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Abstract: Order-lot matching is the process of assigning items in lots being processed in the
make-to-order production system to meet the due dates of the orders. In this study, an order-lot
matching problem (OLMP) is considered to minimize the total tardiness of orders with different due
dates. In the OLMP considered in this study, we need to not only determine the allocation of items
to lots in the production facility but also generate a lot release plan for the given time horizon. We
show that the OLMP can be considered as a special type of machine scheduling problem with many
similarities to the single machine total tardiness scheduling problem (1||

∑
Ti). We suggest dominance

conditions for the OLMP by modifying those for 1||
∑

Ti and a dynamic programming (DP) model
based on the dominance conditions. With two example problems, we show that the DP model can
solve small-sized OLMPs optimally.

Keywords: order-lot matching problem; machine scheduling; total tardiness; dynamic programming;
dominance condition

1. Introduction

Order-lot matching is the process of assigning items in work-in-progress (WIP) lots to orders
in a make-to-order production system to meet the due dates of the orders. Typical examples for
order-lot matching include the allocation of semiconductor chips in the semiconductor industry and
the allotment of liquid crystal display (LCD) semi-products in the color-filter fabrication facility of
thin film transistor liquid crystal display (TFT-LCD) industry. This study was motivated by a need of
semiconductor company in Korea that produces memory chips and adopts make-to-order strategy.
The order-lot matching problem is different from the lot sizing problem [1,2] in that lot sizes are not
to be determined but fixed. Since order sizes are usually larger than lot sizes, an order is met with
multiple lots. If all of the orders are met with the lots being processed at the production facility, the
additional items must be released to the production facility. Therefore, in the manufacturing industries,
which have a relatively long Turn-Around-Time (TAT), effective order-lot matching can improve
the customer service level, such as the on-time-delivery rate and the levels of CPFR (Collaborative
Planning, Forecasting, and Replenishment). Usually, order-lot matching is performed periodically in
the make-to-order production system once every day or once every shift.

While a tremendous amount of research has been performed in the area of planning and scheduling,
there is relatively little research on the order-lot matching problem (OLMP). The OLMP has mostly
been studied to meet customers’ needs in the semiconductor manufacturing industry. The authors
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of [3–8] studied order-lot matching problems in the semiconductor assembly and/or test facilities. The
authors of [9–11] studied order-lot matching problems in the wafer fabrication facility. [11] revealed the
characteristics of the OLMP by suggesting the compact pegging method and showing that the OLMP
is similar to an order sequence problem with the compact pegging method. Recently, [12] proposed
priority rules for the OLMP by exploiting similarities between the OLMP and the single machine total
tardiness scheduling problem 1||

∑
Ti.

Due to the computational complexity of the OLMP, previous literature employed a heuristic
approach to solve the problem. In this study, however, we exploit characteristics of the OLMP and
propose optimality conditions for the OLMP for the first time, which can be used for developing
optimal solution algorithms. The rest of this paper is organized as follows. In the next section,
problem description for the OLMP is given. Section 3 presents the dominance conditions, which
establish precedence relations among the orders in optimal order sequences followed by a dynamic
programming (DP) model based on the dominance conditions to solve the OLMP optimally. Two
examples of the OLMP are solved using the dominance rules and the DP model in the following section.
In the last section, a short summary and suggestions for further research are given.

2. Problem Description

The OLMP considered in this study is the same with the problem studied in [12], i.e., the problem
of assigning items in lots currently being processed to orders with the objective of minimizing the total
tardiness of the orders. Items can be assigned to any order if their product types are the same as that of
the order. When the orders cannot be satisfied with lots in process, additional lots are to be released
into the production system to satisfy all orders with the given production capacity.

Parameters

N number of orders
L number of lots in process
T length of the planning time horizon (unit: day)
i index for order
l index for lot
t index for time period (unit: day)
qi quantity of order i
Qt limit on the total number of items that can be released at time t
di due date of order i (unit: hour)
CT (estimated) production cycle time from release to finish (unit: hour)

Variables

wl number of items included in lot l
rl (estimated) remaining time of lot l (unit: hour)
Ci completion time of order i (unit: hour)
τi tardiness of order i (unit: hour)
xil number of items in lot l assigned to order i
yit number of items newly released lot into the production system at time t for order i
zil equals 1 if lot l is used to satisfy order i, 0 otherwise
uit equals 1 if there exist some lots newly released at time t to satisfy order i, 0 otherwise

The OLMP is formulated as a mixed integer linear program as below.

