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Abstract: Moisture transfer characteristics of Alaska pollock (AP) surimi were investigated at various
temperatures. The effective moisture diffusivity increased from 5.50 × 10−11 to 2.07 × 10−9 m2/s as
the temperature increased from 30 ◦C to 90 ◦C. In order to investigate the mass and heat transfer
characteristics of AP surimi, the simulation model was developed and evaluated by root-mean-square
error (RMSE) (<2.95%). Rheological properties of AP surimi were investigated at different heating
rates (1 ◦C/min, 5 ◦C/min, 10 ◦C/min, 20 ◦C/min and 30 ◦C/min). As heating rate increased to 20 ◦C/min
and 30 ◦C/min, elastic modulus (G’) significantly diminished. The diminished G’ could be explained
by impaired gel during temperature sweep supported by the predicted temperature distribution in
the simulation model. Changes in moisture content of AP surimi during temperature sweep were
also measured and predicted by the simulation model. The results showed the decreased amount of
moisture content significantly increased as heating rate increased.
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1. Introduction

Generally, stress and strain are measured to assess the textural properties of surimi seafood
products [1]. Oscillatory rheometry and small-strain analysis using small amplitude oscillatory shear
(SAOS) techniques can be used to determine the nonfracture mechanical properties based on viscous
modulus (G”) and elastic modulus (G’), which are ‘finger prints’ reflecting structural changes during
gelation, while large-strain analysis including fracture analyses, such as texture profile analysis (TPA),
torsion test, and ring tensile and punch tests of gel mechanical properties are correlated with sensory
characteristics of surimi-based seafood products. Small-strain analysis has been widely used to
elucidate the gelation mechanism of fish myofibrillar protein, i.e., the primary protein in surimi
contributing to the texture properties of surimi seafood product [2–4].

The unique feature of small-strain analysis, such as SAOS, in surimi gelation is its ability to
measure sol-gel transition properties in situ without disrupting the gel network structure of myofibrillar
protein [2]. The SAOS test with cone-and-plate geometry is the most popular experimental method
used to evaluate the sol-gel transition properties of surimi. The transitional properties are usually
measured using a temperature sweep mode in which the stress or strain within a linear viscoelastic
region is applied to the specimen at constant frequency while ramping the temperature at a constant
heating rate. The heating rate used in SAOS is an important parameter because the reaction time for
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the sol-gel transition during the temperature sweep test is entirely dependent on the heating rate.
Several studies reported that the texture of myofibrillar protein gels and surimi gels containing other
ingredients depend on the heating rate. In extreme cases, the heating rate and the reaction time play
a critical role in the gelation of Pacific whiting surimi containing proteases. Smyth and O’Neill [5]
reported that the G’ value of chicken surimi at 1 ◦C/min of heating rate was nearly two-fold higher
than those heated at a rate of 5 ◦C/min. Similar trends were found in the study investigating the effect
of heating rate on the rheological properties of Pacific whiting [6] and Alaska pollock (AP) [7]. In the
absence of protease in surimi, the longer heating time induces structural changes, i.e., unfolding and
aggregation of proteins, which enhance the gel network structure [8–10]. However, it has also been
reported that the sample may be subjected to a significant moisture loss due to evaporation during
temperature sweep, and the degree of moisture loss may increase as the heating rate decreases [11,12].
Several studies have been conducted to investigate the effects of moisture content and thermal transition
of surimi; however, most studies assumed that the moisture content of the surimi paste is unchanged
and the temperature distribution within the surimi specimen is negligible. Moisture and heat transfer
of surimi paste during the temperature sweep test should be investigated to analyze the effect of
heating rate on the rheological properties of surimi during gelation. However, the moisture content
and temperature of surimi paste during the temperature sweep might vary according to the position
of sample under the specific rheometry, such as the cone-and-plate. The temperature and moisture
distributions of surimi paste cannot be fully investigated via rheometry easily.

