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Abstract: This manuscript addresses the regulator design in the discrete-time setting for the unstable
linearized Saint–Venant–Exner model, which describes the dynamics of a sediment-filled water canal.
The proposed regulator ensures the closed-loop stability and proper tracking of polynomial and
periodic reference signals using output feedback in a sample-data setting. To design this regulator, the
system discrete representation is achieved by the application of the structure-preserving Cayley-Tustin
time discretization and the direct relation with the regulator in the continuous-time setting is shown.
The regulator design in the continuous-time setting is developed using the backstepping methodology
ensuring the closed-loop stability and the observer design, while the Sylvester equations are solved
to achieve proper tracking. Finally, the numerical simulation results are presented to show the
performance of the regulator.
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1. Introduction

In many chemical, hydro-geological, petrochemical, and manufacturing processes the dynamic
models take the mathematical form of partial differential equations (PDEs). One of these types of models
is the Saint–Venant–Exner (SVE) equations, which consist of non-linear PDEs and are used to model the
dynamics of a sediment-filled water canal with arbitrary values of the bottom slope, friction, porosity,
and water-sediment interaction. Due to their nature, one of the crucial aspects of these distributed
parameter systems is the complexity given by the infinite-dimensional system representation [1,2],
which is a challenging factor when it comes to the controller/regulator design and realization.

The primary goal of a regulator is to drive the desired output of a system to behave exactly as
demanded, and at the same time it needs to assure the stability of the closed-loop system. Using
early lumping methods is the simplest way to design the controller for distributed parameter systems.
In these methods, the PDEs are generally converted to sets of ordinary differential equations (ODEs),
which allows the use of standard control methodology applicable to ODE systems. But, this also results
in some mismatch between the dynamical properties of the original distributed parameter and the
lumped parameter models, thus, affecting the controller [3].

Another way to deal with distributed parameter processes is to exploit the infinite-dimensional
characteristic of the system, and there are significant research efforts made to solve the regulator
design problem for infinite-dimensional systems [4,5]. In [6], the generalized geometric methods were
introduced in the regulator design for the first-order hyperbolic PDEs, and the robust output regulation
problems were considered in [7–9], while taking into account infinite-dimensional exogenous systems
(an independent system responsible for the generation of the tracking signal and/or disturbance).
Specifically for the SVE model, there are several contributions that take into account the characteristics
of the model. In [10], the proportional and integral output feedback controllers were proposed by
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using the semigroup theory. The H∞ optimization framework was applied in [11] to design a controller
considers the both water resource management and performance with respect to the users. And
in [12], a Lyapunov approach was used to obtain the control laws that stabilize the system considering
full-state and output feedback.

More recently, in [13], the exponential stabilization of this model was achieved by the backstepping
design, also considering full-state and output feedback, where the design of an exponentially stable
Luenberger observer was considered for state reconstruction. The PDE backstepping design has proved
to be of valuable for the boundary stabilization of distributed parameter systems. Essentially, the
technique consists of finding a suitable transformation that maps the closed-loop system into a stable
target system. Due to the invertibility of the transformation, the original and the target system have
equivalent stability [14,15]. Other applications and developments along this line include, for instance,
the boundary observer based-control design for a hyperbolic PDE [16], the boundary observer for a
class of time-varying linear hyperbolic partial integral-differential equations (PIDEs) [17], and control
of general linear heterodirectional hyperbolic ODE–PDE–ODE systems [18].

