentration, sitting time, pressure, and temperature on the
demulsification of water-in-oil emulsion using the bottle test technique. In addition, Design Expert
software was used following two steps—first, the significance of parameters was characterised using a
Pareto chart. Second, a mathematical model was established to optimise the significant parameters,
while the statistical analysis was conducted using CCD based on RSM. The influence of variables on
the output response was also studied via CCD based on RSM.

2. Material and Methods

2.1. Materials

The chemicals used in this study were supplied by Laboratory and Scientific Enterprise Company.
The purity and analytical grade of the chemicals exceeded 99%. The viscosity, density, and water
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content of the synthetic oil used in this study were measured according to ASTM D445, ASTM D70,
and ASTM D4007, respectively. Table 1 shows the characteristics of the synthetic oil. The American
Petroleum Institute (API) of synthetic oil was calculated according to Equation (1).

API =
141.5

Speci f ic Gravity
− 131.5 (1)

Table 1. Properties of applied synthetic oil.

Crude Oil Properties Measure
Specific gravity at 15 ◦C (kg/m3) 0.843

Viscosity at 15 ◦C (cSt) 3.381
Asphaltenes (wt.%) 0.5%

Density at 15 ◦C 0.842
API gravity at 15 ◦C 36.4

2.2. Demulsification Procedures

The bottle test technique is considered a common method for studying the performance of
demulsifier efficiency in breaking water-in-oil emulsion into two phases [33]. In this study, brine water
was mixed with synthetic oil using a homogeniser (S STECTM, ST-H500) for five min at certain speeds
(15000–17500 rpm) and then placed in a sonicator (Qsonica, Q500, Connecticut, USA) for five minutes.
The percentage of brine water in the emulsion was 25% and the salt concentration in the water was 3%
(NaCl). The mixing ratio of water to synthetic oil was 1:3 )v/v). Asphaltenes were added as a natural
interfacial active compound in the synthetic oil to stabilise the interfacial film between the two phases.
This was done by adsorbing the polycyclic aromatic and aromatic hydrocarbons on the water–oil
interface, rendering it difficult to break up the rigid film [34]. The stability of emulsion was tested
by storing the emulsion at room temperature for one day; no sign of water separation was noticed
at the end. Next, 30 mL of the prepared emulsion was mixed with toluene and surfactant using a
shaker (Stuart®, orbital shaker SSL1, Staffordshire, UK) for ten min and injected into a 50 mL graduate
vacuum tube. The tube was discharged from air using a vacuum pump (Edwards, RV12, Florida, USA)
and put in a water bath, and readings were taken at different times. Furthermore, the experiments
were designed with variations in the variables such as surfactant dose, toluene concentration, pressure
drop, temperature, and sitting time. The performance efficiency of the demulsifier in breaking the
emulsion was calculated following Equation (2), where DE is the demulsification efficiency, v is the
separated water, and vo is the initial volume of water [33]:

DE =
V

VO
∗ 100 (2)

2.3. Experimental Design

Numerical designs of experiments were used in this work to perform numerical simulations of
the demulsification process in order to enhance and optimise the variables, so that the time and cost of
the process could be reduced and the influence of variables on the response (demulsification efficiency)
studied [35]. Design-Expert (V11.0.0, Stat-Ease Inc., Minneapolis, MN, USA) software was used for
optimising the chemical and physical variables including demulsifier dose, toluene concentration,
pressure drop, temperature, and sedimentation time. Two-level Factorial Design (2k−1) was used with
k representing the number of variables, to screen and investigate the significance of parameters in
two levels for each parameter. The distinctive properties of the two-level Factorial Design include a
reduced number of experiments compared to the traditional method and the characterisation of many
variables in a specific range [36]. Also, the output response of the system designed may be influenced
by numerous factors, and it will be difficult or impossible to control and identify the small effect of
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each variable. As a result of that, it is important to screen variables for determining which factors and
their interactions have a significant influence on the response. The fractional two-level designs utilised
for this purpose is an economical and efficient tool [37]. Also, the utilised fractional factorial design
helps in reviewing the raw material, critical steps, the whole system, and equipment, as well as the
possibility to make a change in the system in a short time. The data obtained were analysed by the
following Equation (3):

