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Abstract: Slug flow is a multiphase flow pattern characterized by the occurrence of long gas bubbles
(Taylor bubbles) separated by liquid slugs. This multiphase flow regime is present in many and
diversified natural and industrial processes, at macro and microscales, such as in eruption of volcanic
magmas, oil recovery from pre-salt regions, micro heat exchangers, and small-sized refrigerating
systems. Previous studies in the literature have been mostly focused on tubular gas bubbles flowing
in Newtonian liquids. In this work, results from several numerical simulations of tubular gas bubbles
flowing in a shear thinning liquid in microchannels are reported. To simulate the shear thinning
behavior, carboxymethylcellulose (CMC) solutions with different concentrations were considered.
The results are compared with data from bubbles flowing in Newtonian liquids in identical geometric
and dynamic conditions. The numerical work was carried out in computational fluid dynamics (CFD)
package Ansys Fluent (release 16.2.0) employing the volume of fluid (VOF) methodology to track
the volume fraction of each phase and the continuum surface force (CSF) model to insert the surface
tension effects. The flow patterns, the viscosity distribution in the liquid, the liquid film thickness
between the bubble and the wall, and the bubbles shape are analyzed for a wide range of shear
rates. In general, the flow patterns are similar to those in Newtonian liquids, but in the film, where
a high viscosity region is observed, the thickness is smaller. Bubble velocities are smaller for the
non-Newtonian cases.

Keywords: shear thinning fluids; Taylor bubbles; microfluidics; carboxymethylcellulose solutions;
volume of fluid method; computational fluid dynamics

1. Introduction

Gas–liquid slug flow, also known as Taylor bubble flow, is a multiphase flow pattern characterized
by the presence of long bullet-shaped bubbles, occupying almost all of the cross-section of the tube,
separated by stagnant liquid or by liquid flowing co-currently or counter-currently [1–5]. In the most
common case, the Taylor bubble outruns the liquid phase leading to the development of a liquid film
between the lateral surface of the bubble and the channel wall [1–3,6,7]. This flow pattern can occur in
channels of different shapes (e.g., square, circular, or triangular cross section), dimensions (micro or
macroscale) [1] and orientations (horizontal, vertical, and inclined channels) [3].

Gas–liquid slug flows have an important impact in many industrial processes, such as the oil
industry [7], coating [7], micro heat exchangers [7], and small-sized refrigerating systems [8], where,
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most of the times, the bubbles enhance mass and heat transfer rates [1,7,9,10]. More specifically,
due to the particular hydrodynamic features involved, the movement of a Taylor bubble can induce
mixing in the surrounding liquid, making the flow more suitable for several physical and/or chemical
processes [4,8,11]. On the other hand, when insufficiently controlled, the randomness and intermittence
of the slug flow can cause severe over-pressurization issues [12] and, in corrosive environments,
the corresponding wall shear stress fluctuations can lead to the erosion and cracking of metal
surfaces [13]. Taylor bubbles are also important in several microscale biological and medical systems,
as is the case of the development of gas embolisms [14] and control of biofilm formation [15,16]. Bubbles
are also used as contrast agents [17] in medical diagnosis and as carriers for drug release and may acquire
the typical Taylor bubble shape in the smallest capillary vessels. Several of the aforementioned scenarios
may include gas–liquid slug flow with a non-Newtonian continuous phase [18,19], thus prompting
the need to characterize in detail the hydrodynamics involved. Due to the spatial and temporal
variation of shear stresses in slug flow, and the corresponding direct effect on the viscosity fields,
this characterization entails an extra degree of complexity. Nevertheless, this challenge has been
already addressed numerically for macroscale systems [20], but a systematic study for microscale
systems is still lacking.

In multiphase flows, the hydrodynamics is governed by the interaction of gravitational,
interfacial, viscous and inertial forces. This interaction is highly dependent on the systems dimensions,
i.e., the dominant forces at the macroscale may not be the dominant at the microscale. At the microscale,
surface tension and viscosity have a great influence on the flow patterns, while gravity has little or no
influence and can be neglected. The Eötvös number (Eo) is a characteristic dimensionless group that is
commonly used to help delimit the referred dominance since it relates interfacial and gravitational forces:

Eo =

(
ρL − ρg

)
gD2

σ
(1)

where ρL is the liquid density, ρg the gas density, g the gravitational acceleration, D the diameter of
the channel, and σ the surface tension. According to Suo and Griffith [21], the gravitational forces are
negligible for Eo < (2π)2, while Bretherton [22] claims that this occurs for Eo < 3.37. This means that
gas–liquid flows in microchannels and small diameter milliscale channels are not influenced by gravity
and the flow is independent of the channel orientation. Thus, gas–liquid flows at the microscale are
governed by surface tension, viscosity, and inertial forces, i.e., hydrodynamic features like the normalized
bubble velocity depend on a small set of the dimensionless groups: the Capillary and Reynolds number
of one of the phases. The Capillary number relates viscous and surface tension forces:

Cai =
µivi

σ
(2)

where Cai is the capillary number of the phase i, µi the viscosity of the phase i and vi the velocity of the
phase i. When the capillary number is high the viscosity effects dominate over the surface tension
effects. The Reynolds number quantifies the ratio between the inertial forces and the viscous forces:

Rei =
ρiviD
µi

(3)

where Rei is the Reynolds number of the phase i, and ρi the density of the phase i. At the microscale,
Reynolds number is usually low. It is noteworthy that gas–liquid flows are not influenced by the
viscosity ratio between phases because the viscosity of the gas is negligible when compared with the
viscosity of the liquid.

Since gas–liquid slug flow in microchannels also depends on the viscous forces, it is crucial
to understand the differences on the behavior of Taylor bubbles and their surroundings when the
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liquid phase is Newtonian or non-Newtonian. Particular focus should be placed on the effect of shear
thinning rheology.

Several authors have studied slug flow in non-Newtonian liquids in macroscale systems. Most of
the works focused on the effect of shear thinning/thickening and viscoelasticity on bubble shape
and velocity fields surrounding the bubble. More particularly, Sousa et al. [4] used particle image
velocimetry (PIV) and shadowgraphy techniques to analyze the velocity fields around Taylor bubbles
rising in carboxymethylcellulose (CMC) solutions. The authors observed, at low values of Reynolds
number, a small closed liquid wake attached to the bubble bottom. The smaller size of the wake,
when compared to the Newtonian counterpart, was attributed to the higher viscosity of the liquid in
this region. Sousa et al. [23] also studied the interactions between Taylor bubbles flowing either in
carboxymethylcellulose (CMC) solutions or in polyacrylamide (PAA) solutions. For low concentrations
of CMC, the results were similar to those obtained with Newtonian fluids in the same viscosity range.
For concentrated solutions of CMC, which imply higher viscosity levels and some elasticity, a negative
wake was observed behind the bubble preventing bubbles coalescence. For PAA solutions, the role of
elasticity was higher, leading to the formation of longer wakes. Araújo et al. [20] studied, numerically,
the flow surrounding Taylor bubbles rising through inelastic non-Newtonian fluids. The authors
analyzed the effect of shear thinning and shear thickening on the bubble shape and on the velocity
field in each flow region around the bubble (around the nose, liquid film and wake). More recently,
Majumdar and Das [24] studied, by analytical and numerical methods, the bubble shape and velocity
and the velocity field surrounding Taylor bubbles rising in power law fluids.

The interest on microfluidics has led the research community to focus on the flow of Taylor
bubbles in microchannels. The research has been focused on the effect of shear thinning/thickening
and viscoelasticity on flow pattern maps, bubble shape, and velocity. Zhang et al. [25] studied the
influence of liquid properties in gas–liquid flows using different concentrations of CMC—0.0464%
(w/w), 0.1262% (w/w), and 0.2446% (w/w) and circular channels with different diameters (302, 496,
and 916 µm). The authors constructed flow pattern maps based on observations of bubbly, slug,
slug-annular, annular, and churn flow regimes. The transition between the regimes is influenced by
the liquid viscosity, the surface tension, and the channel size. Based on this dependence, the authors
proposed a new model to predict regime transitions. The authors also observed that, in slug flow,
the liquid film thickness increases with increasing CMC concentration. Yang et al. [26] conducted
a study of gas–liquid flow in non-circular microchannels with square and triangular cross sections
and hydraulic diameters of 2.886, 2.5, and 0.866 mm. The gas phase was nitrogen and three different
non-Newtonian fluids were tested: aqueous solutions of CMC, polyacrylamide (PAA), and xanthan
gum (XG). The authors were able to obtain the flow pattern maps for the different systems and
concluded that the transitions between the flow regimes is influenced by the channel geometry and
the rheology of the non-Newtonian solutions. Mansour et al. [27] used polyacrylamide solutions
to investigate gas/non-Newtonian liquid (PAA solutions) flows in a rectangular microchannel and
compared the results with those from gas/Newtonian liquid flows. The authors found that the shape of
the bubbles change due to the higher viscosity of the non-Newtonian liquid, inducing a thicker liquid
film around the bubble. The authors also noted that higher concentrations of polyacrylamide lead to
higher bubble velocities. Fu et al. [28] studied the formation of bubbles in a microchannel using also
PAA solutions. The authors studied gas-liquid continuous slug flow, i.e., both phases are continuously
injected and flow co-currently in the microchannel forming a segmented patterned of alternated Taylor
bubbles and liquid slugs also known as bubble train flow. For this flow pattern, the size of the bubbles
increased with the increase of the gas flow rate but diminished with the increase of the liquid flow rate.
Furthermore, these tendencies were almost independent of the rheological properties of the solutions.