All the contributions mentioned above were developed in the continuous-time domain, but, as most
modern and state-of-the-art controller realizations are digital and discrete, time discretization realizations
need to be taken into account at the final design stage. Although some contributions addressed the
stabilization of PDEs using backstepping with time sampled-data [19,20], these were made considering
specific scalar equations and the design of a controller in the discrete-time setting was not the objective
of these works. Traditional time discretization schemes (for instance, explicit or implicit Euler) could be
used to obtain a discrete-time representation, but they have the disadvantage of reducing the accuracy
of the discrete system representation as the sampling period increases [21]. Moreover, the sampling
may impact the overall model and closed-loop stability when the controller is implemented. Therefore,
a different type of time discretization scheme, that provides a reliable transformation of a continuous
linear infinite-dimensional system representation to a linear discrete-time infinite-dimensional needs
to be considered. A discretization scheme that accounts for this design criteria is the Crank-Nicolson
midpoint integration rule, which can be easily applied to infinite-dimensional systems [22]. This type of
discretization is also known as Cayley-Tustin time discretization, and it has been shown to preserve the
intrinsic energy and dynamical characteristics of the linear distributed parameter system [23] without
the application of spatial discretization or/and model reduction.

The unstable linearized SVE model is considered in this manuscript. The PDE system is given as
a system of first-order transport hyperbolic PDE equations, with in-domain and boundary coupling.
Based on this system, a discrete-time output regulator design is presented and attains the following
objectives: (1) ensures the stability by output feedback; (2) considers the stabilization of the problem
in the discrete-time setting, obtained by the application of the Caley-Tustin time discretization; (3)
achieves tracking of periodic and polynomial signals generated by an exosystem, which is ensured
by the solution of the corresponding Sylvester output regulation equations. To properly design the
discrete-time regulator, the relation between the discrete-time and continuous-time control is developed,
such that the closed-loop stability and proper tracking of the discrete-time representation is assured if
the controller design is known in the continuous-time.

The manuscript is organized as follows: in Section 2, the SVE system model and its properties are
introduced together with the exosystem and control objectives. In Section 3, the system stabilization,
observer design, and output regulation in the continuous-time setting are developed. In Section 4,
the Caley-Tustin time discretization is applied to the system, and the discrete regulator design is
developed. The stability of the closed-loop system is shown. In Section 5, the simulations results are
presented and the regulator performance is discussed. Lastly, in Section 6, the final remarks are made.

2. Problem Formulation

The Saint–Venant and Exner equations are used to describe the dynamics in a sediment-filled
open channel with rectangular cross-section [13]. Considering H(t, ζ) to be the water depth, V(t, ζ)
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as the water velocity and B(t, ζ) as the depth of the sediment layer above the channel bottom, the
dynamics of the system can be described as the equations below:

∂H
∂t

+ V
∂H
∂ζ

+ H
∂V
∂ζ

= 0

∂V
∂t

+ V
∂V
∂ζ

+ g
∂H
∂ζ

+ g
∂B
∂ζ

= gSb − C f
V2

H
∂B
∂t

+ aV2 ∂V
∂ζ

= 0

(1)

As shown in [13], this system can be linearized around a steady-state and the Cardano-Vieta method
can be applied to rewrite it in the characteristic form, which can be llustrated in Figure 1.

α1

α1 σ12

β2

σ21

β1

ν(ζ, t)

x1(ζ, t)

x2(ζ, t)

u(t)

q2

q1

ρ2

ρ1

ζ = 0 ζ = 1

Figure 1. PDE system (Equation (2)) representation.

This linearized system is given by the following coupled system of first-order hyperbolic partial
differential equations, in the domain {t ∈ <+, ζ ∈ [0, 1]}, with t representing time and ζ representing
the dimensionless spatial variable:

∂ν

∂t
= µ

∂ν

∂ζ
+α1ν +β1x1 +β2x2

∂x1

∂t
= −γ1

∂x1

∂ζ
+α1ν +σ11x1 +σ12x2

∂x2

∂t
= −γ2

∂x2

∂ζ
+α1ν +σ21x1 +σ22x2

(2)

ym(t) = ν(0, t)

y(t) = x1(1, t)

With the following algebraic boundary conditions:

ν(1, t) = ρ1x1(1, t) + ρ2x2(ζ = 1, t) + u(t)
x1(0, t) = q1ν(0, t)
x2(0, t) = q2ν(0, t)

(3)

These linear hyperbolic PDEs represent the transport of x(ζ, t) =
[

ν, x1, x2
]T ∈ L2(0, 1) (a real

Hilbert space); γ1, γ2 and µ are the system’s characteristics velocities; σij for i = 1, 2 and j = 1, 2, α1, β1

and β2 are the parameters representing the in-domain interaction between the state variables; and ρ1,
ρ2, q1 and q2 are parameters representing the interaction on the boundaries. All these parameters are
obtained from the characteristic form of the SVE model [13].