y = βo

k∑
x=1

βxZx + α (3)

where α, Zx, βx, βo represent the error in the experiments, variables, linear factors coefficients, and
constant term respectively, while k is the number of parameters. Additionally, the most advantage of
using fractional factorial design for estimating the significant influence of variables and their interaction
is by reducing the number of experimental to the minimum level, which makes it very economical
design in RSM, as explained in the literature [37,38]. In addition, RSM was used in this research,
as it is considered the most powerful tool for optimising, predicting, modelling, and designing the
experiments for different parameters [39]. In addition, the main reason for using RSM is to find the
optimal value of different variables to achieve maximum demulsification of water-in-oil emulsion [40].
CCD is considered a common and popular RSM design used for predicting the quadratic and linear
influence of variables on the output response [40,41]. Figure 1 illustrates the steps for applying CCD
based on RSM for parameter optimisation.
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3. Results and Discussion

3.1. Two-Level Factorial Design

Fractional Factorial Design was used to characterise the significant effects of demulsifier dose,
pressure drop, temperature, sitting time, and toluene concentration on the demulsification process and
a Pareto chart at a high level (+1) and a low level (−1) was employed, as illustrated in Table 2.

Table 2. Investigative variables and levels of the non-ionic surfactant in Factorial Design.

Parameters Factor Terms
Coded Levels

−1 +1
Demulsifier dose (ppm) A 0 1000

Pressure (mmhg) B −630 0
Toluene concentration (mL) C 6 16

Sitting time (min) D 10 120
Temperature (◦C) E 39 95

Sixteen experimental designs were generated according to the formula 2K−1 where k is the number
of factors in the experiment. In addition, all experiments were performed randomly to help avoid any
influences on the experiment [42]. A Pareto chart was used to characterise the significance of variables
and to select the most significant variables on the output response. The Pareto chart depends on the
standard deviation to estimate the sampling errors of variables. Two important signs in the Pareto
chart are the Bonferroni limit of 8.57517 and the t-value limit of 3.18245 as show in Figure 2. Variables
with coefficients above the Bonferroni limit are considered significant factors. These were found to
be the terms A, D, and E as clear in Figure 2. Meanwhile, the coefficient below the t-value limit is
insignificant. The terms DE, B, BD, AD, AB, and C fell between the Bonferroni limit of 8.57517 and the
t-value limit of 3.18245 and are described as significant coefficients as show in Figure 2 [36,42,43].
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Accordingly, all parameters, i.e., surfactant dose, pressure drop, temperature, toluene
concentration, and sitting time were found to have a significant effect in a specific range. All parameters
were used for further analysis using CCD, as it is considered the most powerful tool for establishing a
quadratic model and for optimising several parameters compared with other designs [44].

3.2. Statistical Analysis

RSM has attracted numerous researchers’ interest in the last two decades [39]. RSM is a combination
of statistical and mathematical techniques used to establish mathematical models, experimental design,
parameter optimisation, and to determine the influence of variables and their interactions on the
response. RSM examines the accuracy of mathematical models or the design by comparing results
from the model with the actual result from the experiment [45,46]. Table 3 shows the independent
factors including surfactant dose (A), toluene concentration (B), pressure (C), temperature (D), and
sitting time (E), as applied in CCD based on RSM.

Table 3. Experimental levels and range of independent parameters.