Computational fluid dynamics (CFD) has been successfully used to analyze numerous unit
operations in thermal processing [13–18]. Several studies have been conducted to predict the moisture
and temperature distribution within an object during heat treatment. Park and Yoon [19] developed a
heat and moisture transfer simulation model for the analysis of moisture and temperature distribution
in colored potato during drying. Hussain and Dincer [20] also investigated the changes in heat
and moisture distributions of broccoli during hot-air drying. Therefore, CFD is very useful in
identifying the temperature and moisture distributions in surimi paste during the temperature sweep
test. The objectives of this study were: (1) to develop heat and mass transfer simulation models to
investigate the temperature and moisture distribution of surimi paste under cone-and-plate geometry
during the temperature sweep test, and (2) to assess the rheological properties of surimi during the
temperature sweep test at different heating rates based on the effect of temperature distribution and
moisture loss of surimi.

2. Materials and Methods

2.1. Surimi Paste Preparation

In this study, an A grade Alaska pollock surimi (Trident Seafoods, Seattle, WA, USA) was used
for the experiment. Frozen surimi was thawed at room temperature for an hour. A vacuum cutter
equipped with a temperature control system (UM5, Stephan Machinery, Columbus, OH, USA) was
used to chop the surimi cubes. Based on the previous study [21], chopping of surimi was conducted to
prepare surimi paste. Samples were chopped for 1 min at 1800 rpm, followed by the addition of salt
and ice to control salt (3%) and moisture content (78%). Chopping was conducted at 1800 rpm for an
additional 1 min. Subsequently, the final chopping was conducted for 3 min at 3600 rpm under vacuum.

2.2. Small Amplitude Oscillatory Shear (SAOS) Test: Temperature Sweep

The SAOS test was conducted at 0.1 Hz angular frequency using a dynamic rheometer (CVO-100,
Malvern Instruments, Worcestershire, UK). Surimi paste was located under cone-and-plate geometry
(4 cm in diameter and 4◦ in slope angle). Temperature sweep (10–90 ◦C) was performed at different
heating rates while measuring the storage modulus (G’) and the loss modulus (G”) of the surimi paste
during gelation. Once the temperature reached 90 ◦C, it was maintained for an additional 30 min at
90◦C to allow adequate heat for unfolding and aggregation of myofibrillar proteins. To examine the
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effect of heating rate on the rheological properties of surimi paste, various heating rates (1–30 ◦C/min)
were adopted. The sample was placed between the plate and cone leaving a gap of 150µm and the
sample thickness at the surface was 1550µm. The moisture content of surimi paste was measured
every 10 ◦C ranging from 10 to 90 ◦C to investigate the effect of differential heating rate on the changes
in moisture content of surimi paste during the temperature sweep. All temperature sweeps were
performed using the auto-strain function (strain = 0.04) determined via preliminary tests. Samples
were tested in triplicate.

2.3. Moisture Diffusion

The effective moisture diffusivity (Deff), which is affected by the porosity of material, temperature,
and composition, is used to interpret the rate of moisture transfer [22]. In this study, the surimi paste
was located between a flat plate (4 cm in diameter) and the plate leaving a gap of 1550 µm. In order to
estimate the Deff of surimi paste at different temperatures, the moisture changes of surimi paste were
measured via the AOAC method [23] every 10 min for a total of 50 min in the temperature range of 30
to 90 ◦C. The Deff at any given temperature is determined using Fick’s second law of diffusion [24].
Fick’s second law of diffusion and its application for an infinite cylinder are defined as follows:

For Fick’s second law of diffusion,
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∂t

=
1
r

[
∂
∂r
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)
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∂
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for an infinite cylinder,
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∞
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r2 t
)
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where Deff is the effective moisture diffusivity (m2/s), r denotes the cylindrical radius (m), MR represents
the moisture content, Me refers to equilibrium moisture content (% d.b.), Mi indicates the initial
moisture content, and βn is the root of Bessel function.