Concerning the prediction of the slug flow’s main hydrodynamic features in microscale systems,
several authors established correlations for the bubble velocity and liquid film thickness for systems
with Newtonian fluids (Table 1). However, no equivalent correlations were found in the literature for
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systems with non-Newtonian fluids. The only exception is the equation to estimate the bubble velocity
based on the stagnant liquid film hypothesis [21,29,30]:

VB =
1(

1− δ
R

)2 VL (4)

where VB is the bubble velocity, VL the mean liquid velocity, δ the liquid film thickness, and R the
radius of the channel. The subscripts L and G are used, throughout the paper, for the liquid and gas
phases, respectively. Equation (4) is valid for both Newtonian and non-Newtonian fluids.

Table 1. Film thickness and velocity correlations for bubbles flowing in Newtonian fluids.

Parameter Correlation Reference

Dimensionless
film thickness

1.34Ca
2
3 (5) Bretherton [22]

0.5Ca
1
2 (6)

Fairbrother and Stubbs [31]

Taylor [32]

Chen [33]

δ
D

0.36
[
1− exp

(
−3.08

(
Ca0.54

))]
(7) Irandoust and Andersson [34](

1.34Ca
2
3

)
1+2.5

(
1.34Ca

2
3

) (8) Aussillous and Quéré [35]

0.67Ca
2
3

1+3.13Ca
2
3 +0.504Ca0.672Re0.589

−0.352We0.629
(9) Han and Shikazono [36]

Bubble velocity UTP

1−0.61Ca0.33 (10) Liu et al. [37]

VB

VB
VTP

= 1 + d[1− exp(−F(CaB))]
(11) Abiev and Lavretsov [38]F1(CaB) = exp[b + c ln(CaB)]

F2(CaB) = exp
[
b + c ln(CaB) + g ln(CaB)

2
]

In summary, to our knowledge, there is a clear lack of reported information about non-Newtonian
slug flow in microchannels. Considering the relevance of such systems, this is an important research
gap that need to be filled and this work intends to be a step towards that goal. So, the focus of
this work is to analyze microscale slug flow in shear thinning CMC solutions with the help of CFD
tools. CMC solutions were selected as a case study mainly because of their wide application in two
phase studies involving non-Newtonian. The use of CFD methodologies allowed to describe the
complexity of the chosen systems with a high level of spatial and temporal detail. The differences
between Newtonian slug flow and non-Newtonian shear thinning slug flow will be highlighted.

2. Materials and Methods

A set of simulations was performed to predict the flow of single Taylor bubbles moving through
co-current non-Newtonian liquids inside circular microchannels. The non-Newtonian liquids addressed
are inelastic (Deborah number below 0.001) and have shear thinning behavior, and this numerical
study was performed for Capillary numbers between 0.02 and 0.17. The commercial CFD package
ANSYS Fluent® (Release 16.2.0) was the software chosen for this study following the approach of
Rocha et al. [39]. The volume of fluid (VOF) methodology [40] included on this package was used as
the gas–liquid interface tracking technique coupled with the geometric reconstruction scheme [41] that
is based on a piecewise-linear approach to define the interface between phases.