[OLMP] Minimize ∑N

i=1
τi (1)

subject to ∑L

l=1
xil +

∑T

t=1
yit = qi ∀ i (2)∑N

i=1
xil ≤ wl ∀ l (3)
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∑N

i=1
yit ≤ Qt ∀ t (4)

xil ≤ wlzil ∀ i, l (5)

yit ≤ Qtuit ∀ i, t (6)

Ci ≥ rlzil ∀ i, l (7)

Ci ≥ (24t + CT)uit ∀ i, t (8)

τi ≥ Ci − di ∀ i (9)

τi ≥ 0 ∀ i (10)

xil ≥ 0 ∀ i, l (11)

yit ≥ 0 ∀ i, t (12)

zil ∈ {0, 1} ∀ i, l (13)

uit ∈ {0, 1} ∀ i, t (14)

The objective of the problem is to minimize the total tardiness of all orders. Constraint (2) is for
satisfying the order quantity with existing lots of items and/or newly released ones. Constraint (3)
specifies the maximum possible number of items in a lot that can be assigned to orders. Constraint (4)
represents a capacity of the production system, i.e., the maximum number of items that can be released
at each period. Constraint (5) specifies the number of items in each lot assigned to different orders.
Constraint (6) limits the total number of newly released items in each time period. Constraints (7)
and (8) specify the completion time of each order. Note that rl in (7) is an estimated value, which can
be calculated by the sum of processing time and waiting time. The waiting time varies dynamically
according to the WIP level, so the estimated waiting time by the average of historical waiting time can
be applicable. Constraint (9) represents the tardiness of each order. Equations (10)– (14) as constraints
specify the ranges of the decision variables.

In [11], the authors proved the NP-hardness of the OLMP and the existence of an optimal order
sequence for matching with lots. The order sequence represents processing priorities of orders; orders
with higher priorities appear earlier in the sequence. They also proposed the order-lot assignment
method called the compact pegging method for a given order sequence. In the compact pegging
method, items (in lots) with less remaining time are assigned to orders with higher priorities, which
results in the best lot-order assignment for the given order sequence. Figure 1 illustrates how lots are
assigned to orders using the compact pegging method for two order sequences. With the compact
pegging method, the completion time of an order is equal to the largest remaining time of lots, which
are assigned to the order and it is less than or equal to those of orders at later positions in the order
sequence. As can be seen in the figure, orders with higher priorities have less completion times. Order
completion times are subject to not only the order sequence but also order quantities, the number of
lots, and the remaining times of lots, while job completion times in 1||

∑
Ti are determined only by

the job sequence. Let ρi be the inter-completion time of order i, which is defined as the time duration
between the completion times of order i and its precedent in the order sequence. The inter-completion
time can be considered as the job processing time in 1||

∑
Ti. However, it is sequence dependent

and can be equal to zero, unlike the job processing time: ρ1 = 4, ρ2 = 4,ρ3 = 0 in Figure 1a and
ρ1 = 2, ρ2 = 4,ρ3 = 2 in Figure 1b although the sum of the inter-completion times is equal to the total
completion time and it is a sequence-independent constant (

∑3
i=1 ρi = 8 in the example). Therefore,

the OLMP cannot be converted into 1||
∑

Ti but can be considered as a new type of machine scheduling
problem with many similarities to 1||

∑
Ti.

Since the OLMP is an NP-hard problem, it is effective to develop efficient heuristic algorithms,
such as [12], for solving large-sized problems. However, we can obtain optimal solutions for small
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and moderate-sized problems if there exist dominance conditions that can reduce the solution space
significantly without affecting optimal solutions. In the following sections, we suggest dominance
conditions for the OLMP and show how they can used to find the optimal solution.

Processes 2020, 8, x FOR PEER REVIEW 4 of 11 

 

significantly without affecting optimal solutions. In the following sections, we suggest dominance 
conditions for the OLMP and show how they can used to find the optimal solution. 

Figure 1. Order-lot matchings using the compact pegging method. 