Usually, the openings of the gates located at the ends of the channel can be controlled to achieve
the stabilization of the water level and flow rate. Thus, u(t) ∈ < (a real finite space), the system input,
is considered to be control of the downstream gate, represented by the boundary actuation at ζ = 1,
shown in (3). Measurements at the upstream (ζ = 0) are considered to be the system measured output
ym(t) ∈ < and are used to reconstruct the states with a Luenberger observer. The system desired
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system output y(t) ∈ < is related to the properties of the water downstream. There are no direct
measurements of this output and the regulator aim is to control it as desired. Thus, this system output
should properly follow a predetermined pattern if the regulator is properly designed.

This system can be represented as an abstract differential equation:

ẋ(t) = Ax(t) + Bu(t)
ym(t) = Cmx(t)
y(t) = Cx(t)

(4)

where A is a linear operator L(L2(0, 1), L2(0, 1)), B is the linear input operator L(<, L2(0, 1)), Cm is the
measured output operator L(L2(0, 1),<) and C is the desired output operator L(L2(0, 1),<).

In this contribution, the goal is to achieve proper tracking of a reference signal, while maintaining
the system stability. It is considered that the reference signal yr(t) ∈ < to be tracked by the system
output y(t) is generated as the output of a known finite-dimensional exogenous system (also called
exosystem), which is independent from the system (the exosystem affects the system dynamics, but
not the other way around) and is defined as the following throughout this work:

ż(t) = Sz(t), t > 0, z(0) ∈ Re (5a)

yr(t) = Qz(t), t ≥ 0 (5b)

where the matrix S : D(S) : Re → Re gives the dynamics of the exosystem states and Q is a matrix that
gives the desired output tracking signal yr(t).

Assumption 1. The reference signal consists of periodic and polynomial functions, such that the exosystem
dynamics can be represented in the following form:

S =

[
J1 0
0 J2

]
, J1 =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0...

...
...

. . .
...

0 0 0 . . . 0

 , J2 =


0 f1 0 0 . . .

− f1 0 0 0 . . .
0 0 0 f2 . . .
0 0 − f2 0 . . ....

...
...

...
. . .

 (6)

notice that J1 and J2 are decoupled block matrices and it is assumed that each fi is unique. J1 generates a
polynomial signal and the size of J1 (n1) determines the polynomial degree. J2 generates a linear combination of
periodic function, where each fi is responsible for a function with different periodicity. Therefore, the size of J2

will be n2, and it is an even number.

Remark 1. The block matrix J1 has all eigenvalues equal zero (i.e., σ(J1) = 0) with multiplicity equal to the
size of the matrix. J2 on the other hand has conjugated complex eigenvalues σ(J2) = {± fij}. Therefore, the
spectra of S in Equation (5) is σ(S) = σ(J1) ∪ σ(J2) = {0,± fij}. Due to their structures, J1 is a Jordan block,
while J2 is a diagonal block matrix and its eigenvectors are filled with zeros in all rows except in the ones that
correspond to each fi. The elements in these rows will be [1, −j]T and [1, +j]T for the corresponding ± fij
eigenvalues.

This exosystem will generate a linear combination of a polynomial (∑n1
i=0 aiti from J1) and

periodic functions with frequencies fi (∑n2/2
i=0 bisin( fit) + cicos( fit) from J2), and Q =

[
Q1, Q2

]
=[

Q1,1, . . . , Q1,n1 , Q2,1, . . . , Q2,n2

]
and the initial conditions z(0) are defined accordingly to match the

desired tracking signal. Without loss of generality, one can extend the ensuing design to the case when
the exosystem is infinite dimensional [9].