2.1. Domain and Numerical Method

Due to the small dimensions involved, the flow in microscales is usually laminar (low Reynolds
number), and so, for a circular microchannel, it is feasible to assume that the flow is axisymmetric
In order to reduce the computational effort and time, the axisymmetric physical domain is mapped
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into a 2D rectangular mathematical domain. The numerical domain defined for a microchannel with
a diameter of 100 µm is represented in Figure 1; a rectangle with a length of 700 µm and a width of
50 µm. Additionally, a domain 10 times longer was used to simulate the flow in the millichannels with
a diameter of 1 mm.Processes 2020, 8, x FOR PEER REVIEW 5 of 13 
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In all the simulations, the ratio between the bubble volume and the area of the cross-section of
the tube is constant in order to enable the comparison between bubble shape in different conditions.
The liquid flows co-currently in the laminar regime, and so, at the inlet of the domain, a parabolic profile
was imposed with the help of a user-defined function. At the outlet of the domain, the pressure was set
to zero. A moving reference frame (MRF) was applied to reduce the length required for the domains:
for each system, a velocity value was imposed to the channel wall (moving wall condition), which was
equal to an estimated bubble velocity. This value was adjusted along the simulation until the bubble
remained stationary in the domain, i.e., the position of the bubble nose tip stabilized (see Rocha et al. [39]).

2.2. Governing Equations

The continuity and momentum equations were solved to obtain the flow fields in both phases:

∂ρ

∂t
+∇.

(
ρ
→
v
)
= 0 (12)

∂
(
ρ
→
v
)

∂t
+∇.

(
ρ
→
v
→
v
)
= −∇p +∇.

[
µ
(
∇
→
v +∇

→
v

T)]
+
→

F (13)

where
→
v is the velocity vector, t the time, ρ the density, µ the viscosity, and p the pressure.

The volume of fluid (VOF) method is based on the transport equation of the gas phase fraction, αG:

∂αG
∂t

+
→
v .∇αG = 0 (14)

The sum of the phase fractions is equal to 1 in any position of the domain:

αG + αL = 1

In the momentum Equation (17),
→

F represents the surface tension force and it was computed
based on the continuum surface force (CSF) model [42]:

F = σ
ρkG∇αG

1
2 (ρG + ρL)

(15)

where σ is the surface tension and kG the bubble curvature, computed from the divergence of the unit
vector normal to the interface:

kG = ∇.
→̂
n (16)
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where
→
n is calculated by

→
n = ∇αG (17)

The density and viscosity are calculated through

ρ = αGρG + (1− αG)ρL (18)

µ = αGµG + (1− αG)µL (19)

The continuity and momentum equations were solved through the PISO (“Pressure-implicit with
splitting of operators”) algorithm. To discretize the equation terms, the pressure interpolations were
done through the pressure staggering option (PRESTO!), the convective terms were approximated by
the “QUICK” scheme and the discretized gradients of the scalars were computed with the Green–Gauss
method. A variable time step controlled by the imposition of a global Courant number of 0.25 was
applied in the solution of the unsteady-state model previously defined. For each time step, a maximum
number of iterations of 1000 was fixed, and the convergence criterion was supported on the scaled
absolute values of the velocities and continuity residuals, which were all monitored and set to a
maximum of 10−6.

2.3. Fluids

In order to study the behavior of Taylor bubbles moving in inelastic shear thinning liquids,
CMC solutions of 0.10 and 0.50 wt. % were selected for the continuous phase. The rheology of the
CMC solutions was characterized through the Carreau–Yasuda model:

µ = µ∞ + (µ0 − µ∞)
(
1 +

(
λ.

.
γ
)a1

) a2−1
a1 (20)

where µ is the fluid viscosity,
.
γ the shear stress, µ0 the viscosity limit for shear stresses approaching

zero, µ∞ the fluid viscosity for an infinite shear stress, λ a time constant, and a1 and a2 dimensionless
parameters. This model was implemented in ANSYS Fluent® through a user-defined function.
The values of the parameters in the Carreau–Yasuda model for the CMC solutions are reported in the
work of Sousa et al. [4] and are listed in Table 2. The Deborah number for both solutions is below
0.001 [4], which means that they are practically inelastic.

Table 2. Carreau–Yasuda parameters values. Table adapted from Sousa et al. [4].