The logarithmic form of solution can be easily obtained as follows:

ln(MR) = A− B× t, (3)

where B is βn
2Deff

r2 .
Generally, the Arrhenius-type relationship can be used to express the temperature dependence of

the Deff as follows:

De f f = D0exp
( Ea

RT

)
, (4)

ln De f f = ln D0 −
Ea

RT
, (5)

where D0 is the frequency factor/pre-exponential of the Arrhenius equation (m2/s), R denotes the
universal gas constant (kJ/mol K), Ea represents the activation energy (kJ/mol), and T refers to the
absolute temperature (K).

2.4. Numerical Simulation

2.4.1. Modeling of Airflow

The partial differential equations governing the natural convection of air flow are represented by
the energy, momentum, and mass conservation equations. Since an axial symmetric approach was
used in this study, the equations for angular direction were not included. Thus, the Navier–Stokes
equations are shown below.
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The mass conservation equation:
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Energy equation:

∂T
∂t

+
∂(T·vr)

∂r
+
∂(T·vz)

∂z
=

k
ρ·Cp

[
1
r
∂
∂r

(
∂(T·r)
∂r

+
∂2vr

∂z2

)]
, (7)

The momentum equations:
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where ρ denotes density (kg/m3), k represents thermal conductivity (W/(m·K)), g indicates gravitational
acceleration (9.81 m/s2), and vz and vr are the velocity components (m/s) in vertical and radial directions.

In order to describe density variation of fluid during thermal processing, the Boussinesq
approximation was used as follows:

ρ = ρre f
[
1− β

(
T − Tre f

)]
, (10)

where β is the thermal expansion coefficient of fluid, and ρref and Tref denote reference density and
temperature, respectively.

Based on the temperature field simulation, the local heat transfer coefficient was obtained as follows:

− k
∂T
∂n

∣∣∣∣∣
s
= h(Ts − Td), (11)

where n is the normal to the surface and s is the coordinate along the surface.
Once the heat transfer coefficient is determined, the mass transfer coefficient can be determined

as follows:

hm = h
(

LenD
k

)
, (12)

where Le is the Lewis number. Generally, the value of n is reasonably assumed as 1/3 in most
applications [25].

2.4.2. Modeling of Temperature and Moisture Fields

In order to investigate the mass and heat transfer characteristics of surimi during the temperature
sweep, a mass and heat transfer simulation model was developed in this study. It has been generally
known that dimensional changes of surimi products during thermal treatments are considered
insignificant since the immediate film formation of on the surface of surimi gel upon heating minimizes
the moisture migration from inside to outside [26]. Therefore, our simulation model was developed
based on the following assumptions: (1) no heat generation inside the sample, (2) negligible deformation
or shrinkage of the sample during temperature sweep, and (3) negligible radiation effects.

Based on the assumptions above, the governing mass and heat transfer equations for heat
conduction and molecular diffusion under unsteady state in cylindrical coordinates can be expressed
as follows:

∂T
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∂z2 +

1
r
∂T
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)
, (13)
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The initial conditions are:
T(z, r, 0) = T0, (15)

M(z, r, 0) = M0, (16)

and the boundary conditions are:

r = 0,
∂T
∂r

= 0 and
∂M
∂r

= 0, (17)

The surface conditions of the objects are:
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(
∂T
∂z

)
= h(Ts − T∞), (18)

−D
(
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= hm(Ms −M∞) and −D

(
∂M
∂z

)
= hm(Ms −M∞), (19)

where D represents mass diffusivity (m2/s, α is thermal diffusivity (m2/s), and Ts and Ms denote
temperature and moisture content at the surface of surimi paste, respectively. Open boundaries were
applied for convective flux conditions at the surface of the computational domain.

2.5. Simulation

A commercial finite element analysis software (COMSOL Multiphysics 5.3, Stockholm, Sweden)
was used to predict the heat and mass transfer of the surimi paste during temperature sweep.
Density, specific heat, and thermal conductivity of Alaska pollock surimi were determined as a
function of temperature and moisture content according to the highly cited work of Park et al. [27].
Park et al. [27] focused on the thermophysical properties of Alaska pollock surimi under different
temperature, moisture, and salt content to develop accurate heat transfer simulation models. Moisture
diffusivity of Alaska pollock surimi was determined based on the moisture diffusion experiments.
The thermophysical properties and moisture diffusivity represent variables with respect to temperature
and moisture content in the mass and heat transfer equations (Table 1).