In this contribution, an exosystem that generates a first-order polynomial in combination a
periodic signal with one frequency is considered. Therefore, the desired reference signal (yr(t)) has a
general form given by:
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yr(t) = Q1,1z1(0) + (Q1,2 + Q1t)z2(0)︸ ︷︷ ︸
J1

+ [Q2,1cos( f t)−Q2,2sin( f t)] z3(0) + [Q2,2cos( f t) + Q2,1sin( f t)] z4(0)︸ ︷︷ ︸
J2

(7)

with:

J1 =
[0 1
0 0

]
, J2 =

[
0 f
− f 0

]
(8)

The tracking error e(t) is defined as the difference between the system output and the tracking
signal:

e(t) = y(t)− yr(t) (9)

In the continuous-time setting the regulation problem can be defined as finding a regulator of the
form:

u(t) = K[x(t)] + Lz(t) (10)

where K(·) is the linear feedback gain operator L(L2(0, 1),<) that is used to stabilize the system and L
is the feedforward gain L(Re,<) that guarantees proper tracking of the desired signal. Therefore, the
regulator should guarantee the following conditions:

• The closed-loop system is exponentially stable;
• For the closed-loop system, the tracking error e(t→ ∞) = 0, ∀x(0) ∈ X, z(0) ∈ <e;

2.1. System Properties

2.1.1. Linearized System Stability

The system stability can be determined by the analysis of the eigenvalue problem Aψ(ζ) = λψ(ζ),

where ψ(ζ) are the eigenvector of the system, in this case given by ψ(ζ) =
[
ψ1(ζ), ψ2(ζ), ψ3(ζ)

]T
,

where ψi(ζ) are the eigenfunctions, and λ is the system eigenvalues.

Lemma 1. The eigenvalues of the system are given as the solution of the following non-linear equation:

c(λ) = q1 [M31(1, λ)− ρ1M11(1, λ)− ρ2M21(1, λ)]

+q2 [M32(1, λ)− ρ1M12(1, λ)− ρ2M22(1, λ)] + [M33(1, λ)− ρ1M13(1, λ)− ρ2M23(1, λ)] = 0
(11)

where Mij are the elements of the exponential matrix given by eV−1(A∗−λI)ζ , where V is a matrix with the
system velocities and A∗ is the matrix with the in-domain coupling coefficients.

Proof. The operator A can be written as A = −V∂ζ + A∗, where V is a matrix with the system velocities
and A∗ is a matrix with the in-domain coupling coefficients. For the particular system considered (given
in Equation (2)):

V =

−µ 0 0
0 γ1 0
0 0 γ2

 ; A∗ =

α1 β1 β2

α1 σ11 σ12

α1 σ21 σ22

 (12)

Therefore, the eigenvalue problem can be written as:

−V∂ζψ(ζ) + A∗ψ(ζ) = λψ(ζ)→ ∂ζ ψ(ζ) = V−1(A∗ − λI)ψ(ζ) (13)

which has the following general solution:

ψ(ζ) = eV−1(A∗−λI)ζ ψ(ζ = 0) (14)
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with:

eV−1(A∗−λI)ζ =

M11(ζ, λ) M12(ζ, λ) M13(ζ, λ)

M21(ζ, λ) M22(ζ, λ) M23(ζ, λ)

M31(ζ, λ) M32(ζ, λ) M33(ζ, λ)

 (15)

Finally, applying the boundary conditions of Equations (3)–(14) with the definition given in
Equation (15), the non-linear equation shown in Equation (11) is obtained.

In this contribution, the system parameters as shown in Table 1 are considered. For these values,
the eigenvalue distribution is shown in Figure 2. With the values considered, it is possible to conclude
that the steady-state considered generates an unstable linearized system. Furthermore, it has an infinity
number of unstable eigenvalues, which would not be easily stabilized with techniques generally used
for linear finite systems, such as pole-placement.

Table 1. Values of the parameters considered.

