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Abstract: A recently proposed moving-boundary model for food isothermal dehydration was applied
to analyze the dehydration kinetics of ellipsoidal cocoa beans, characterized by a moderate shrinkage
and a non-uniform initial distribution of water content between the core and the shell of the bean.
The aim is to predict the influence of air velocity and non-uniformity of the initial water distribution
on the dehydration rates, as well as the temporal evolution of the water content in the core and
in the shell and of the characteristic lengths of the ellipsoidal bean. The model proved capable of
accurately describing the two-phases dehydration process: an initial fast dehydration of the shell,
characterized by higher dehydration rates, followed by a slower dehydration of the core, characterized
by a linear relationship jd = δ(T)Xr between the dehydration rate jd and the moisture ratio Xr.
A shortcut method to estimate the effective water diffusivity D is also proposed, deriving from the
basic observation that the asymptotic exponential behaviour of the dehydration curve Xr(t) for an
ellipsoidal bean coincides with that of an equivalent sphere, with the same surface-to-volume ratio.
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1. Introduction

The cocoa beans extracted from the fruit of the cocoa tree (Theobroma cacao, see Figure 1) are the
raw material for chocolate production [1]. Cocoa beans are usually subjected to fermentation and
drying [2–6]. The principal aim of drying is to reduce the moisture content, the main culprit of bean
spoilage due to bacteria, yeast, and mould growth. The drying operation can be provided by two
methods: natural drying [7], when cocoa beans are spread on a support and exposed directly to sun,
or artificial convective drying [3], in which cocoa beans are placed in a dryer and exposed to an air
flow with controlled velocity, temperature and humidity. The main drawbacks of natural drying are
connected to weather unpredictability which could cause prolonged drying duration and products’
spoilage whereas the advantages of artificial drying are paid with high energy and plant costs [5,6].

The cocoa fruit are usually ellipsoidal in shape and the internal structure consists of a central core
surrounded by a thin shell [8], representing about 20% of the total mass of the bean [9,10]. The water
content in the core and the shell can be very different and this may have a strong influence on the
dehydration kinetics that is accompanied by a moderate volume reduction (shrinkage), about 30% of
the initial volume.

Mathematical modeling of cocoa bean’s drying kinetics can be a useful tool to identify the best
operative conditions, in the case of artificial drying, or to estimate the optimal drying time, in the case
of natural drying.
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Figure 1. Cocoa fruit (a) and fermented Amazonian cocoa bean (b).

Few attempts were made, in the recent literature, to model the dehydration kinetics of cocoa
beans in all its complexity related to the ellipsoidal shape of the bean (intrinsic 3-d problem [6,11]),
to the volume shrinkage [12] and to the necessity to account for mass transfer resistance at the solid/air
interface [6,11].

The general objective of this work is to apply the moving-boundary model for food isothermal
dehydration, recently proposed by Adrover et al. [13,14], to analyze and characterize the
dehydration kinetics and shrinkage of cocoa beans, starting from the experimental data reported by
Herman et al. [9,10] who have recently published the results of an extensive experimental campaign
on fermented Amazonian cocoa beans. In [9,10], Herman et al. investigate the temporal evolution,
during convective drying, of the water content in the core and the shell of fermented Amazonian cocoa
beans, in order to better characterize the drying kinetics and to investigate the influence of operating
parameters, namely the air velocity and the drying temperature.

The moving-boundary model by Adrover et al. [13,14] was already successfully applied to
describe the dehydration kinetics and shrinkage of different food materials and different sample
shapes, e.g., eggplant cylindrical [14] and discoidal samples [15], chajote slices [16], potatoes sticks [14]
and square slices [13].

In this work, the moving-boundary model is applied to 3-d ellipsoidal beans, accounting for the
specific internal structure of the bean (core and shell), the non-uniformity of the initial water content
and the volume shrinkage in order to better understand and to accurately describe the two-phases
dehydration process of cocoa beans, as observed by Herman et al. [9,10]: an initial fast dehydration of
the shell, characterized by higher dehydration rates, followed by a slower dehydration of the core,
characterized by a linear relationship between the dehydration rate jd and the moisture ratio Xr.

The article is organized as follows. In Section 2, a review of the morphological and physical
parameters of fermented Amazonian cocoa beans is presented, thus highlighting the differences, in the
initial distribution of the moisture content and in the final shrinkage, between two different sets of
cocoa beans whose dehydration kinetics will be analyzed.

In Section 3, the basic equations for the isothermal moving-boundary model are presented and
subsequently applied to ellipsoidal beans in order to investigate: (i) the influence of the ellipsoidal
shape on dehydration kinetics in the simplest case of a uniform initial water distribution; (ii) the
influence of a nonuniform initial water distribution on dehydration rates, in the absence of shrinkage;
(iii) the influence, on dehydration rates, of a constant shrinkage factor.

Section 4 is devoted to modeling the dehydration kinetics and shrinkage of Amazonian cocoa
beans, thus obtaining: (i) a reliable estimate of the effective water diffusivity at different temperatures;
(ii) an accurate prediction of the influence of air velocity and non-uniformity of the initial water
distribution on dehydration kinetics; (iii) a correct description of the temporal evolution of the moisture
content and thickness of core and shell.
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2. Morphological and Physical Characterization of Ellipsoidal Cocoa Beans

We analyze experimental data of hot-air drying of fermented Amazonian cocoa beans (data from
Herman et al. [9,10]) in a convective dryer at different temperatures T = 30, 40, 50, 60 ◦C and different
air velocities v = 0.3, 0.6, 1 m/s. Fermented Amazonian cocoa beans were fermented at 30 ◦C for seven
days in wooden boxes and stored at −18 ◦C until drying. Two different sets of data are analyzed
and compared. Data set (1) from [9] and data set (2) from [10] both refer to fermented Amazonian
beans (Theobroma cacao, var. Forasteiro) from Quatro-Bocas, State of Pará, Brasil, with ellipsoidal shape
(see Figure 2).

core shell

b

ca

b

λ

Figure 2. Scaled representation of an ellipsoidal cocoa bean (core and shell). a, b and c are the three
principal axes and λ is the shell thickness.