Variables Terms
Coded Levels

Unit
−1 0 +1

Demulsifier
dosage A 0 500 1000 ppm

Toluene
concentration B 6 11 16 mL

Pressure C −630 −315 0 mmHg
Temperature D 39 67 95 ◦C

Time E 10 65 120 Minutes

All factors were examined at a high level, a low level, and at four central points. The high, low,
and central point levels were presented as 1, −1, and 0, respectively, as shown in Table 3. The total
number of experiments was calculated using Equation (4) [39]:

Number o f experiments = 2K + 2K + Co (4)

where k is considered as the number of factors and Co is the central points. The experimental design
was generated with 46 experiments, as shown in Table A1. Quadratic modelling for higher accuracy
was used to correlate between independent and dependent factors [46]. Also, the experimental data
were analysed using Equation (5):

Y = βo +
k∑

i=1

βixi +
k∑

i=1

βiixi
2 +
∑

i
i< j

∑
j

βi jxix j + ε (5)

where the separation efficiency of water or output response appears as Y. In addition, βo, βi, βii, βij, and
ε represent the constant coefficient, slope influence of input variables, quadratic influence, cross output
term, and statistical error, respectively. Meanwhile, the parameters are denoted as xi [8]. The result
from CCD is shown in Table 4. These were fitted to a square root second-order polynomial response
using Design-Expert software, as per the following regression Equation (6) [47].

y = (6.34005 + 2.49028A + 0.507862B + −0.304069C + 1.01883D + 0.929355E
+ 0.254426AB + 0.42002AD + 0.253886BD + 0.516099DE

+ − 1.65511A2 + −0.787501C2 + −0.737843E2)
1
2

(6)
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Table 4. ANOVA result for CCD.

Source Sum of Squares df Mean Square F-Value P-Value
Model 383.02 12 31.92 85.49 <0.0001 Significant

A-Glycerol 210.85 1 210.85 564.74 <0.0001
B-Toluene 8.77 1 8.77 23.49 <0.0001
C-Pressure 3.14 1 3.14 8.42 0.0066

D-Temperature 35.29 1 35.29 94.53 <0.0001
E-Time 29.37 1 29.37 78.65 <0.0001

AB 2.07 1 2.07 5.55 0.0246
AD 5.65 1 5.65 15.12 0.0005
BD 2.06 1 2.06 5.52 0.0249
DE 8.52 1 8.52 22.83 <0.0001
A2 7.87 1 7.87 21.08 <0.0001
C2 1.78 1 1.78 4.77 0.0361
E2 1.56 1 1.56 4.19 0.0487

Residual 12.32 33 0.3734

Lack of Fit 12.18 30 0.4059 8.55 0.0505 Not
significant

Pure Error 0.1424 3 0.0475
Correlation Total 395.34 45

R2 0.9688 Predicted R2 0.9355

Adjusted R2 0.9575 Adequate
Precision 33.3811

The five factors, i.e., surfactant dose, toluene concentration, pressure drop, temperature, and
sitting time are denoted as A, B, C, D, and E, respectively, while the response or demulsification
efficiency is denoted as y. The minus and plus symbols that appear in the model (Equation (5))
show that the variables have a positive or negative influence on the demulsification process [47].
Accordingly, the significance of the factors can be confirmed using P-value and F-value, which are
statistical expressions used to indicate the significance of the model and variables. The models or
variables with a P-value < 0.05 are considered significant with a 95% confidence level [8]. Thus, the
result of ANOVA in Table 4 shows that all the variables A, B, C, D, E, AB, AD, BD, DE, A2, C2, E2 are
significant model terms in the demulsification process. The model obtained an F-value of 85.49 and a
P-value of 0.0001, implying that it is significant [8]. In addition, increasing the F-value of variables will
also increase the influence of variables on the response [8]. The result in Table 4 shows that surfactant
dose has the most significant influence on dehydration efficiency with the highest F-value (564.74),
while pressure has the least influence on the output response with an F-value of 8.42.

The ANOVA result shows that the coefficient of determination, R2, for the model is 0.9688, which
means that the quality of the model is 96.88%. The adjusted R2 for the model is 0.9575, which shows
that there is a good agreement between the results predicted by the regression design and experimental
data. A reasonable agreement between the adjusted R2 and predicted R2 indicates an adequate model,
as shown in Table 4 [48].