Parameter Value Parameter Value

q1 = q2 1 ρ1 = ρ2 0.5

σ11 = σ21 = β1 0.2 σ12 = σ22 = β2 0.05

α1 0.1 µ 2

γ1 0.5 γ2 1

Figure 2. System eigenvalue distribution for the parameters given in Table 1.

2.1.2. Resolvent and Transfer Function

In this section, the system’s resolvent and transfer function are derived, as they will be used in
the following sections. The resolvent is used to generate the discrete representation of the system,
shown in Section 4.1. The transfer function and the resolvent are also necessary to solve the Sylvester
equations related to the output regulation problem, defined in Section 3.2.

Lemma 2. The system resolvent is given by:

X(ζ, s) = eV−1(A∗−sI)ζ


q1

q2
1

 1
c(s)

∫ 1
0

[
g1(1− η, s) g2(1− η, s) g3(1− η, s)

]
x̄0(η)dη +

∫ ζ
0 e−V−1(A∗−sI)ηV−1 x̄0(η)

︸ ︷︷ ︸
(sI−A)−1 x̄0

(16)
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with gi(1− η, s) = ρ1M1,i(1− η, s)+ ρ2M2,i(1− η, s)−M3,i(1− η, s), with Mj,i defined as in Equation (14)
and c(s) is the same function given in Equation (11) (as expected, if s = λ, (sI − A)−1@ ). (sI − A)−1B and
the system transfer function are:

X(ζ, s) = eV−1(A∗−sI)ζ

 q1

q2

1

 1
c(s)︸ ︷︷ ︸

(sI−A)−1B

U(s); G(s) =
Y(s)
U(s)

= C(sI − A)−1B = 1
c(s) (17)

Proof. By applying Laplace Transform in the system defined by Equation (4), the following system
is obtained: {

X(s)− x0 = AX(s) + BU(s)
Y(s) = CX(s)

(18)

Using the fact that A(·) = −V∂ζ(·) + A∗(·) gives the general solution as:

X(ζ, s) = eV−1(A∗−λs)ζ X(s, ζ = 0) +
∫ ζ

0 V−1eV−1(A∗−λs)(ζ−η)x0(η)dη (19)

By applying the boundary conditions shown in Equation (3), the general solution can be written
as X(ζ, s) = (sI − A)−1x0 + (sI − A)−1BU(s) where the operator (sI − A)−1 and the function
(sI − A)−1B are the ones shown in Equations (16) and (17), respectively.

3. Continuous Time Regulator Design

First, the regulator in the continuous time setting is considered, as represented in Figure 3. It is
necessary to find a control law that guarantees the closed-loop stability and proper output tracking
using only the measured output information provided by the plant.

˙̂x(t) = Ax̂(t) + Bu(t) + LO [y(t)− ŷ(t)]

x̂(t = 0), ẑ(t = 0)

˙̂z(t) = Sẑ(t) + Le [yr(t)− ŷr(t)]

u(t) = Kx̂(t) + Lẑ

Controller

ẋ(t) = Ax(t) + Bu(t)

x(t = 0), z(t = 0)

ż(t) = Sz(t)

u(t)

Plant

y(t)

yr(t)

Figure 3. Continuous closed-loop representation.

3.1. System Stabilization

The first part of the controller is designed to guarantee the closed-loop stability of the system
given by Equation (2) or, in a general form, by Equation (4), such that:

u(t) = Kx(t) + r(t) (20)

Which leads to a stable closed-loop system:
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ẋ(t) = (A + BK)x(t) + Br(t) = Āx(t) + Br(t)
y(t) = Cx(t)

(21)

Thus, it is desired to find a proper operator K(·) that achieves closed-loop stabilization
(Ā = A + BK is stable). To obtain closed-loop stability for the PDE system, backstepping is applied, as
it was developed in [13] for continuous-time setting and it is shown in Appendix A. Although other
methods could be applied to ensure the closed-loop stability [10–12], the backstepping methodology
has been used for boundary control, as it maps the closed-loop system to a stable desired target system.
Specifically for systems of hyperbolic PDEs, finite-time stabilization of the closed-loop system can be
achieved by choosing a target system with this type of stability [18]. The following control law is able
to map the closed-loop system into the stable target system (given by Equation (A4)):

u(t) = K[x(t)] + r(t) = −ρ1x1(t, ζ = 1)− ρ2x2(t, ζ = 1)