The main morphological and physical parameters, namely the initial length of the three principal
axes a0, b0, c0, the initial shell thickness λ0, the initial total moisture content X0 and the initial moisture
content of the core Xcore

0 , are reported in Table 1.

Table 1. Morphological and physical parameters of two different sets of freshly fermented Amazonian
cocoa beans. Data set (1) are reported in [9]. Data set (2) are reported in [10].

Data a0 b0 c0 λ0 X0 Xcore
0 Xcore

0 /X0 V core
0 /V0

Set (mm) (mm) (mm) (mm) (kg/kg db) (kg/kg db) (-) (-)

(1) 24.7 ± 0.72 12.73 ± 0.5 8.94 ± 0.86 0.45 ± 0.09 0.82 ± 0.09 0.6 ± 0.08 ' 0.73 ' 0.8

(2) 24.28 ± 1.57 13.34 ± 0.5 8.52 ± 0.35 0.58 ± 0.09 ' 0.88 ' 0.49 ' 0.56 ' 0.72

Specifically, the initial moisture content of the core Xcore
0 was experimentally evaluated by peeling

the fresh shell and then drying separately the core and the shell for 24 h at 105 ◦C, thus evaluating
Xcore

0 as

Xcore
0 =

Mcore
0 −Mcore

d

Mcore
d + Mshell

d
(1)

where Mcore
0 is the mass of the fresh core, Mcore

d and Mshell
d are the mass of the dry core and of the dry

shell, respectively. For a detailed discussion about the experimental procedure see [9].
From the initial mass M0 ' 1.87± 0.24 g and the initial moisture content X0, the initial volume

fraction φ0 (averaged over the entire bean, i.e., core and shell) of water inside the cocoa bean, before
drying, can been estimated as follows

φ0 =
M0 −Md

ρwV0
=

M0

ρwV0

X0

1 + X0
(2)

where Md = Mcore
d + Mshell

d is the total dry mass and ρw is the water density, thus obtaining φ0 ' 0.57
for data set (1) and φ0 = 0.59 for data set (2).
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The volume fraction of water in the core φcore
0 and in the shell φshell

0 can been evaluated, from the
material balance

φ0V0 = φcore
0 Vcore

0 + φshell
0 Vshell

0 (3)

as follows

φcore
0 = φ0

Xcore
0 /X0

Vcore
0 /V0︸ ︷︷ ︸

βcore
0

, φshell
0 = φ0

1− Xcore
0 /X0

1−Vcore
0 /V0︸ ︷︷ ︸

βshell
0

(4)

From the morphological and physical parameters reported in Table 1, it can be observed that
the two sets of cocoa beans differ significantly in the ratio Xcore

0 /X0 and this implies very different
values for the partition factors βcore

0 and βshell
0 , namely βcore

0 ' 0.912 and βshell
0 ' 1.35 for data set (1)

and βcore
0 ' 0.78 and βshell

0 ' 1.53 for data set (2). The higher the value of water concentration in
the shell, the faster the decrease of the total moisture content at the beginning of the drying process,
and therefore the larger the initial dehydration rate.

Focusing on volume shrinkage, the sample volume Vd after complete drying, can be estimated
from data reported in [9,10]. In [9], Herman et al. evaluated the volume V0 = (π/6)a0b0c0 of the
fresh bean as well as the volume of the dry bean Vd = (π/6)adbdcd, where ad, bd, cd represent the
lengths of the principal axes of the bean after drying. These authors approximate the ellipsoidal shape
of the bean with a cylinder of height H = a and radius R =

√
bc/6, i.e., a cylinder with the same

volume as the ellipsoid and height H equal to the length a of the main principal axes of the ellipsoid.
As a consequence, they report the morphological parameters of the fresh bean as a0 = 25.5 mm,
R0 = 4.5 mm and the shrinkage parameters as ad/a0 = 0.93± 0.09 and Rd/R0 = 0.94± 0.019, ad and
Rd being the height and the radius of the equivalent cylinder, after drying. From these data, it is
possible to estimate the rescaled dry-sample volume Vd/V0 as

Vd
V0

=
πa0R2

0
πadR2

d
=

(
ad
a0

)(
Rd
R0

)2
' 0.82 (5)

The rescaled dry-sample volume Vd/V0 ' 0.82 obtained from data set (1) [9] is in agreement
with that obtained from data set (2) [10]. In [10], the authors report the three ratios ad/a0 ' 0.88,
bd/b0 ' 0.94 and cd/c0 ' 0.94 for the principal axes of the ellipse, so that the rescaled dry-sample
volume Vd/V0 can be directly evaluated as

Vd
V0

=

(
ad
a0

)(
bd
b0

)(
cd
c0

)
' 0.78 (6)

This slightly larger shrinkage is reasonably due to the higher initial moisture content X0.
These experimental findings are also in agreement with shrinkage data reported by Koua et al. [7]

for indirect solar drying of cocoa beans from Cote d’Ivore. Ellipsoidal cocoa beans used by Koua et al.
are bigger than Amazonian cocoa beans used by Herman et al. Indeed, the lengths of the three principal
axes are a0 = 27.6 mm, b0 = 15.5 mm and c0 = 11.3 mm and also the initial moisture content X0 = 1.22
(kg/kg db) is larger than that for Amazonian cocoa beans. Koua et al. experimentally observed a linear
relationship between the rescaled volume V/V0 and the moisture content reduction X/X0 during the
drying process, approximated as

V(t)
V0

= 1− 0.276
(
X0 − X(t)

)
. (7)

After complete drying, the final moisture content Xd = 0.076 was evaluated and the resulting
rescaled dry-sample volume attains the value Vd/V0 ' 0.68. The larger shrinkage, also in this case,
may be due to a significantly higher initial moisture content X0.