3. Dominance Conditions 

Since the OLMP has similar characteristics to 1|| ∑ 𝑇௜, we exploit the dominance conditions of 1|| ∑ 𝑇௜ to develop those of the OLMP. 1|| ∑ 𝑇௜is one of the most extensively studied problems in the 
literature, and, as a result, many theoretical theorems have been proposed to establish precedence 
relations among jobs in optimal job sequences. Among them, the most seminal ones are the Emmons’s 
dominance conditions [13] and the Lawler’s decomposition principle [14]. In this section, we show 
that the dominance conditions of Emmons [13] and Lawler [14] can be also applied to the OLMP. 
Since the dominance conditions for 1|| ∑ 𝑇௜  cannot be directly applied to the OLMP due to the 
differences between the OLMP and 1|| ∑ 𝑇௜  as mentioned before, we modified the dominance 
conditions of Emmons [13] and Lawler [14] for their application to the OLMP following the same 
manner of developing theories as Emmons [13] and Lawler [14]. 

At first, we propose theorems and derived corollaries that correspond to the Emmons’s 
dominance conditions [13]. Let 𝐶(•) be the earliest possible total completion time for orders in order 
set •, i.e., the earliest possible time when all orders in order set • can be completed. For example, 𝐶({1}) = 4, 𝐶({2}) = 4, 𝐶({3}) = 2, 𝐶({1, 2}) = 8, 𝐶({1, 3}) = 6, 𝐶({2, 3}) = 6, and 𝐶({1, 2, 3}) = 8 
in Figure 1. Let Bi and Ai be the sets of orders that have been shown, at any point, to precede and 
follow order j in an optimal order sequence, respectively, and let 𝑈௜గ be a set of orders that precedes 
order i in 𝜋. 
Theorem 1. For any two orders j and k with 𝑞௝ ≤, if 𝑑௝ ≤ 𝑚𝑎𝑥( 𝐶(𝐵௞ ∪ {𝑘}), 𝑑௞), then order j precedes order 
k in at least one optimal order sequence (that is, 𝑗 ∈ 𝐵௞ and 𝑘 ∈ 𝐴௝). 

Proof) Consider order sequence 𝜋𝜋 in which all orders in BK precede order k, and order k precedes order j 
with 𝑞௝ ≤ 𝑞௞. Let 𝑇௦ and 𝑇௘ be the times at which order k starts and order j ends, respectively (see Figure 2). 

21=r 42=r 63=r 84=r

251=q 252=q 103=q

151=w 152 =w 103=w 204=w

41=C 832 ==CC

21=r 42=r 63=r 84=r

103=q 252=q 251=q

151=w 152 =w 103=w 204=w

81=C62=C

71=d 52=d 53=d 53=d 52=d 71=d

23=C

3  ,3  ,0 321 === τττ 1  ,1  ,0 321 === τττ

lots

orders

lot remaining time

order completion time

order inter-completion time

0

1

1

15

2

10

3

2 3

10

4

10 105

0

0

3

1

10

2

5

3

2 1

5

4

5 2015

0

(a) Order sequence: 1, 2, 3 

0 4 8 0 2 6 8

(b) Order sequence: 3, 2, 1 

order tardiness:

41 =ρ 42 =ρ 03 =ρ 23 =ρ 42 =ρ 21 =ρ

Figure 1. Order-lot matchings using the compact pegging method.

3. Dominance Conditions

Since the OLMP has similar characteristics to 1||
∑

Ti, we exploit the dominance conditions of
1||

∑
Ti to develop those of the OLMP. 1||

∑
Ti is one of the most extensively studied problems in the

literature, and, as a result, many theoretical theorems have been proposed to establish precedence
relations among jobs in optimal job sequences. Among them, the most seminal ones are the Emmons’s
dominance conditions [13] and the Lawler’s decomposition principle [14]. In this section, we show that
the dominance conditions of Emmons [13] and Lawler [14] can be also applied to the OLMP. Since the
dominance conditions for 1||

∑
Ti cannot be directly applied to the OLMP due to the differences between

the OLMP and 1||
∑

Ti as mentioned before, we modified the dominance conditions of Emmons [13]
and Lawler [14] for their application to the OLMP following the same manner of developing theories
as Emmons [13] and Lawler [14].