+e−
α1
µ

∫ 1

0

[
K1(1, η)e

α1
µ η

ν(η, t) + K2(1, η)x1(η, t) +K3(1, η)x2(η, t)] dη + r(t)
(22)

where the integral kernels (Ki(ζ, η)) need to satisfy the system of hyperbolic PDEs given by Equation (A3).

Remark 2. The target system shown in Equation (A4) can be represented in a general form as:

˙̃x(t) = Ãx̃(t) + B̃r′(t)
y(t) = C̃x̃(t)

(23)

If the transformation T shown in Equation (A2) exists, then the closed loop system (A + BK) can be transformed
in the target system. Therefore, the transformation is such that x̃(t) = Tx(t) and x(t) = T−1 x̃(t), and, finally,
T(A + BK)T−1 = Ã. From linear algebra, the following properties of the transformation of a linear system
are guaranteed:

σ(A + BK) = σ(Ã) (24a)

[sI − (A + BK)]−1 (·) = T−1
[
(sI − Ã)−1

]
T(·) (24b)

[sI − (A + BK)]−1 B = T−1 [(sI − Ã)−1] TB = T−1 [(sI − Ã)−1] B̃ (24c)

GCL(s) = C [sI − (A + BK)]−1 B = CT−1 [(sI − Ã)−1] TB = C̃
[
(sI − Ã)−1] B̃ = G̃(s) (24d)

Therefore, the closed-loop will be stable if the target system is stable (and the transformation T and its
inverse exist).

Lemma 3. The closed-loop system will reach the origin in a finite-time of t = ts = φ1 + φ2, with φ1 = 1
µ and

φ2 = max
{

1
γ1

, 1
γ2

}
and r(t) = 0.

Proof. From the linear properties shown in Remark 2, it is important to notice that the closed-loop
dynamics will not necessarily be exactly the same as the target system. But, due to the structure of
the target system shown in Equation (A4), it is easy to see that if r(t) = 0, then r′(t) = 0 and W(ζ, t >
φ1) = 0, ∀ζ ∈ [0, 1], with φ1 = 1

µ . This also implies that X1(0, t > φ1) = X2(0, t > φ1) = 0 due to the
boundary conditions, which finally leads to X1(ζ, t > φ1 + φ2) = X2(ζ, t > φ1 + φ2) = 0, ∀ζ ∈ [0, 1],

where φ2 = max
{

1
γ1

, 1
γ2

}
. Therefore, the target system will reach steady-state (x̃(ζ, t) = 0) in a

finite-time of t = ts = φ1 + φ2. Due the transformation T, the closed-loop states will be x(t) = T−1 x̃(t)),
thus x(ζ, t) = 0, ∀ζ ∈ [0, 1] for t ≥ ts.
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Thus, the control law given in Equation (22) will stabilize the PDE system in a finite-time ts. With
the system stabilized, it is expected that system’s properties (such as the resolvent, and consequently,
the transfer function) will change in the closed-loop.

Lemma 4. The closed-loop resolvent is given by:

(sI − Ā)−1(·) =
{
(sI − A)−1+

(sI − A)−1B
[

I − K(sI − A)−1B
]−1

K(sI − A)−1
}
(·)

(25)

which leads to the closed-loop transfer function as:

Ḡ(s) = C(sI − Ā)−1B =

G(s)
{

I +
[

I − K(sI − A)−1B
]−1

K(sI − A)−1B
} (26)

Proof. The closed-loop resolvent is obtained as follows:

(sI − Ā)−1(·) = (sI − A− BK)−1(·) = (sI − A)−1
[

I − BK(sI − A)−1
]−1

(27)

And applying Woodbury identity to the term in brackets gives the resolvent shown in
Equation (25). By using the definition of the open-loop transfer function (G(s) = C(sI − A)−1B),
Equation (26) is easily obtained.