Processes 2020, 8, 150 5 of 21

The equilibrium water volume fraction φeq can be evaluated, from the equilibrium Xeq and initial
X0 moisture contents and the rescaled dry-sample volume Vd/V0, as follows

φeq = φ0

(Xeq

X0

)(Vd
V0

)−1
(8)

where the sample volume at equilibrium Veq was approximated with the dry-sample volume Vd. For
both data sets (1) and (2), the rescaled equilibrium moisture content Xeq/X0 is assumed Xeq/X0 = 0.055
(kg/kg db) in agreement with the asymptotic value of the rescaled moisture content derived from
dehydration curves of cocoa beans reported in [9,10] analyzed in Sections 4.1 and 4.2. The resulting
values are φeq ' 0.038 for data set (1) and φeq ' 0.041 for data set (2).

All these physical and morphological parameters a0, b0, c0, λ0, Vcore
0 /V0, Vshell

0 /V0, Vd/V0, φ0,
φcore

0 , φshell
0 and φeq are needed to implement the moving-boundary model for isothermal dehydration,

presented and analyzed in Section 3.

3. Mathematical Models

In this section, we briefly review the basic equations of the moving-boundary model for food
isothermal dehydration, developed in [13,14].

The transport equation describing the space-time evolution of the pointwise water concentration
cw(x, t) inside the bean, whose volume V(t) and surface S(t) are evolving in time, is the following
advection-diffusion equation accounting for the local shrinkage through the pointwise shrinkage
velocity v(x)

∂cw(x, t)
∂t

+∇ ·
(

v(x) cw(x, t)
)
= −∇ · J = ∇ ·

(
D∇cw(x, t)

)
, x ∈ V(t) (9)

where cw(x, t) is the mass concentration of water, J = −D∇c is the diffusive mass flux and ∇ · (cv) is
a convective term arising from local shrinkage.

By enforcing the analogy between the dehydration process, in which the sample is releasing water,
and the swelling process of rubbery polymers, in which the sample is absorbing water, the pointwise
shrinkage velocity v is assumed proportional (and opposite in sign) to the diffusive (volumetric)
flux J(x)/ρw

v = −α(cw)J(x)/ρw = α(cw)D∇cw/ρw , (10)

where α(cw) is a shrinkage proportionality factor, depending on the pointwise water concentration.
The shrinkage factor α(cw) is the fingerprint of the specific food material under investigation.

The simplest case is that of a constant value, i.e., α(cw) = α0. α0 = 0 represents the case of a fully
rigid solid (no shrinkage). α0 = 1 represents the case of ideal shrinkage, in which volume reduction
corresponds exactly to the volume of water flowing outside the system. Values of α0 less or greater than
unity imply volume reduction less or greater than the corresponding water volume flow, respectively.

It must be observed that the assumption α(cw) = α0 does not imply that the shrinkage
velocity v(x) is constant but rather that, according to Equation (10), the shrinkage velocity is directly
proportional to the local concentration gradient. Therefore, the shrinkage velocity asymptotically
tends to zero, at each point in the sample, when equilibrium conditions are reached and the water
concentration gradient is null everywhere in the system.

The shrinkage velocity v(x) also controls the temporal evolution of the sample boundary S(t)
that evolves in time according to the following equation

dxb
dt

= v
∣∣
xb

=
α(cw)

ρw
D∇cw|xb , xb ∈ S(t) . (11)
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The two transport equations Equations (9) and (11) are linked together and must be solved
simultaneously by further enforcing the following boundary conditions accounting for the flowing
water from the boundary S(t) towards the environment

− D∇cw · n
∣∣
xb

= hm ρair
(
Y|xb −Yeq

)
= hm ρair

Keq

ρs

(
cw
∣∣
xb
− cw,eq

)
, xb ∈ S(t) (12)

where n is the outward-pointing normal unit vector, hm is a mass transfer coefficient (m/s), Y is the air
moisture content (kg water/kg dry air), ρair is the air density on dry basis (kg dry air/m3), ρs is the
solid (pulp) density (kg pulp/m3product) and Keq is the water partition ratio between the gas and the
solid phases Y = Keq c/ρs. The subscript eq stands for equilibrium values.

By introducing the water volume fraction φ(x) = cw(x)/ρw, the dimensionless space and time
variables τ = tD/L2

r , x̃ = x/Lr, Ṽ = V/L3
r , S̃ = S/L2

r and the dimensionless differential operators
∇̃ = ∇/Lr, ∇̃· = ∇

Lr
·, Lr being a characteristic reference length, the moving-boundary model equations

attain the form:

∂φ

∂τ
= ∇̃ ·

(
∇̃φ−

(
α∇φ

)
φ)
)
= ∇̃ ·

(
∇̃φ (1− αφ)

)
, x̃ ∈ Ṽ(τ) (13)

− ∇̃φ · n|x̃b
= Bim

(
φ|x̃b
− φeq

)
, x̃b ∈ S̃(t) (14)

dx̃b
dτ

= α∇̃φ|x̃b
, x̃b ∈ S̃(τ) (15)

where α = α(φ) is the shrinkage factor and Bim is the mass transfer Biot number

Bim =
hmLr

D
Keq

ρair
ρs

. (16)

Initial conditions are Ṽ(0) = Ṽ0, S̃(0) = S̃0 and φ(x̃, 0) = φ0(x̃).
In the next three paragraphs the moving-boundary model is applied to ellipsoidal beans in order

to investigate:

1. the influence of the ellipsoidal shape on dehydration kinetics in the simplest case of a uniform
initial water distribution, i.e., φ0(x̃) = constant and in the absence of shrinkage, i.e., α(φ) = 0;

2. the influence of a nonuniform initial water distribution, i.e., φ0(x̃) = φcore
0 for x̃ ∈ Ṽcore and

φ0(x̃) = φshell
0 for x̃ ∈ Ṽshell , on dehydration rates, in the absence of shrinkage, α(φ) = 0;

3. the influence, on dehydration rates, of a constant shrinkage factor α(φ) = α0.

The ellipsoidal beans analyzed in the next three paragraphs have the three principal axes a0 =

25 mm, b0 = 13 mm, c0 = 9 mm and the shell thickness is λ0 = 0.5 mm, an therefore the ratio
Vcore

0 /V0 ' 0.787. The reference length is Lr = c0 = 9 mm and the initial water volume fraction
(averaged over the entire bean, shell and core) is φ0 = 0.5.