At first, we propose theorems and derived corollaries that correspond to the Emmons’s dominance
conditions [13]. Let C(•) be the earliest possible total completion time for orders in order set •, i.e.,
the earliest possible time when all orders in order set • can be completed. For example, C({1}) = 4,
C({2}) = 4, C({3}) = 2, C({1, 2}) = 8, C({1, 3}) = 6, C({2, 3}) = 6, and C({1, 2, 3}) = 8 in Figure 1. Let
Bi and Ai be the sets of orders that have been shown, at any point, to precede and follow order j in an
optimal order sequence, respectively, and let Uπ

i be a set of orders that precedes order i in π.

Theorem 1. For anytwo orders j and k with q j ≤, if d j ≤ max(C(Bk ∪ {k}), dk), then order j precedes order k
in at least one optimal order sequence (that is, j ∈ Bk and k ∈ A j).
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Proof. Consider order sequence ππ in which all orders in BK precede order k, and order k precedes
order j with q j ≤ qk. Let Ts and Te be the times at which order k starts and order j ends, respectively (see

Figure 2). Then, Ts = C
(
Uπ

k

)
and Te = C

(
Uπ

j ∪
{
j
})

. Additionally, let ρπk = C
(
Uπ

k ∪ {k}
)
− C

(
Uπ

k

)
and

ρπj = C
(
Uπ

j ∪
{
j
})
−C

(
Uπ

j

)
be inter-completion times of orders k and j in order sequence π , respectively.

Let π′ be an order sequence that is obtained by interchanging orders j and k in π . Then, we have

ρπ
′

j = C
(
Uπ

k ∪
{
j
})
−C

(
Uπ

k

)
and ρπ

′

k = C
(
Uπ

j ∪ {k}
)
−C

(
Uπ

j

)
. Since q j ≤ qk, ρπk ≥ ρ

π′

j and ρπj ≤ ρ
π′

k . Note

there exists no (in) equality relationship between ρπj and ρπ
′

j (or ρπk and ρπ
′

k ) since they are sequence
dependent. �

We show that interchanging the two orders does not increase the total tardiness. It is clear that
all orders that precede order k or follow order j in the original sequence are unaffected when the two
orders are interchanged. All orders between order k and j are completed earlier with their tardiness
decreased or unchanged. We consider the following two cases to investigate the changes in tardiness
of orders j and k after the interchange:

(a) Suppose d j ≤ dk. We consider the following three subcases:

(a1) If d j ≤ dk < Te, as illustrated in Figure 2, then the decrease of tardiness of order j is ∆τ j =

Te−max(Ts +ρπ
′

j , d j), the increase of tardiness of order k is ∆τk = Te−max(Ts +ρπk , dk), and

the net decrease due to the tow changes is ∆τ j −∆τk = max(Ts + ρπk , dk)−max(Ts + ρπ
′

j , d j),

which is nonnegative since dk ≥ d j and ρπk ≥ ρ
π′

j .

(a2) If d j ≤ Te ≤ dk, ∆τ j − ∆τk = ∆τ j ≥ 0.
(a3) If Te < d j ≤ dk, ∆τ j = ∆τk = 0. Thus, in all cases, the total decrease of tardiness is positive,

or at worst zero, so the change should be made.

(b) Suppose d j ≤ C(Bk ∪ {k}), as also illustrated in Figure 2. Since Bk ⊆ Uπ
k , d j ≤ C

(
Uπ

k ∪ {k}
)
.

Then, again, ∆τ j − ∆τk = max(C
(
Uπ

k ∪ {k}
)
, dk) −max(C

(
Uπ

k ∪
{
j
})

, d j) is nonnegative since

C
(
Uπ

k ∪ {k}
)
≥ max(C

(
Uπ

k ∪
{
j
})

, d j).
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Figure 2. The effect of interchanging two orders in an order sequence.

According to Theorem 1, we can reduce the total tardiness by interchanging the positions of
order j and k in the order sequence if order k precedes order j, q j ≤ qk, and d j ≤ max(C(Bk ∪ {k}), dk).
In Figure 1a, order 1 precedes order 3, q3 ≤ q1 and d3 ≤ d1, so we can reduce the total tardiness from
six to two by interchanging order 1 and order 3 as shown in Figure 1b.