Furthermore, it is crucial to ensure that the selected design gives sufficient approximation of the
results to that of the actual experiment. Subsequently, diagnostic plots are one of the techniques used
for this purpose, as illustrated in Figure 3a,b. All plots in Figure 3 represent a comparison of results
from the model and the actual experiment [49]. The plots in Figure 3 represent the experimental runs
that were dispersed randomly across a constant range of residuals. The plot indicates that the constant
variance assumption and model are sufficient. Figure 3b is the most important graph, as it draws a
comparison between the actual result and the predicted result from the design using Equation (5);
the points gathering around a straight line represent the output response. The graph shows good
agreement between the predicted and actual values. Also, the adjusted R2 (0.9575) confirm the results in
the graphs of Figure 3. The value of the adjusted R2 is close to 1, which shows high agreement between
the actual and predicted results [49,50]. Meanwhile, Figure 3c shows the relationship between the
predicted values against the actual values to determine the standard deviations for normal probability.
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All results in the graph show underlying errors and the graph indicates normality for the experimental
result. Finally, the residuals versus experimental runs were used to analyse the goodness-of-fit of the
model using an internally studentised construction, as shown in Figure 3d. The difference between the
fitted value under the theorised model and the response measurement showed a value represented by
the residual. Meanwhile, the reliability of experimental data increased with smaller absolute value and
the result showed that the model prediction was accurate [51,52].Processes 2019, 7, x FOR PEER REVIEW 9 of 18 
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3.3. Parameter Influence and Their Interaction with Demulsification Efficiency

Three-dimensional graphs were generated using CCD based on RSM to study the influence of
variables and their interaction on the output response. Figure 4a,b show the effect of demulsifier
dosage, toluene solvent, temperature, and their interaction on separation efficiency, while other factors
were fixed at constant levels. A non-ionic demulsifier was added to the emulsion in the range of
0–1000 ppm. In addition, at a low dosage of demulsifier of less than 300 ppm, the effect of surfactant
on separation efficiency was limited, but with an increasing dosage in the emulsion, the influence of
surfactant increased. The reason behind the rising influence of surfactant with increasing dosage of
surfactant in the emulsion is the breaking mechanism of the water-in-oil emulsion. The demulsifier
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atoms are divided into two parts—hydrophilic and lipophilic; the lipophilic part dissolves in the oil
phase and the hydrophilic part dissolves in the water phase. Therefore, with increased concentration of
demulsifier in the emulsion, the deposition of surfactant molecules on the water–oil interface increases
until a sufficient extent was reached, such that the film between the interface thinned until it collapsed
and water droplets coalesced; this thereby increased the separation efficiency, as shown in Figure 4 [27].
However, with increased surfactant dosage to approximately above 800 ppm, the efficiency of water
separation is reduced. This is because the surfactant molecules started acting as an emulsifying agent
after the critical aggregation concentration is reached [8].
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Moreover, the most effective factor in stabilising emulsions is the asphaltene content in crude
oil. Asphaltenes establish a protective layer that covers the water droplets with a rigid film; therefore
preventing water droplets from coalescing [53]. To address this issue, toluene was added to dissolve
the protective layer of asphaltene and enhance the emulsion destabilisation process. Toluene is a
good solvent for dissolving asphaltene [31]. Figure 4a shows the significant influence of toluene on
destabilising the water-in-oil emulsion through dissolving the protective layer of asphaltene that covers
the water droplets. Toulene ruptures the interfacial film between the water and oil phases leading
to enhanced water droplet coalescence and increased water separation efficiency. At the same time,
the result in this section shows good agreement with other research [54].

Figure 4b shows the influence of temperature on dehydration efficiency. In addition,
the mechanisms of temperature in enhancing the efficiency of the demulsification of water in oil
are based on reducing the viscosity of oil (continuous phase) and reducing the interfacial viscosity
of water (dispersed phase), which will lead to accelerated water sinking. The other effects of
increasing temperature on destabilising the emulsion are the enhancement of the interaction between
asphaltene–water and asphaltene−asphaltene molecules by increasing the functional groups in
asphaltene and decreasing the size of aggregates in the asphaltene, leading to weakened hydrogen
bonding and increased dilatational viscoelasticity. Thus, water droplet coalescence is increased with
increasing temperature [55]. It is concluded from Figure 4b that increasing the temperature will increase
the efficiency of the dehydration process, which is consistent with the ANOVA results listed in Table 4.