The 3-d moving-boundary model was numerically solved using finite elements method (FEM)
in COMSOL Multiphysics R© v. 3.5. (COMSOL AB, Stockholm, Sweden). The convection-diffusion
package (conservative form) was coupled with ALE (Arbitrary Lagrangian Eulerian) moving mesh,
allowing re-meshing during the time evolution of the physical domain. Free displacement induced by
boundary velocity conditions was set. Lagrangian quadratic elements were chosen. The linear solver
adopted is UMFPACK, with relative tolerance 10−3 and absolute tolerance 10−6. The number of finite
elements was 4× 105–6× 105 with a non-uniform mesh. Smaller elements (minimum element size 0.01
dimensionless unit) have been located close to the moving boundary and to the core/shell boundary
in order to accurately compute concentration gradients controlling the velocity of the moving front
and the water transport at the core/shell interface. Figure 3 shows the computational domain (1/4 of
the ellipsoidal bean) and the FEM mesh adopted.
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Figure 3. Representation of the computational domain (1/4 of the ellipsoidal bean) and the FEM (finite
elements method) mesh adopted.

3.1. Uniform Initial Water Distribution (No Shrinkage)

If we assume no volume shrinkage, i.e., α(φ) = 0 and v(x̃) = 0, the transport equation
Equation (13) is a pure diffusion equation on a fixed 3-d domain Ṽ(τ) = Ṽ0, to be solved with the
boundary condition Equation (14) on a fixed surface S̃(τ) = S̃0. The uniform initial water distribution
inside the bean implies φ(x̃, 0) = φcore

0 = φshell
0 = φ0 corresponding to unitary partition coefficients

βcore
0 = βshell

0 = 1, see Equation (4).

Figure 4A shows the behaviour of the moisture ratio Xr =
(X−Xeq)

(X0−Xeq)
vs. the dimensionless time

τ = tD
L2

r
for different values of the Biot number Bim = 1, 2, 3, 5, 9. Figure 4B shows the same data on a

log-normal plot and the perfect agreement with the asymptotic exponential behaviour (dashed lines)

Xr =
X− Xeq

X0 − Xeq
∼ exp

[
− γ2

0

( Lr

Req

)2
τ
]

for large τ (17)

where γ0 is the smallest positive root of the equation [17,18]

γ cot (γ) + Bieq
m − 1 = 0 , Bieq

m = Bim
(Req

Lr

)
(18)

and Bieq
m is the equivalent mass Biot number, i.e., the Biot number for a sphere with the same

surface-to-volume ratio as the ellipsoidal bean, therefore a sphere with radius Req

4πR2
eq

(4/3)πR3
eq

=
Sellipsoid

Vellipsoid → Req = 3
Vellipsoid

Sellipsoid = 3
(π/6)a0b0c0

4π
(

ap
0 bp

0+ap
0 cp

0+bp
0 cp

0
3

)1/p (19)

where p ' 1.6075.
For the cocoa bean under investigation, Req ' 6.3 mm, Req/Lr = Req/c0 ' 0.7 and therefore

Bieq
m ' 0.7Bim. The corresponding values of γ0 for different values of Bim are reported in Table 2. It can
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be observed that γ0 is an increasing function of Bim and only in the limit of Bim → ∞, meaning that
the mass transfer resistance at the solid-air interface is negligible, then γ0 → π.
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τ=t D/Lz
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(X
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-X

eq
)

τ=t D/Lz
2

Figure 4. (A) Moisture ratio (X − Xeq)/(X0 − Xeq) vs. dimensionless time τ = tD/L2
z for Bim =

1, 2, 3, 5, 9 and a uniform initial water distribution φcore
0 = φshell

0 = φ0 = 0.5. (B) Log-normal plot of
dehydration curves reported in Figure (A). Arrows indicate increasing values of Bim. Dashed black
lines show the asymptotic theoretical exponential behaviour, Equations (17) and (18).

Table 2. Values of γ0 for Req/Lr = 0.7 and different values of Bim.

Bim = 1 Bim = 2 Bim = 3 Bim = 5 Bim = 7 Bim = 9

γ0 1.35252 1.79058 2.06105 2.38064 2.56061 2.67429

Following reasonings similar to Paramo et al. [11], it is straightforward to verify that the
exponential behaviour in Equations (17) and (18), which settles down for long/intermediate
dehydration time-scales, implies a linear behaviour for the dimensionless dehydration rate Jd vs.
Xr for small/intermediate values of Xr

Jd = −dXr

dτ
= γ2

0

( Lr

Req

)2
Xr for small Xr (20)

as shown in Figure 5.
Equation (20) can be used, in a direct way, to estimate the effective water diffusivity D from the

initial linear scaling of the experimental dehydration-rate curves jd = − dXr
dt vs. t. Indeed, by recalling

that τ = tD/L2
r , Equation (20) can be rewritten as

jd = −dXr

dt
= D

γ2
0

R2
eq

Xr for small Xr (21)

where γ0 and Req are given by Equations (18) and (19), respectively and the only unknown quantity is
D. However, the estimate of D from Equation (21) and from the initial slope δ (h−1) of the experimental
dehydration-rate curve jd = δXr is not so straightforward as it requires the solution of a nonlinear
equation for D because γ0 is a nonlinear function of Bim and Bim depends on D itself, see Equation (16).