Corollary 1.1. If order j has the properties q j ≤ qi and d j ≤ max(C({i}), di) for all i , j, then order j is the first
in an optimal order sequence.
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Proof. It is obvious by Theorem 1. �

Corollary 1.2. If order j has properties q j ≥ qi and max(C(
{
j
}
), d j) ≥ di for all i , j, then order j is the last in

an optimal order sequence.

Proof. It is obvious by Theorem 1. �

Corollary 1.3. Let the least quantity sequence be an order sequence in which orders of fewer quantities are
placed earlier in the sequence. Then, the least quantity sequence is optimal if it is identical with the earliest due
date sequence.

Proof. It is straightforward by case (a) in the proof of Theorem 1. �

Theorem 2. For any two orders j and k with q j ≥ qk, if dk ≥ max(d j, C
(
A′ j − {k}

)
), where A′ j =

{
i; i < A j

}
,

then order j precedes order k (that is, k ∈ A j and j ∈ Bk).

Proof. Consider sequenceπ in which order k precedes order j, all orders in Bj precede order j, and order j
precedes all orders in Aj . Let Ts and Te be the times at which order k begins and order j ends, respectively.

Since A′ j ⊇ Uπ
j ∪

{
j
}
⊇ Uπ

k ∪ {k} ∪
{
j
}
, C

(
Uπ

j ∪
{
j
})
(= Te) ≤ C

(
A′ j

)
and C

(
Uπ

k

)
(= Ts) ≤ C

(
A′ j −

{
j
}
− {k}

)
.

Consider sequence π′, which is obtained by moving order k to a position immediately after order j in π
(see Figure 3 ). Again, orders before Ts and after Te are unaffected. Order j and all orders between
orders k and j are now processed earlier, which can decrease their tardiness or leave it unchanged.
Only order k can have an increase in tardiness (Equation (15)):

∆τk =


Te −C

(
Uπ

k ∪ {k}
)
, if dk < C

(
Uπ

k ∪ {k}
)
,

Te − dk, if C
(
Uπ

k ∪ {k}
)
≤ dk < Te,

0, if dk ≥ Te.
(15)

�

Since C
(
Uπ

k

)
≤ C

(
A′ j −

{
j
}
− {k}

)
and dk ≥ C

(
A′ j − {k}

)
), we have the following inequalities

(Equation (16)):
C
(
Uπ

k ∪ {k}
)
≤ C

(
A′ j −

{
j
})
≤ C

(
A′ j − {k}

)
≤ dk (16)

Therefore, the alternative, ∆τk = Te − C
(
Uπ

k ∪ {k}
)
, is ruled out. If ∆τk = 0, then moving order

k after order j does not increase the total tardiness. For ∆τk = Te − dk > 0, since dk ≥ d j, we have
d j < Te. It follows that the decrease of tardiness of order j is ∆τ j =

(
Te − d j

)
−max(C

(
Uπ′

k

)
− d j, 0) =

Te −max(C
(
Uπ′

k

)
, d j) = Te −max(C

(
Uπ

j ∪
{
j
}
− {k}

)
, d j).

Thus, ∆τ j − ∆τk = dk −max(C
(
Uπ

j ∪
{
j
}
− {k}

)
, d j). Since dk ≥ max(d j, C

(
A′ j − {k}

)
) and C

(
A′ j

)
≥

C
(
Uπ

j ∪
{
j
})

, dk ≥ max(C
(
Uπ

j ∪
{
j
}
− {k}

)
, d j), i.e., ∆τ j ≥ ∆τk. Thus, postponing order k after order j is

advantageous in this case.
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Corollary 2.1. If order j has properties d j ≥ difor alli , jandd j ≥ C(Ω −
{
j
}
), where Ω is a set of all orders,

then order j is the last in an optimal sequence.

Proof. If q j ≥ qi, order i precede order j by Theorem 1. Otherwise, order i precedes order j by Theorem 2.
�

Theorem 3. For any two orders j and k with q j ≤ qk, if dk ≥ C
(
A′ j

)
, whereA′ j =

{
i; i < A j

}
, then order j

precedes order k (that is, j ∈ Bk andk ∈ A j).

Proof. Consider any sequence in which order j precedes all orders in A j and follows order k. We show
that interchanging orders j and k can only decrease the total tardiness. Let Te be the time at which order
j ends. Since Te ≤ C

(
A′ j

)
and dk ≥ C

(
A′ j

)
, dk ≥ Te. This means that order k maintains zero tardiness

after the interchange. Since all other orders are either remained unmoved or are advanced in time, the
only possible change in tardiness is decreasing. �

Now, we propose properties and a theorem that correspond to the Lawler’s decomposition
principle [14]. Let Cπj be the completion time of order j in order sequence π.