Table 1. Thermal and physical properties of air, steel, and Alaska pollock surimi.

Property Air Steel Alaska Pollock Surimi

Density (ρ) (kg/m3) Ideal-gas model 7850 1466.63 − 2.93T − 4.24M *

Thermal Conductivity (kT) (W/m·K) 7·× 10−5T + 0.0238 44.5 0.34 + 4.57·× 10−5T2 + 3.67·×
10−5M2

− 2.46·× 10−5TM *

Specific Heat (Cp) (J/kg·K) 6·× 10−7T2
− 4·× 10−5T +
1

475 2166.09 + 8.71T + 13.93M *

Moisture diffusivity (10−10 m2/s) −6.30·× 10−1 + 2.96·× 10−3T2
−

3.18·× 10−2M

Viscosity (µ) (Pa·s) 4·× 10−8T + 2·× 10−5

Thermal Expansion Coefficient (β) (1/K) 0.003325

Source Smolka et al. [28] COMSOL 5.3 * from Park et al. [27]

2.6. Validation of Simulation Model

The simulation model was validated by comparing with the experimental data. Generally,
the root-mean-square error (RMSE) is used to validate the simulation model.
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RMSE is defined by:

RMSE =

√
1
N
·

∑N

i=1
(M−Ms)

2 , (20)

The volume-averaged moisture content predicted by the simulation model (Ms) was used to evaluate
the RMSE. Moisture content of surimi was experimentally measured and compared with the values
predicted via simulation to calculate the RMSE.

3. Results and Discussion

3.1. Mass Transfer Characteristics of Surimi Paste

Changes in moisture content (d.b.) of surimi paste at different temperatures (from 30 to 90 ◦C,
every 10 ◦C) were measured to analyze the effect of temperature on moisture transfer of surimi paste
during the temperature sweep. As expected, the rate of moisture reduction was increased significantly
with the increase in the temperature of the heating plate (Figure 1). The amount of moisture content
after 50 min of heating was increased from 16.27% to 156.27% as the heating temperature increased
from 30 ◦C to 90 ◦C, which could be attributed to the increase in moisture diffusivity with the increase
in temperature of surimi paste resulting in rapid moisture diffusion to the surface at elevated heating
temperature. This temperature of surimi paste had a significant effect on the moisture diffusion of AP
surimi during the temperature sweep.
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Figure 1. Changes in moisture content of Alaska pollock surimi paste during heating in the dynamic
rheometer system under flat-plate geometry.

The values of Deff of surimi paste at different temperatures were estimated via semi-log relationship
expressed in Equation (3). Under the temperature range studied, the Deff values increased from
5.50 × 10−11 m2/s to 2.07 × 10−9 m2/s as the temperature increased (Figure 2). The Deff values of AP
surimi were in the similar range of cod loin [29]. A quadratic model representing the moisture diffusion
of AP surimi as a function of temperature was fitted based on the experimental data utilizing the
moisture diffusion data in the simulation model (Table 1). The activation energy (Ea) of surimi paste
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exposed to heat was calculated using the Arrhenius principle formulated in Equation (5). The Ea value
was 48.66 kJ/mol. The physical significance of the Ea relates to the amount of energy required for
moisture transfer through AP surimi.
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3.2. Changes in Moisture Content of Surimi during Heating and Validation of the Simulation Model

Changes in moisture content (w.b.) of AP surimi during temperature sweep at different heating
rates were measured to investigate the extent of sample drying during the test. The results showed that
the moisture content of AP surimi was significantly changed after the temperature sweep from 10 ◦C
to 90 ◦C regardless of the heating rate (Figure 3). The moisture content was increased from 35.75%
to 131.35% as the heating rate decreased from 30 to 1 ◦C/min because of the testing time at different
heating rates, which only takes 160 s at 30 ◦C/min but 80 min at 1 ◦C/min. This result demonstrated
that the heating rate during the temperature sweep of surimi significantly affects the moisture content
of surimi, which may also affect the rheological properties of surimi.