Equation (17), or equivalently Equation (20), implies that the dehydration curve of an ellipsoidal
bean, on intermediate/long time-scales, can be very accurately approximated by the dehydration
curve of a spherical bean with the same surface-to-volume ratio, i.e., with an equivalent radius Req

given by Equation (19).
This finding gives an ultimate answer to the recurring question about how to approximate

an ellipsoidal bean for solving the transport equations in a simplified geometry. For example,
Herman et al. [9] approximated the ellipsoidal cocoa bean with a cylinder (see Section 2 for details).
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Koua et al. [7], following Delgato et al. [19], and Chayjan and Kaveh [20], approximated the
ellipsoidal bean with a sphere with the geometric mean radius Rg = 1

2 (a b c)1/3. For the ellipsoidal
bean under investigation, Rg ' 7.15 mm that is significantly larger than the equivalent radius Req '
6.3 mm evaluated from Equation (19). The adoption of Rg instead of Req in Equation (21) would
lead to an overestimate of the effective diffusivity D by a factor (Rg/Req)2 ' 1.288 and therefore to a
percentage error of about 28%, and this without considering the further error in the overestimation of
the equivalent Biot number Bieq

m , and therefore of γ0, Equation (18).
Ndukwu et al. [21], following Asoegwu [22] proposed to approximate the ellipsoidal bean with a

sphere with an equivalent radius Rav = 1
3 (Rg + Ra + Rs) given by the average between the geometric

mean radius Rg = 1
2 (a b c)1/3, the arithmetic mean radius Ra = 1

6 (a + b + c) and the square mean
radius Rs = 1

2 [(a b + b c + a c)/3]1/2. For the ellipsoidal bean under investigation, Rav ' 7.48 mm,
even bigger that Rg and this would lead to an overestimation error for D of about 41%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 0.2 0.4 0.6 0.8 1

J d

(X-Xeq)/(X0-Xeq)

Bim=1
Bim=2
Bim=3
Bim=5
Bim=9

Figure 5. Dimensionless dehydration rate Jd vs. moisture ratio Xr = (X − Xeq)/(X0 − Xeq) for
Bim = 1, 2, 3, 5, 9 for a uniform initial water distribution, Xcore

0 /X0 = Vcore
0 /V0. Arrow indicates

increasing values of Bim. Dashed lines indicate the theoretical long-drying time-scales linear behaviour,
Equation (20).

3.2. Non-Uniform Initial Water Distribution (No Shrinkage)

In this paragraph, the influence of a non-uniform initial water distribution on dehydration-rate
curves is investigated, in the absence of bean shrinkage, i.e., α(φ) = 0.

Also in this case, as in Section 3.1, the transport equation Equation (13) is pure diffusion equation
on a fixed 3-d domain Ṽ(τ) = Ṽ0, to be solved with the boundary condition Equation (14) on a fixed
surface S̃(τ) = S̃0. What changes is the initial condition for the water distribution, because in this case
φ(x̃, 0) = φcore

0 for x̃ ∈ Ṽcore and φ(x̃, t) = φshell
0 for x̃ ∈ Ṽshell , with φcore

0 6= φshell
0 .

Specifically, we analyze two different initial conditions, namely βcore
0 = 0.9 (that implies βshell

0 '
1.35) and βcore

0 = 0.8 (that implies βshell
0 ' 1.74), both corresponding to the case in which φshell

0 > φcore
0 .

Figure 6 shows the dimensionless dehydration rate Jd vs. the moisture ratio Xr for different values
of Bim, for a uniform initial water distribution, βcore

0 = βshell
0 = 1 (continuous lines) and for the two

non-uniform initial water distributions (dashed lines), βcore
0 = 0.9, 0.8. The higher the value of water

concentration in the shell φshell
0 , the faster the decrease of the total moisture content at the beginning of

the drying process, and therefore the larger the initial dehydration rate Jd. The larger the Bim, the larger
the influence of initial water non-uniformity on dehydration-rate curves.

It should be further observed that in the absence of shrinkage, the linear scaling of Jd vs. Xr

for small Xr (long dehydration time-scales) is almost unaffected by the initial non-uniform water
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distribution so that Equation (21) can be still applied to estimate the effective water diffusion
coefficient D.

 0

 10

 20

 30

 40

 50

0 0.2 0.4 0.6 0.8 1

J d

(X-Xeq)/(X0-Xeq)

Bim=1
Bim=3
Bim=5
Bim=9

Figure 6. Dimensionless dehydration rate Jd vs. moisture ratio Xr = (X − Xeq)/(X0 − Xeq) for
Bim = 1, 3, 5, 9 for a uniform initial water distribution, βcore

0 = βshell
0 = 1 (continuous lines) and for

two non-uniform initial water distributions (dashed lines), βcore
0 = 0.9, 0.8. Arrows indicate decreasing

values of β0, i.e., increasing non-uniformity.

3.3. The Influence of Shrinkage on Dehydration Curves

Sample shrinkage strongly influences the dehydration curves because the progressive decrease
in volume leads to a reduction of the diffusional paths. If the water diffusivity D is assumed to be
independent of the local water concentration, shrinkage accelerates the dehydration process and
dehydration rates are higher.

Figure 7 shows the behaviour of the dehydration-rate curves for different values of Bim and
increasing values of a constant shrinkage factor α(φ) = α0 = 0, 0.1, 0.3, 0.5. The dehydration-rate
curves shown in Figure 7 was obtained by numerically integrating the moving-boundary transport
model Equations (13)–(15) for a uniform initial water distribution φ(x̃, 0) = φcore

0 = φshell
0 = φ0.

The assumption of a constant shrinkage factor α(φ) = α0 does not imply a constant shrinkage
velocity but rather that the pointwise shrinkage velocity is proportional to the local water concentration
gradient with a proportionality constant that is uniform inside the sample and constant during the
course of the dehydration process.

A constant shrinkage factor α(φ) = α0 implies a linear “calibration curve”, i.e., a linear relationship
between volume reduction [1− V(t)

V0
] and moisture content reduction [1− X(t)

X0
]

[
1− V

V0

]
= α0φ0

[
1− X

X0

]
−→

Veq

V0
= 1− α0φ0

(
1−

Xeq

X0

)
. (22)

When the moisture content reaches its asymptotic/equilibrium value Xeq and Xeq � X0, the final
sample volume Veq/V0 can be approximated as Veq/V0 ' 1− α0φ0.