Property 1. Let π be any order sequence which is optimal with respect to the given due dates d1, d2, . . ., dN,
and d′ j be chosen such that

min(d j, Cπj ) ≤ d′ j ≤ max(d j, Cπj ) (17)

Then, any sequence π′ which is optimal with respect to the due dates d′1, d′2, . . . , d′N is also
optimal with respect to d1, d2, . . . , dN (but not conversely).

Proof. This property came from Theorem 1 of Lawler [14] and can be directly applied to the OLMP
when jobs are substituted as orders. Refer to the proof of Theorem 1 of Lawler [14]. �

Property 2. There exists an optimal order sequence π in which all on time orders are in non-decreasing due date
order.

Proof. Suppose order i follows order j in an optimal sequence π, where orders i and j under di ≤ d j are
both on time in π. Then, moving order j after order i yields a sequence for which the total tardiness is
no greater. �

Theorem 4. Suppose that the orders are numbered in non-decreasing due date order, i.e.,d1 ≤ d2 ≤ . . . ≤ dN

(where i < j whenever di = d j and qi ≤ q j). Let order k be such that qk = max j(q j). Then, there exists an
optimal order sequence in which order k can be set in position h ≥ k and the orders preceding and following
order k are determined as Bk = {1, 2, . . . , k− 1, k + 1, . . . , h} and Ak = {h + 1, . . . , n}.
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Proof. Let π be any order sequence that is optimal with respect to the given due dates d1, d2, . . . , dN,
and let π′ be an order sequence which is optimal with respect to the due dates d1, d2, . . . , dk−1, d′k =
max(Cπk , dk), dk+1, . . . , dN. By Property 1, π′ is also optimal with respect to the original due dates.
It follows that Cπ

′

k = Cπk and thus Cπ
′

k ≤ d′k. By Theorem 1, any order j with d j ≤ d′k precedes order k in
π′. Any order j such that d j > d′k would be on time if it precedes order k in π′, which means that such
order follows order k in π′ by Property 2. Thus, order k is preceded by all orders j such that d j ≤ d′k in
π′. Let h be chosen to be the largest integer such that dh ≤ d′k, and the theorem is proved. �

Property 3. Suppose that orders are numbered in non-decreasing due date order, i.e., d1 ≤ d2 ≤ . . . ≤ dN

(where i < j whenever di = d j and qi ≤ q j). Let order k be such that qk = max j(q j). Then, there exists
at least one optimal order sequence in which order k is not placed in position h, where k ≤ h ≤ N − 1
andC({ i | 1 ≤ i ≤ h}) ≥ dh+1.

Proof. By Theorem 4, there exists an optimal order sequenceπ in which Bk = {1, 2, . . . , k− 1, k + 1, . . . , h},
where k ≤ h ≤ N − 1. If C({ i | 1 ≤ i ≤ h}) ≥ dh+1, set d′k = Cπk = C(Bk ∪ {k}) = C({ i | 1 ≤ i ≤ h}). Then,
by Property 1, an optimal order sequence with respect to d′k (say π′) is also optimal with respect to
dk. By Theorem 4, order k is placed in position m in π′ where k ≤ m ≤ N − 1 and d′k < dm+1. Since
dh+1 ≤ d′k = C({ i | 1 ≤ i ≤ h}) < dm+1, m > h, which means that order k is not placed in position h
in π′. �

According to Theorem 4, the order set can be decomposed into two subsets by order k, i.e., Bk
and Ak. Thus, a DP model can be used to find the optimal order sequence, as was done in [14]. The
following notation is used to define the DP model:

S(i, j, k) =
{
l | i ≤ l ≤ j, ql < qk

}
T(S(i, j, k), Q): the total tardiness for an optimal sequence of the orders in S(i, j, k) when the

most progressed Q items, i.e., Q items with the least remaining work, were already assigned to other
orders and thus were not available any longer.

C(S, Q): the total completion time for orders in S when the most progressed Q items were already
assigned to other orders and thus they are not available any longer.