% CMC µ0 (Pa.s) µ∞ (Pa.s) λ (s) a1 a2
.
γ (s−1)

0.10 0.009 0.001 0.021 0.850 0.871 1–4000

0.50 0.220 0.001 0.063 0.565 0.509 0.25–4000

2.4. Non-Dimensional Parameters

Capillary and Reynolds numbers for non-Newtonian fluids were calculated based on the
characteristic viscosity, i.e., the viscosity of the fluid for the characteristic flow rate. The characteristic
flow shear rate,

.
γ f , was determined by

.
γ f =

VL

D
(21)

3. Results

3.1. Study Design

The numerical study of Taylor bubbles moving in a shear-thinning CMC solution inside a
microchannel is limited by constrains imposed by the fluid properties, the size of the channel, and the
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numerical method used. These constrains are illustrated in Figure 2. For concentrations above 0.5%,
CMC solutions become viscoelastic and so shear thinning effects cannot be singled out. On the other
end, solutions of 0.1% CMC have a behavior very close to Newtonian. For low shear rates, the Capillary
number can be too low, thus the simulations can be affected by numerical parasitic currents: as a
reference, the lower limit is

.
γ = 100 s−1 for a 100 µm tube and

.
γ = 10 s−1 for a 1 mm tube. For shear

rates higher than s−1, a 0.5% CMC solution has a constant viscosity and the shear thinning effects are
not observable.Processes 2020, 8, x FOR PEER REVIEW 7 of 13 
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According to this analysis, different simulations were performed for 0.5% CMC solutions above
10 s−1 characteristic shear rates. For this solution, the viscosity changes deterministically with the
bubble velocity and, therefore, Capillary and Reynolds numbers are not independent parameters.

3.2. Flow Fields

The flow fields (velocity vectors and streamlines) obtained for different flow conditions in a tube
with a diameter of 100 µm are represented in Figure 3. These representations are based on a reference
frame attached to the bubble (MRF). The simulations were carried out for liquid phase Capillary
numbers ranging from 0.04 to 0.18 (corresponding to Reynolds numbers ranging from 0.37 to 17).
For Ca > 0.14, the results concern high characteristic shear rates, in the region of constant viscosity
(Figure 2). The typical flow behavior comprises semi-infinite recirculation zones downstream and
upstream to the bubble, a thin liquid film between the bubble and the wall, a large vortex in the inside
central region of the bubble, and several smaller ones on the inside ends of the bubble. As it can
be seen, when the Capillary number increases, the bubble becomes elongated, the thickness of the
film increases, and the bubble becomes front/back asymmetric. From a qualitative perspective, these
results are similar to those obtained for similar systems with Newtonian fluids. For the same Capillary
numbers, it can be observed that that the liquid film is thinner for the 0.5% CMC solution, which has a
shear thinning behavior more pronounced.
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Figure 3. Numerical results of the velocity vectors and streamlines for systems with bubbles flowing
through a 0.1% CMC solution (left) and a 0.5% CMC solution (right). The domain under consideration
has a D = 100 µm.

3.3. Viscosity Fields

To better understand how the local viscosity changes in the bubble surroundings, as a consequence
of the shear thinning effect, the viscosity fields obtained for several simulations are represented along
the characteristic viscosity curve in Figure 4. Two features of the viscosity field can be observed: (1) the
decrease of viscosity with the increase of the characteristic shear rate; and (2) the spatial variation of
viscosity due to the spatial variation of the shear rate. The decrease of viscosity with the increase of the
characteristic shear rate can be checked almost everywhere in the domain and is a consequence of
the shear thinning behavior. Regarding the spatial variation of viscosity, it is important to notice the
presence of some high viscosity spots in the axis of the channel and in the film region. The appearance
of high viscosities in the film is due to liquid almost stagnated, and in axis of the channel it is due to a
low velocity gradient.
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3.4. Bubble Velocity

Taylor bubble velocity is one of the main hydrodynamic features of slug flow in microfluidics
since it is directly related to the residence time of the gas phase in the device. In all the systems
addressed, the bubble moves faster than the liquid phase. Figures 5 and 6 show the bubble velocity
normalized by the average liquid velocity as a function of the liquid and bubble Capillary numbers,
respectively. For the same Capillary number, the velocities obtained for 0.5% and 0.1% CMC solutions
are always lower than those obtained for the corresponding flow of a Newtonian liquid. According to
Figure 5, Liu et al.’s [37] correlation underpredicts the velocity of the bubbles in Newtonian liquids
and overpredicts it in the 0.5% CMC solution. The Abiev and Lavretsov [38] correlation overpredicts
both (Figure 6), being more accurate for the Newtonian system.
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3.5. Film Thickness 

Figure 6. Bubble velocity normalized by the liquid velocity as a function of the bubble capillary number.
The numerical results are for bubbles flowing in CMC solutions (0.1% and 0.5%) and in a Newtonian
liquid with a viscosity corresponding to the characteristic shear rate. The theoretical predictions are
based on the stagnant film model and on the Abiev and Lavretsov [38] correlation. The numerical data
concerns the systems with a channel of D = 100 µm.