The different dehydration-rate curves, shown in Figure 7, obtained for increasing values of α0,
from α0 = 0 (no shrinkage) to α0 = 0.5, correspond to decreasing values of the final sample volume,
namely Veq/V0 = 1, 0.95, 0.85, 0.75, the latter two values very close to that observed from experimental
cocoa bean shrinkage data (see Section 2). As expected, the higher α0, the higher the dehydration rates,
and this effect is amplified for higher Bim values.
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Figure 7. Dimensionless dehydration rate Jd vs. moisture ratio Xr = (X − Xeq)/(X0 − Xeq) for
Bim = 1, 3, 5, 9 and for a uniform initial water distribution, βcore

0 = βshell
0 = 1. Continuous lines:

no-shrinkage. dashed lines: shrinkage factor α(φ) = α0 = 0.1, 0.3, 0.5. Arrows indicate increasing
values of α0.

It can be further observed that shrinkage also affects the linear scaling of Jd vs. Xr for small Xr

(long dehydration time-scales). In the presence of shrinkage, this linear scaling can still be estimated
from Equations (18) and (20), valid in the absence of shrinkage, by simply replacing the equivalent
radius Req with the equivalent radius R̃eq = Req(

Veq
V0

)1/3, in which enters the factor (Veq
V0

)1/3, accounting
for volume reduction on longer time-scales, thus obtaining

Jd = γ̃2
0

( Lr

R̃eq

)2
Xr = γ̃2

0

( Lr

Req

)2(Veq

V0

)−2/3
Xr for small Xr (23)

where γ̃2
0 is the smallest positive root of the equation

γ̃ cot (γ̃) + B̃ieq
m − 1 = 0 , B̃ieq

m = Bim

( R̃eq

Lr

)
= Bim

(Req

Lr

)(Veq

V0

)1/3
(24)

Figure 8 shows the excellent agreement between the dehydration-rate curves for α0 = 0.5 and the
theoretical linear behaviour, Equations (23) and (24) with Req/Lr = 0.7, Veq/V0 ' 0.85 and with the
values of γ̃0, derived from Equation (24), reported in Table 3.

Table 3. Values of γ̃0 for Req/Lr = 0.7, α0 = 0.5, Veq/V0 = 0.85 and different values of Bim.

Bim = 1 Bim = 2 Bim = 3 Bim = 5 Bim = 7 Bim = 9

γ̃0 1.29016 1.71879 1.98915 2.31671 2.50135 2.62754

Therefore, also in the presence of shrinkage, the effective water diffusivity D can be estimated
from the slope δ (h−1) of the initial linear scaling of the experimental dehydration-rate curve jd = δXr

by solving the nonlinear equation for D

δ = D
( γ̃0

Req

)2(Veq

V0

)−2/3
(25)

where γ̃0 depends on Bim and Bim depends on D, Equation (16).
In the next section we make a direct use of Equation (25) to estimate the effective water diffusivity

D in cocoa beans by analyzing the experimental dehydration curves reported by Herman et al. [9,10].
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Figure 8. Dimensionless dehydration rate Jd vs. moisture ratio Xr = (X − Xeq)/(X0 − Xeq) for
Bim = 1, 3, 5, 9 and for a uniform initial water distribution, βcore

0 = βshell
0 = 1. Shrinkage factor

α0 = 0.5, Veq/V0 ' 0.85. Arrow indicates increasing values of Bim. Dashed lines indicate the theoretical
long-drying time-scales linear behaviour, Equation (23).

4. Analysis of Dehydration Kinetics and Shrinkage of Ellipsoidal Cocoa Beans

We analyze the experimental dehydration curves of ellipsoidal fermented Amazonian cocoa beans
reported by Herman et al. [9,10] and verify the capability of the moving-boundary model, accounting
for nonuniform initial water distribution inside the core and the shell and sample shrinkage, to describe
and capture all the complex features of the dehydration kinetics of cocoa beans.

The shrinkage factor α(φ) was assumed constant α(φ) = α0 and estimated from Equation (22)
for both data sets. A review of all the physical, geometrical and shrinkage parameters adopted in the
moving-boundary model for the analysis of data set (1) and (2) are reported in Table 4.

Table 4. Review of physical, geometrical and shrinkage parameters adopted in the moving-boundary
model for the analysis of data set (1) and (2).

Data Set φ0 Req (mm) βcore
0 βshell

0 Veq/V0 φeq α0
Equation (2) Equation (19) Equation (4) Equation (4) Equations (5) & (6) Equation (8) Equation (22)

(1) 0.57 6.23 0.912 1.35 0.82 0.038 0.33

(2) 0.59 6.13 0.78 1.53 0.78 0.042 0.39

In Section 4.1, the effective water diffusivity D, at different drying temperatures, is estimated,
starting from the experimental dehydration curves for cocoa beans characterized by a lower
non-uniformity of the initial water distribution between core and shell, data set (1).

In Section 4.2 the moving-boundary model is adopted, in a fully predictive way, to evaluate
the dehydration curves for different air velocities for cocoa beans of data set (1). Moreover,
the moving-boundary model is applied to predict the dehydration curves for cocoa beans characterized
by a higher non-uniformity of the initial water distribution and a larger shrinkage (data set (2)).

In Section 4.3 a detailed comparison between model predictions and experimental data for the
temporal evolution of the moisture content and thickness of core and shell is presented. The influence
of shrinkage is addressed in detail.