The interaction between experimental parameters is illustrated in 3D graphs. According to the
ANOVA result in Table 4, the terms AB, AD, BD, and DE are significant model terms. The highest
F-values were obtained by DE, AD, and AB, which also had the highest effect on response.
Figure 4a shows the interaction between surfactant dosage and toluene concentration with the
other parameters fixed at a constant level. It is obvious that surfactant dosage has a significant effect on
dehydration efficiency, with the maximum influence occurring approximately at the critical aggregation
concentration of 800 ppm. The toluene concentration has an insignificant effect on the response at
low surfactant dosage. The toluene influence rises with increasing demulsifier dosage. Figure 4b
shows that dehydration efficiency depends more on surfactant dosage, as well as the optimal condition
of demulsification obtained approximately at a critical aggregation concentration of approximately
800 ppm of surfactant dosage and at high temperature. Additionally, Figure 4b shows that at low
temperatures, e.g., 39 ◦C, the influence of surfactant is very low, but the effect of surfactant concentration
increases with increased temperature until a maximum effect is reached at 95 ◦C.

Figure 5a represents the effect of sitting time and pressure on the efficiency of surfactant in
destabilising the emulsion. The sedimentation time is found to have a significant effect on breaking
the emulsion after the addition of surfactant. The influence of time is represented by the availability
of enough time for the thermodynamic phenomenon to occur, including sedimentation, flocculation,
coalescence of water droplets, and phase separation [14]. Thus, Figure 5a shows that with increasing
time, oil recovery improves because increasing time increases the probability of water droplet
coalescence and enhances dehydration efficiency.

Figure 5a shows the influence of pressure on separation performance, with other parameters
fixed at a constant level. Thus, dropping the pressure to −630 mmHg increased the demulsification
efficiency because the reduced pressure destabilised the surface-active compounds on the water–oil
interface and increased the capability of water droplets to coalesce and, in turn, raised the water
separation efficiency [56]. Figure 5b shows the interaction effect between temperature and sitting time
on the separation performance of Glycerol. Thus, the interaction between temperature and time is
more interconnected with the output response. In addition, it is clear that with rising sitting time and
temperature, the efficacy of breaking emulsion increases to reach the maximum influence at a high
temperature and at approximately 80 min.
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Figure 5. Three-dimensional plots representing the effect of: (a) time and pressure and (b) temperature
and time on the dehydration process.

One of the objectives of this study is to find the optimal condition to achieve maximum efficiency
of dehydration water, as well as numerical optimisation, which is used to navigate in the variable space
for the highest trade-offs for achieving the goals. The minimise, target, maximise and within range
were to be the possible goals. The desirable goal in dehydration efficiency was put on maximising
value for maximum efficiency of breaking the emulsion, as well as the desirability function combined
with goals, ranging from zero to one. The CCD based on RSM aims to increase this function by starting
at a random point. Figure 6 demonstrates the predicted optimal values for maximum dehydration
efficiency, as well as the desirability for the variables and response shown in Figure 7. Figure 6a–c
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show the optimal condition for maximum dehydration; in Figure 6a the optimal value for surfactant
dose is shown and the temperature it is approximately above 800 ppm and 87 ◦C. Moreover, for
pressure and toluene, it is about −400mmHg and 15.5 mL, while for time it is above 100 min as
shown in Figure 6b,c. The input variables were selected depending on desirability as shown in
Figure 7. As a result, the optimum condition for the five variables, i.e., surfactant dosage, toluene
concentration, pressure drop, temperature, and sitting time was determined using CCD based on RSM.
The emulsion was totally separated into two phases using a Glycerol agent. In addition, the predicted
optimal condition to achieve maximum separation (approximately 99.99%) of water was 1000 ppm,
15.5 mL, −400 mmHg, 90 ◦C, and 120 min for surfactant dosage, toluene concentration, pressure drop,
temperature, and sitting time, respectively. At the same time, the optimal condition was retested again
to measure the difference between the predicted reading from the model and the actual result from
the bottle test. The result shows that the percentage error between the predicted and actual result for
separation efficiency was very small, i.e., less than 4%.
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4. Conclusions