The DP model is given as:

T(S(i, j, kt−1), Q) = min
0≤δ≤ j−kt

{T(S(i, kt + δ, kt), Q) + max(0, C({l | i ≤ l ≤ kt+δ}), Q) − dkt)

+T
(
S(kt + δ+ 1, j, kt),

∑kt+δ
i=1 qi

)
},

where kt = argmax
l

{
ql

∣∣∣ l ∈ S(i, j, kt−1)
}
.

(18)

To select kt in Equation (18), ties are broken by choosing an order with the earliest due date. To
apply the DP model, we set i = 1, j = N, and Q = 0 at first. The initial conditions for e Equation (15)
are k0 = 0, q0 = ∞, T(∅, Q) = 0, and T(

{
j
}
, Q) = max(0, C(

{
j
}
, Q) − d j).

By Property 3, it is sufficient to consider only values of δ satisfying inequality C({l | i ≤ l ≤ kt+δ}) <
dkt+δ+1. As a result, there may be a considerable reduction in the number of subproblems that must be
solved. Let Ψ =

{
δ | 0 ≤ δ ≤ j− kt, C({ l | i ≤ l ≤ kt + δ}) < dkt+δ+1

}
. (Here, it is assumed that dN+1 = ∞

for completeness of Ψ.) Then, Equation (18) can be rewritten as

T(S(i, j, kt−1), Q) = min
δ∈Ψ
{T(S(i, kt + δ, kt), Q) + max(0, C({l | i ≤ l ≤ kt+δ}), Q) − dkt)

+T
(
S(kt + δ+ 1, j, kt),

∑kt+δ
i=1 qi

)
}, where kt = argmax

l
{ql | l ∈ S(i, j, kt−1)}.

(19)

Since the development of Lawler’s decomposition theorem [14], there have been further theoretical
developments in the decomposition theorem for 1||

∑
Ti by many researchers, such as [15–18]. See [19]
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for a review on the latest theoretical developments on 1||
∑

Ti. The variants of Lawler’s decomposition
theorem [14] could be also applied to the OLMP similarly.

4. Examples

We give two examples of the OLMP that can be solved optimally using the dominance rules and
the DP model explained in Section 3.

<Example 1>

Tables 1 and 2 show data for Example 1.

Table 1. Order data for Example 1.

i 1 2 3 4 5

qi 10 40 20 15 50
di 10 10 15 25 30

Table 2. Lot data for Example 1.

L 1 2 3 4 5 6 7 8 9 10

wl 10 10 20 20 10 15 20 20 20 20
rl 5 5 10 20 20 25 30 35 40 50

We apply the dominance rules corresponding to Emmons’s rule [13] to Example 1.

(a) By Corollary 1.1, order 1 is the first since q1 ≤ qi and d1 ≤ di for all i > 1, which implies
B2 = {1}, B3 = {1}, B4 = {1}, B5 = {1}, and A1 = {2, 3, 4, 5}.

(b) By Corollary 1.2, order 5 is the last since q5 ≥ qi and d5 ≥ di for all i < 5, which implies
A1 = {5}, A2 = {5}, A3 = {5}, A4 = {5}, and B5 = {1, 2, 3, 4}.

(c) By Theorem 1, order 3 precedes order 2 since q3 ≤ q2 and d3 ≤ max(C(B2 ∪ {2}) = 20, d2), which
implies B2 = {1, 3} and A3 = {2, 5}.

(d) By Theorem 2, order 2 precedes order 4 since q4 ≤ q2, d4 > max(C(A′2 − {4}) = 20, d2). It follows
that B4 = {1, 2, 3} and A2 = {4, 5}. that B4 = {1, 2 3} and A2 = {4, 5}.

According to (a)–(d), the optimal order sequence is 1, 3, 2, 4, 5 with the total tardiness of 20.
Figure 4 illustrates the optimal order-lot matching for Example 1.
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<Example 2>

Tables 3 and 4 show data for Example 2. We apply the DP model based on the dominance rules
corresponding to Lawler’s rules [14] to Example 2.
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Table 3. Order data for Example 2.

i 1 2 3 4

qi 20 30 40 20
di 10 20 30 40

Table 4. Lot data for Example 2.