4.1. Estimate of Water Effective Diffusivity D

Figure 9A,B show the influence of the drying temperature on the dehydration kinetics of cocoa
beans of data set (1) for a fixed air velocity v = 0.6 m/s. Figure 9A shows the temporal decay of
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the rescaled moisture content X(t)/X0 of the entire bean (core and shell) while Figure 9B shows
the behaviour of the dimensional dehydration rate jd (h−1) vs. Xr. For each temperature T, the
dehydration-rate curve jd vs. Xr has been obtained from a best fit of the dehydration curve X/X0 vs. t,
at the same temperature T, with the following function

X(t)/X0 = a0 + a1e−b1t + a2e−b2t + (1− a0 − a1 − a2)e−b3t ,

superposition of three exponential functions of time plus a constant and satisfying the two constrains
X(0)/X0 = 1, Xeq/X0 = a0;
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Figure 9. (A) Dehydration curves X/X0 vs. t (h) and (B) dehydration-rate curves jd (h−1) vs. Xr for
T = 30 ◦C, 40◦C, 50 ◦C, 60 ◦C and v = 0.6 m/s. Cocoa bean from data set (1). Comparison between
experimental data (points) and model predictions (continuous lines) with water diffusivities D and
Biot numbers Bim reported in Table 5. Arrows indicate increasing values of T. Dashed line indicates
the asymptotic rescaled moisture content Xeq/X0 = 0.055.
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The dehydration rate jd(t) has been subsequently evaluated as

jd = −dXr

dt
= − d

dt

[ X− Xeq

X0 − Xeq

]
=

d(X/X0)

dt
−1

1− Xeq/X0
,

hence
jd =

1
1− a0

(
a1b1e−b1t + a2b2e−b2t + (1− a0 − a1 − a2) b3e−b3t

)
,

plotted as a function of Xr =
(X(t)/X0)−a0

1−a0
.

As expected, the synergistic effect of a larger moisture content in the shell and of shrinkage leads
to high values of the dehydration rate at the beginning of the drying process (large Xr) and a rapid
decrease of jd towards the asymptotic linear scaling jd = δ(T)Xr, valid for smaller values of Xr.

From the experimental values of δ(T) and Equation (25), it is possible to evaluate the minimum
value of the water diffusivity Dmin(T) at different temperatures, i.e., the value of the water diffusivity
that would be estimated if the mass transfer resistance at the solid/air interface were neglected. Indeed,
Dmin(T) can be readily estimated from δ(T) and Equation (25) by assuming hm → ∞, which implies
Bim → ∞ and therefore γ0 → π. The value of the actual water diffusivity D(T) is necessarily greater
than Dmin(T) because, for any finite value of Bim, γ0 < π.

The values of Dmin, together with the optimized values of D (and the corresponding Bim),
obtained by a best fit of numerical data from the moving-boundary model onto the experimental
data, for different drying temperatures, are reported in Table 5. The excellent agreement between the
experimental data (points) and the numerical results of the moving-boundary model (continuous lines)
is shown in Figure 9A and B both for the dehydration curves and the dehydration-rate curves.

Table 5. Estimated water diffusivities Dmin, D and Biot number Bim for cocoa beans of data set (1) for
different drying temperatures T and v = 0.6 m/s.

T = 30 ◦C T = 40 ◦C T = 50 ◦C T = 60 ◦C

Dmin (m2/s) (7.65± 0.1)× 10−11 (1.34± 0.03)× 10−10 (1.62± 0.05)× 10−10 (2.48± 0.03)× 10−10

D (m2/s) (9.11± 0.1)× 10−11 (1.54± 0.03)× 10−10 (2.09± 0.05)× 10−10 (3.12± 0.03)× 10−10

Bim (17.93± 0.1) (16.24± 0.1) (14.83± 0.1) (13.61± 0.12)

The diffusivity values D(T) are plotted in Figure 10, as a function of T, together with the Arrhenius
function D = D0 exp [−E/(RT)] with D0 = 5.77× 10−5 m2/s and E/R = 4037.78 (K). These values
are slightly larger than that reported by Herman et al. [9] (D(T) ∈ [(6.8± 0.17)× 10−11 ÷ (1.41±
0.19)× 10−10] m2/s for T ∈ [30 ◦C ÷ 60 ◦C]) that are, however, all below the minimum values Dmin(T)
reported in Table 5.
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Figure 10. Diffusion coefficient D (m2/s) vs. dehydration temperature T (◦C). Continuous line
represents the Arrhenius behaviour D = D0 exp [−E/(RT)] with D0 = 5.77× 10−5 m2/s and E/R =

4037.78 (K).

4.2. Influence of Air Velocity and Non-Uniformity of the Initial Water Distribution

The moving-boundary model is adopted, in a fully predictive way, to investigate the influence of
air velocity of the dehydration kinetics.

Figure 11A and B show experimental data (points) for the dehydration curves X/X0 vs. t (h) and
for the dehydration-rate curves jd vs. Xr at T = 60 ◦C for three different air velocities, v = 0.3, 0.6, 1
m/s, as reported by Herman et al. for cocoa beans of data set (1).
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Figure 11. Cont.
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Figure 11. Influence of air velocity v = 0.3, 0.6, 1 m/s on dehydration kinetics at T = 60 ◦C.
Comparison between experimental data and model predictions with D = 3.12× 10−10 m2/s and
Bim = 10.27, 13.61, 16.93 for v = 0.3, 0.6, 1.0 m/s, respectively. Arrows indicate increasing values of v
and Bim. (A) Rescaled moisture content X/X0 vs. time (h). (B) Dehydration rate jd (h−1) vs. moisture
ratio Xr.

Continuous lines are model predictions with D(60 ◦C) = 3.12× 10−10 m2/s (see Table 5) and with
different values of Bim, namely Bim = 10.27, 13.61, 16.93 for v = 0.3, 0.6, 1 m/s, respectively. The mass
transfer coefficient hm, entering the Bim number, was estimated, for different velocities v, from the
classical Frössling correlation [23] for the Sherwood number, valid for spheres

Sh = 2 + 0.6Re1/2Sc1/3 (26)

where the equivalent radius Req = 6.23 mm for cocoa beans of data set (1) was used both in the
Sherwood number and in the Reynolds number.

The moving-boundary model accurately describes the sensitivity of the dehydration curves to
the air velocity and quantitatively predicts the slight increase of the dehydration rates for increasing
Reynolds numbers.