For the mass and heat transfer simulation of AP surimi, an empirical model for the moisture
diffusivity of AP surimi was developed and used in this study. The thermal diffusivity of AP surimi was
determined from the highly referenced work of Park et al. [27] (Table 1). Changes in moisture content
of AP surimi during the temperature sweep at different heating rates were simulated using the mass
transfer simulation model and validated experimentally (Figure 3). Comparison of the simulated and
experimental data at different heating rates indicated that the simulation model accurately predicted
the changes in moisture of AP surimi during the temperature sweep (RMSE < 2.95%). Recently, a heat
transfer simulation model of surimi during boiling [27] and a heat and mass transfer simulation model
of cod lion during cooking [29] were developed to predict the heat transfer and moisture transfer
during cooking. However, the results of the simulation models were not linked to the textural or
rheological properties. Therefore, investigating the effect of heating rate on the rheological properties
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of surimi by using a computer simulation model could provide a better understanding of rheological
properties of surimi during heating.
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dynamic rheometer system under cone-plate geometry. Symbols and lines represent experimental data
and simulation results, respectively.

3.3. Effect of Heating Rate on Rheological Properties of Surimi

Heating rate strongly influenced the G’ of surimi paste during the temperature sweep. As heating
rate increased, G’ significantly diminished (Figure 4). The results suggest that the surimi gel is impaired
by heating the surimi paste at 30 ◦C/min, which was consistent with previous studies [6,29,30]. Since
the heat transfer on the surface of surimi paste during temperature sweep was governed by natural
convection, it is lower than the heat transfer coefficients reported in other studies or surimi products
processing [29,31,32]. However, the temperature distribution of surimi paste would depend on the
heating rate of heat plate since the heat transfer of surimi paste was strongly governed by the heat
transfer from the heating plate. The results of the heat transfer simulation for surimi paste during
heating were analyzed to determine the effect of heating rate on temperature distribution in the
samples (Figure 5). When the temperature of plate reached 90 ◦C, the average temperature of the
surimi was 86.8 ◦C at 30 ◦C/min while the temperature at 1 ◦C/min and 10 ◦C/min was 89.6 ◦C and
88.8 ◦C, respectively (Figure 5a). Complete gelation of fish myofibrillar proteins occurs around 75 ◦C
under appropriate exposure to heat [33]. The results of heat transfer simulation clearly showed that
the heat transfer within surimi was not uniform at 30 ◦C/min, which might result in impaired surimi
gel formation during the temperature sweep at 20 ◦C/min and 30 ◦C/min (Figure 4).The temperature
distribution of surimi during the temperature sweep is displayed in Figure 5b. The result showed that
the temperature at the bottom of surimi was very close to the temperature of heating plate. However,
the temperature at the edge of surimi was obviously lower than the temperature of heating plate,
especially, at 20 ◦C/min and 30 ◦C/min. Such a temperature gradient within the sample significantly
diminished at a slower heating rate because the time for thermal diffusion increased from 160 s to 4800 s
as the heating rate decreased from 30 ◦C/min to 1 ◦C/min (Figure 5b). Notably, G’ of sample heated
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at 10 ◦C/min also significantly increased during 30 min holding after heating to 90 ◦C even though
the temperature gradient within the sample at 10 ◦C/min was negligible, which indicates incomplete
gelation of surimi (Figure 4). This result suggests rapid temperature sweep at 10 ◦C/min for gelation of
surimi since it cannot ensure adequate heat supply to myofibrillar proteins.
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As shown in Figure 4, minimum or no changes in G′ were detected at 90 ◦C for 30 min when
the heating rates ranged between 1 ◦C/min and 5 ◦C/min, which indicate that the gelation of AP
surimi was complete during the temperature sweep. However, as discussed above, the amount of
moisture content was significantly increased as the heating rate decreased (Figure 4), which may
affect the rheological properties of surimi. It is well known that G’ of surimi strongly depends on
the moisture content of the sample [7,34]. As the moisture content of surimi decreased, the G’ value
increased significantly. This result is in line with that reported for shear stress of surimi in which the
shear stress of Alaska pollock surimi increased as the moisture decreased [35]. Although the surimi
were properly heated during temperature sweep at 1 ◦C/min and 5 ◦C/min, the temperature sweep at
1 ◦C/min yielded a much higher G’ value than the temperature sweep at 5 ◦C/min, which might be
attributed to the decreased moisture content during the temperature sweep. Generally, the myofibrillar
proteins of Alaska pollock surimi fully form gel networks that contribute to the elastic properties of
surimi gels following exposure to heat at 90 ◦C for 30 min [1]. However, after 30 min of holding time
at 90 ◦C, G’ values at 1 ◦C/min and 5 ◦C/min were 99.63 kPa and 56.37 kPa, respectively, while G’
values at 10 ◦C/min, 20 ◦C/min and 30 ◦C/min did not vary significantly (49.00 kPa ± 1.22) (Figure 4).
These findings can be explained by the moisture distribution within surimi during temperature sweep.
The results of mass transfer simulation for temperature sweep of surimi are shown in Figure 6. At lower
heating rates (1 ◦C/min and 5 ◦C/min), a significantly lower moisture content of surimi was observed
near the surface when the temperature of surimi reached 90 ◦C while the moisture distribution of
surimi at higher heating rates (30 ◦C/min, 20 ◦C/min and 10 ◦C/min) showed no significant difference.
The effect of moisture content on the rheological properties of surimi in this study was consistent with
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previous studies [7,34]. Thus, it was clearly demonstrated that the heating rate during temperature
sweep of surimi significantly affected the temperature and moisture distribution of surimi, which
influence the rheological properties of surimi. Therefore, the heating rate should be determined by the
heat and mass transfer conditions of surimi during the temperature sweep.
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Figure 6. Moisture distribution of Alaska pollock surimi during temperature sweep at different
heating rates.