Therefore, by knowing (s− A)−1B and the feedback control gain K, it is possible to easily calculate
the closed-loop properties. Although Equations (25) and (26) might seem to increase the complexity
on finding the closed-loop properties, control laws as given in Equation (22) will result in a integral
equation if one tries to calculate these properties directly.

3.2. Output Regulation

The last step in the design of the regulator in the continuous-time setting is finding the feedforward
gain L that achieves proper tracking of the signal generated by the exosystem states (z(t)) given by
Equations (5) and (6). The control law obtained after taking the feedforward gain L into account is
given by Equation (10)

u(t) = Kx(t) + Lz(t) (28)

Lemma 5. The proper output regulation can be easily achieved by solving the following Sylvester equation:

ΠS = ĀΠ + BL = (A + BK)Π + BL
CΠ = Q (29)

Proof. First, the error er(t) = x(t)−Πz(t) is defined, and, considering that u(t) = K [x(t)] + r(t),
taking the time derivative gives :

ėr(t) = ẋ(t)−Πż(t) = (A + BK)x(t)−ΠSz(t) + Br(t) (30)

If we consider that there is a feedforward gain L, such that r(t) = Lz(t), and by adding and
subtracting (A + BK)Πz(t):

ėr(t) = (A + BK) [x(t)−Πz(t)] + [(A + BK)Πz(t)−ΠSz(t) + BLz(t)] (31)



Processes 2020, 8, 915 10 of 30

And by making the term in the second bracket equal zero:

ėr(t) = (A + BK)er(t) (32)

which generates a stable system if Equation (29) holds. Notice that the tracking error e(t), defined in
Equation (9), will be:

Cer(t) = Cx(t) + CΠz(t) = y(t)− yr(t) + [CΠz(t)−Qz(t)] (33)

Therefore, if CΠ = Q, then Cer(t) = e(t), and, as er(t) is stable, e(t) will decrease and proper
tracking is achieved.

Remark 3. From Remark 2 and Lemma 3, it is possible to say that er(t) is going to reach the origin at a finite
time ts. Thus, y(t) = yr(t) for t > ts, as e(t) = Cer(t) = 0 for t > ts. Also, as er(t) = 0 for t > ts,
x(t) = Πz(t) and Π can be recognized as a mapping between the system states and the exosystem states when
proper tracking is achieved.

Remark 4. Due to the exosystem structure defined in Assumption 1, the Sylvester equation shown in
Equation (29) can be separated in two different sets of equations and solved separately.

Lemma 6. Considering the same number of inputs as of outputs, the solution for the first set of Sylvester
equations shown in Remark 4 will be:

L1,i = [Ḡ1(0)]
−1

[
Q1,i +

i−1
∑

j=1
(−1)i−(j−1)Ḡi−(j−1)(0)L1,j

]
Π1,i =

i
∑

j=1
(−1)i−j [(0− Ā)−1]i−(j−1) BL1,j

(34)

for i = 1, ..., n1, where L1 =
[
L1,1, . . . , L1,n1

]
, Π1 =

[
Π1,1, . . . , Π1,n1

]
and Ḡk(0) = C

[
(0− Ā)−1]k B, such

that Ḡ1(0) = C
[
(0− Ā)−1] B = Ḡ(0). And for the second set of equations, the solution will be:

L2,2i−1 = Re
[
Ḡ( fij)−1]Q2,2i−1 − Im

[
Ḡ( fij)−1]Q2,2i

L2,2i = Re
[
Ḡ( fij)−1]Q2,2i + Im

[
Ḡ( fij)−1]Q2,2i−1

Π2,2i−1(ζ) = Re
[
( fijI − Ā)

−1 B
]

L2,2i−1 − Im
[
( fijI − Ā)

−1 B
]

L2,2i

Π2,2i(ζ) = Re
[
( fijI − Ā)

−1 B
]

L2,2i + Im
[
( fijI − Ā)

−1 B
]

L2,2i−1

(35)

for i = 1, ..., n2/2, where L2 =
[
L2,1, . . . , L2,n2

]
and Π2 =

[
Π2,1, . . . , Π2,n2

]
.