The moving-boundary model can also accurately predict the influence of the non-uniformity
of the initial water distribution on the dehydration kinetics. Indeed, Figure 12 shows the excellent
agreement between experimental dehydration kinetics and model predictions for both data set (1)
(data already shown in Figure 9A,B) and data set (2) for T = 60 ◦C and v = 0.6 m/s. Cocoa beans
of data set (2) are characterized by a larger shell moisture content βshell

0 = 1.53 and a slightly larger
asymptotic shrinkage Veq/V0 = 0.78, if compared to that of data set (1), see Table 4. Both these features
contribute to a faster initial decay of the rescaled moisture content X(t)/X0 and therefore to larger
initial dehydration rates, perfectly predicted by the moving-boundary model with the same value of
the water diffusivity D(60 ◦C) = 3.12× 10−10 m2/s and the mass Biot number Bim = 12.87 directly
obtained from the value Bim = 13.61, previously evaluated for cocoa beans of data set (1), by replacing
the reference length Lr and the equivalent radius Req of data set (1) with the corresponding values
for data set (2), see Table 4. It should be further observed that the dehydration-rate curves, for both
data sets (1) and (2), almost overlap one another on longer dehydration time-scales. This asymptotic
behaviour, well captured by the moving-boundary model, is in agreement with what is expected by
considering that the water diffusivity D may be assumed the same for both types of cocoa beans and
also the equivalent radii Req for data set (1) and (2) are very close each other.
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Figure 12. Dehydration kinetics at T = 60 ◦C and v = 0.6 m/s for two different types of cocoa
beans (data set (1) and data set (2)), characterized by two different initial water distributions and
final shrinkage, see Table 4. Comparison between experimental data and model predictions with
D = 3.12× 10−10 m2/s and Bim = 13.61 for data set (1) and Bim = 12.87 for data set (2). (A) Rescaled
moisture content X/X0 vs. time (h). (B) Dehydration rate jd (h−1) vs. moisture ratio Xr.

4.3. Temporal Evolution of the Moisture Content and Thickness of Core and Shell

The moving-boundary model can accurately predict not only the temporal evolution of the total
moisture content X(t) = Xcore(t) + Xshell(t) of the cocoa bean, but also the evolution, during the
dehydration process, of the two specific moisture contents, namely that of the core Xcore and of the
shell Xshell , plotted as a function of the total moisture content X in Figure 13 for cocoa beans of data
set (2), as reported by Herman et al. [10].

Continuous lines in Figure 13 show the model predictions for the moving-boundary model
accounting for shrinkage, while dashed lines indicate model predictions without shrinkage.
Both approaches give quite satisfactorily results but that accounting for shrinkage better describes
the almost constant behaviour Xcore ' Xcore

0 at short/intermediate time scales, corresponding to
0.5 ≤ X ≤ X0. Both experimental data and theoretical results support the physical observation that
the initial moisture content decay is mainly due to the dehydration of the bean shell.

In point of fact, although the volume contraction is not very large (about 30%), shrinkage effect
must be necessarily taken into account for an accurate description of the dehydration curves and for a
reliable estimate of the water diffusivity D.

The comparison between experimental data and model predictions for the evolution of the
lengths of the three principal axes of the cocoa bean and of the shell thickness of data set (2), during
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the dehydration process, is shown in Figure 14. It can be observed that, despite the extremely noisy
experimental data of axes lengths and shell thickness, the model predictions can be considered quite
satisfactory since they are able to capture general trends of all the quantities.
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Figure 13. Moisture content in the core Xcore and in the shell Xshell vs. the total moisture content
X = Xcore + Xshell (kg/kg db) for cocoa beans of data set (2), T = 60 ◦C and v = 0.6 m/s. Comparison
between experimental data (vertical bars) and model predictions (continuous and dashed lines) with
D = 3.12× 10−10 m2/s, Bim = 12.87. Continuous lines indicate model predictions with a constant
shrinkage factor α0 = 0.39. Dashed lines indicate model predictions without shrinkage α0 = 0.
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Figure 14. Rescaled lengths of the three principal axes and shell thickness vs. total moisture content
X = Xcore + Xshell (kg/kg db) for cocoa beans of data set (2), T = 60 ◦C, v = 0.6 m/s. Comparison
between experimental data and model predictions with D = 3.12× 10−10 m2/s, Bim = 12.87, α0 = 0.39.

Figure 15A–D show the evolution, during the drying process, of the water volume fraction φ(x̃, t)
inside the shrinking bean (shell and core), for decreasing values of the rescaled total moisture content
X(t)/X0 = 1, 0.7, 0.3, 0.1. The initial position of the external boundary (solid/air interface) and of the
internal boundary (shell/core interface) are highlighted in order to have a better visualization of the
progressive shrinkage of the bean.
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A B

C D

Figure 15. Evolution of the water volume fraction φ(x̃, t) inside the shrinking bean (shell and core)
for decreasing values of the rescaled total moisture content X(t)/X0, T = 60 ◦C, v = 0.6 m/s, D =

3.12× 10−10 m2/s, Bim = 12.87, α0 = 0.39. (A) X(t)/X0 = 1 (initial time instant); (B) X(t)/X0 = 0.7;
(C) X(t)/X0 = 0.3; (D) X(t)/X0 = 0.1.

5. Conclusions

The moving-boundary model for food isothermal dehydration, developed in [13,14], was applied
to analyze the dehydration kinetics of ellipsoidal cocoa beans, characterized by a non-uniform initial
distribution of the moisture content between the core and the shell.

The model proved capable of accurately describing the two-phases dehydration process: an initial
fast dehydration of the shell, characterized by higher dehydration rates, followed by a slower
dehydration of the core, characterized by a linear relationship jd = δ(T)Xr between the dehydration
rate jd and the moisture ratio Xr.

Specifically, from this linear behaviour, a shortcut method to estimate the effective water diffusivity
D is proposed, based on Equation (25), and derived from the basic observation that the asymptotic
exponential behaviour of the dehydration curve Xr(t) vs. t for an ellipsoidal bean coincides with that
of an equivalent sphere, with radius Req given by Equation (19), with the same surface-to-volume ratio
as the original ellipsoid.

The moving-boundary model was successfully applied to predict the influence of air velocity
and non-uniformity of the initial water distribution on the dehydration rates, as well as to predict the
temporal evolution of the water content in the core and in the shell and of the characteristic lengths of
the ellipsoidal bean.
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