L 1 2 3 4 5 6 7

wl 20 20 10 20 20 10 20
rl 10 20 30 40 50 60 70

To apply the DP model, the initial conditions for Equation (16) are given as i = 1, j = N, t = 1,
Q = 0, k0 = 0, q0 = ∞, and d5 = ∞.

We consider order set S(1, 4, 0) = {1, 2, 3, 4}. Since order 3 has the largest quantity among
the considered orders, we obtain k1 = 3. And since Ψ =

{
δ | 0 ≤ δ ≤ 1, C({ l | 1 ≤ l ≤ 3 + δ}) < d3+δ+1

}
,

C({1, 2, 3}) = 50 > d4 and C({1, 2, 3, 4}) = 70 < d5, we obtain Ψ = {1}. Thus, Equation (16) yields:

T(S(1, 4, 0), 0) = T(S(1, 4, 3), 0) + [max(0, C({1, 2, 3, 4}, 0) − d3] + T(∅, 110)
= T(S(1, 4, 3), 0) + 40 + 0.

Note that S(1, 4, 3) = {1, 2, 4} and C({1, 2, 3, 4}, 0) = 70.
We set t = 2 and consider order set S(1, 4, 3) = {1, 2, 4}. We obtain k2 = 2 and Ψ = {0, 1}.

Equation (16) yields:

T(S(1, 4, 3), 0) = min
{

T(S(1, 2, 2), 0) + [max(0, C({1, 2}, 0) − d2] + T(S(4, 4, 2), 50)
T(S(1, 4, 2), 0) + [max(0, C({1, 4, 2}, 0) − d2] + T(∅, 70)

= min
{

[max(0, C({1}, 0) − d1]+10+[max(0, C({4}, 50) − d4] = 0 + 10 + 0 = 10
T(S(1, 4, 2), 0) + [max(0, C({1, 4, 2}, 0) − d2] + T(∅, 70) = T(S(1, 4, 2), 0) + 20 + 0.

Note that S(1, 2, 2) = {1}, S(4, 4, 2) = {4}, S(1, 4, 2) = {1, 4}, C({1, 2}, 0) = 30, and C({1, 4, 2}, 0) =
40. Since T(S(1, 4, 2), 0) ≥ 0, T(S(1, 4, 3), 0) = 10. Thus, we obtain T(S(1, 4, 0), 0) = 50 when an
optimal order sequence is 1, 2, 4, 3. Figure 5 illustrates the optimal order-lot matching for Example 2.
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= min ൜ [𝑚𝑎𝑥( 0, 𝐶({1}, 0) − 𝑑ଵ] + 10 + [𝑚𝑎𝑥( 0, 𝐶({4}, 50) − 𝑑ସ] = 0 + 10 + 0 = 10𝑇(𝑆(1, 4, 2), 0) + [𝑚𝑎𝑥( 0, 𝐶({1, 4, 2}, 0) − 𝑑ଶ] + 𝑇(∅, 70) = 𝑇(𝑆(1, 4, 2), 0) + 20 + 0. 
Note that 𝑆(1, 2, 2) = {1} , 𝑆(4, 4, 2) = {4} , 𝑆(1, 4, 2) = {1, 4} , 𝐶({1, 2}, 0) = 30 , and 𝐶({1, 4, 2}, 0) = 40 . Since 𝑇(𝑆(1, 4, 2), 0) ≥ 0 , 𝑇(𝑆(1, 4, 3), 0) = 10 . Thus, we obtain 𝑇(𝑆(1, 4, 0), 0) = 50 when an optimal order sequence is 1, 2, 4, 3. Figure 5 illustrates the optimal 
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5. Conclusions

In this study, we suggested dominance conditions for the OLMP by modifying those for 1||
∑

Ti to
establish precedence relations among the orders in optimal order sequences. These relationships can
be used to curtail the solution space significantly. We suggested a DP model based on the dominance
conditions to solve the OLMP optimally. The main contribution of this research is to propose the
optimality conditions for the OLMP for the first time and show that the small-sized OLMPs can be
solved optimally using the DP model. Further research is needed to improve the suggested dominance
conditions and DP model to develop an optimal solution algorithm that can solve moderate-sized
problem instances optimally within a reasonable time. Additionally, this study can be extended to
various industries in which matching problems arise. For example, we can use the suggested model
and approach to solve the cargo-ship matching problem [20] and the crane-ship matching problem [21]
in the port industry.
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