Processes 2020, 8, 242 10 of 13

The main reason for the lower normalized velocity of bubbles in shear thinning fluids is the
velocity profile of the liquid flow downstream to the bubble. In Newtonian fluids, the velocity profile is
parabolic, and the maximum velocity is two times the average liquid velocity. In shear thinning fluids,
the ratio between the maximum velocity and the average velocity is less than two. Due to volumetric
flow rate conservation, the bubble must have a velocity similar to the liquid flowing downstream to
the bubble, which is lower for shear thinning fluids.

The model based on the stagnant film takes the film thickness obtained numerically to predict the
bubble velocity. As shown in Figure 6, this model is highly accurate for the case of the Newtonian
system and for the 0.5% CMC solution. The stagnant film model is accurate because the velocity in
the film is really very low, which is confirmed by the numerical results. This should be expected in
the film around Taylor bubbles because gases have a viscosity at least two orders of magnitude lower
than liquids. To assure shear stress continuity in the interface between the Taylor bubble and the
surrounding liquid film, the film needs to be almost stagnant. In these conditions, volumetric flow rate
conservation along the tube implies that the bubble must be faster than the average liquid velocity.

3.5. Film Thickness

Another important hydrodynamic feature in the flow of Taylor microbubbles is the film thickness.
This feature is directly linked to the bubble velocity and has important implications in the behavior
of the vortexes up and downstream to the bubble and, consequently, in mass and heat transport
enhancement due to the bubble movement. According to Figure 7, the equation developed by Han and
Shikazono [36] predicts well the film thickness for bubbles flowing in Newtonian fluids. This figure
also shows that the normalized film is thinner for bubbles flowing in shear thinning liquid when
compared to their Newtonian counterparts and that the normalized thickness of the film decreases as
the CMC concentration increases.
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Figure 7. Normalized film thickness as a function of the bubble capillary number. Numerical results
are for bubbles flowing in CMC solutions (0.1% and 0.5%) and Newtonian liquid with a viscosity
corresponding to the characteristic shear rate. The theoretical predictions are based on the Han and
Shikazono [36] correlation. The numerical data concerns the systems with a channel of D = 100 µm.

4. Conclusions

The flow of single Taylor bubbles in co-current with shear thinning CMC solutions inside
microchannels was numerically studied with the help of the VOF method. The range of conditions
addressed was restricted by the limitations of the VOF method for systems with low Capillary number,
and by the appearance of viscoelastic effects for CMC concentrations above 0.5%. The study was then
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conducted for a 0.5% CMC aqueous solution, for which rheological data is available and the shear
thinning behavior can be observed with negligible viscoelastic effects.

The hydrodynamics was studied in systems that produced shear rates in two regions of the
viscosity curve, i.e., the shear thinning region and the high shear constant viscosity region. In the shear
thinning region, it is possible to observe the corresponding non-Newtonian effects on the viscosity
distribution, for example, a high viscosity region in the liquid film.

In order to compare numerical results between systems with a Newtonian and non-Newtonian
continuous phase, it was necessary to define the Capillary number for the non-Newtonian liquid flow.
In this work, the Capillary number was defined by taking the viscosity for the characteristic shear rate
of the flow, and Newtonian liquids with the same viscosity were assumed as the reference to perform
the referred comparisons. The results show that for the same Capillary number, Taylor bubbles flowing
in shear thinning liquids have a smaller film thickness and smaller velocity. Most of the correlations
available in the literature were developed for Newtonian continuous phases. The exception is the
correlation based on the stagnant film model, which is accurate for non-Newtonian fluids but requires
the film thickness as input.

To further understand the flow of Taylor bubbles in microchannels, future works must address
shear thinning fluids alternative to CMC, shear thickening fluids, and flow conditions dominated
by viscoelasticity.
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