4. Conclusions

In this study, the effect of heating rates on the rheological properties of AP surimi was investigated
using a heat and mass transfer simulation model. Moisture transfer characteristics of AP surimi were
investigated, and the effective moisture diffusivity increased from 5.50 × 10−11 to 2.07 × 10−9 m2/s
as the temperature increased from 30 ◦C to 90 ◦C. The effective moisture diffusivity was modeled
as a function of temperature and used in the simulation model. Based on the moisture diffusivity, a
heat and mass transfer simulation model for AP surimi was successfully developed (RMSE < 0.17%).
The rheological properties of AP surimi during temperature sweep were assessed at different heating
rates (30 ◦C/min, 20 ◦C/min, 10 ◦C/min, 5 ◦C/min and 1 ◦C/min). As the heating rate increased to
20 ◦C/min and 30 ◦C/min, the G’ value was significantly diminished. The temperature distribution
of AP surimi during temperature sweep was investigated using the simulation model developed.
The results showed that no thermal equilibrium was reached during the temperature sweep at higher
heating rates, especially, at 20 ◦C/min and 30 ◦C/min, which might impair the effect of gel on the
rheological properties. Changes in moisture content of AP surimi during the temperature sweep
were also studied to determine the effect of heating rate on the rheological properties of AP surimi.
The results showed that the amount of moisture lost due to evaporation was significantly reduced by
the short duration of gelation at higher heating rates. Moisture distribution of AP surimi determined
using the simulation model showed a significantly lower moisture content of surimi near the surface,
which also influenced the rheological properties of surimi paste during heating especially at 1 ◦C/min
heating rate. Therefore, heating rate at 5–10 ◦C/min is suggested for SAOS test of surimi to investigate
the rheological properties during temperature sweep. It clearly demonstrates that the heating rate
used for the temperature sweep measurement significantly affected the rheological properties of surimi
gels associated with drying and thermal equilibrium. This study provided a better understanding of
the effect of heating rates that could assist the surimi seafood industry to develop various products
with good texture properties.
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