In this research, the performance of a non-ionic surfactant, namely Glycerol, as a novel
surface-active agent was studied in the demulsification of a water-in-oil emulsion. A bottle test
technique was applied to investigate the performance of the demulsifier under different conditions.
A Full Factorial Design was used to screen and select the significant parameters, i.e., demulsifier
dosage, pressure, sitting time, temperature, and toluene concentration. Then, the significant variables
were applied in CCD based on RSM for the experimental design, to establish the mathematical models,



Processes 2019, 7, 382 15 of 18

parameter optimisation, and to find the optimal condition for the maximum separation of water.
Therefore, a quadratic model was developed to study the influence of variables on the output response,
while ANOVA was used to evaluate the accuracy of the model. In addition, the coefficient of variation,
predicted, and adjusted R-squared were all in the acceptable range. The experimental result showed
that surfactant dosage and sitting time were the most significant parameters affecting the dehydration
process. The optimal value to achieve the highest efficiency of breaking water-in-oil emulsion was
the demulsifier dosage, toluene concentration, pressure, sitting time, and temperature of 1000 ppm,
15.5 mL, −400 mmHg, 120 min, and 90 ◦C, respectively.
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Appendix A

Table A1. Experimental design results for Glycerol.

Input Factors
Run A B C D E

Response (DE)

1 1 1 −1 1 1 100.00
2 0 0 0 0 0 44.00
3 −1 1 −1 −1 −1 0.00
4 −1 −1 −1 −1 −1 0.00
5 0 0 0 0 0 41.33
6 −1 1 1 −1 −1 0.00
7 0 0 0 0 −1 15.33
8 1 1 1 −1 −1 14.67
9 1 −1 1 1 1 50.67

10 1 1 −1 1 −1 56.67
11 0 0 1 0 0 22.00
12 1 −1 −1 −1 1 23.10
13 1 −1 1 −1 −1 8.40
14 −1 1 −1 1 1 16.00
15 −1 1 −1 −1 1 1.33
16 −1 1 1 −1 1 0.00
17 −1 −1 1 1 −1 0.00
18 −1 1 1 1 −1 0.00
19 1 −1 1 −1 1 20.00
20 0 0 0 0 0 37.33
21 −1 1 1 1 1 4.10
22 −1 −1 −1 −1 1 0.00
23 1 1 1 1 −1 31.33
24 0 0 0 −1 0 17.87
25 0 1 0 0 0 56.67
26 0 0 0 1 0 63.33
27 1 −1 −1 1 1 56.93
28 1 0 0 0 0 60.00
29 1 1 1 −1 1 22.67
30 −1 −1 1 −1 −1 0.00
31 −1 −1 −1 1 1 4.00
32 −1 −1 1 −1 1 0.00
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Table A1. Cont.

Input Factors
Run A B C D E

Response (DE)

33 1 1 −1 −1 −1 18.00
34 −1 −1 −1 1 −1 0.00
35 −1 −1 1 1 1 3.47
36 0 −1 0 0 0 25.33
37 0 0 0 0 0 40.00
38 1 −1 1 1 −1 17.33
39 0 0 0 0 1 56.67
40 1 1 1 1 1 90.60
41 −1 1 −1 1 −1 0.00
42 −1 0 0 0 0 3.47
43 1 −1 −1 −1 −1 13.33
44 0 0 −1 0 0 44.27
45 1 1 −1 −1 1 26.67
46 1 −1 −1 1 −1 20.53
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