Proof. For the first set of Sylvester equation it is easy to see that due to the structure of J1 considered
in Assumption 1, the following relation must hold:

Π1,i = ĀΠ1,i+1 + BL1,i+1 (36)

for i = 1, ..., n1 − 1 and with 0 = ĀΠ1,1 + BL1,1. Applying (0− Ā)−1 on both sides and isolating Π
leads to:

Π1,i+1 = −(0− Ā)−1Π1,i + (0− Ā)−1BL1,i+1 (37)

with Π1,1 = (0− Ā)−1BL1,1, which recursively leads to Π1,i in Equation (34). Applying C in both sides
of this last equation, taking into account that CΠ1,i = Q1,i and isolating for L1,i leads to the result
shown in (34).
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For the second set of Sylvester equations, first, both sides of the equation are multiplied by the
eigenvector of J2, and taking into account that J2φJ2 = λJ2 φJ2 leads to:

Π2 J2φJ2 = Π2λJ2 φJ2 = ĀΠ2φJ2 + BL2φJ2 (38)

From Remark 1, the eigenvectors of J2 are all null except at the corresponding row of ± fij, with
i = 1, ..., n2/2. Therefore:

Π2φJ2 =
(
λJ2 I − Ā

)−1 BL2φJ2

[Π2,2i−1 Π2,2i] [1 j]T = ( fijI − Ā)
−1 B [L2,2i−1 L2,2i] [1 j]T

(39)

and the equivalence of the complex numbers from both sides of the equations gives the solution for
Π2,2i−1 and Π2,2i. Applying C in both sides, knowing that CΠ2,i = Q2,i gives the results shown in
Equation (35).

Remark 5. From the solution shown in Lemma 6, it is possible to conclude that the solutions of the Sylvester
equations Π exist if σ(Ā) 6= σ(S) = σ(J1)∪ σ(J2), such that Ḡ(λS) 6= ∞. In a similar way, for the feedforward
gains L to exist the eigenvalues S must not be a zero of the transfer function, as the inverse of the transfer
function must exist (which means that Ḡ(λS) 6= 0, such that L exist in Equations (34) and (35)).

For the exosystem shown in Equation (8), the solution of the Sylvester equations will be L =[
L1,1 L1,2 L2,1 L2,2

]
and Π =

[
Π1,1 Π1,2 Π2,1 Π2,2

]
, given by:

L1,1 = Ḡ(0)−1Q1,1 Π1,1(ζ) = (0− Ā)
−1 BL1,1

L1,2 = Ḡ(0)−1 [Q1,2 + Ḡ2(0)L1,1] Π1,2(ζ) = − (0− Ā)
−1

(0− Ā)
−1 BL1,1 + (0− Ā)

−1 BL1,2
(40)

and:

L2,1 = Re
[
Ḡ( f j)−1]Q2,1 − Im

[
Ḡ( f j)−1]Q2,2

L2,2 = Re
[
Ḡ( f j)−1]Q2,2 + Im

[
Ḡ( f j)−1]Q2,1

Π2,1(ζ) = Re
[
( f jI − Ā)

−1 B
]

L2,1 − Im
[
( f jI − Ā)

−1 B
]

L2,2

Π2,2(ζ) = Re
[
( f jI − Ā)

−1 B
]

L2,2 + Im
[
( f jI − Ā)

−1 B
]

L2,1
(41)

3.3. System Observer Design

The control law defined in Equation (22) needs a fullstate feedback measurement across the whole
domain. As this is generally not practical or viable, in this section the observer design for thesystem
shown in Equations (2) and (3) is considered. The observer dynamics will be given by the following
set of PDE’s: 

∂ν̂

∂t
= µ

∂ν̂

∂ζ
+ α1ν̂ + β1 x̂1 + β2 x̂2 + e−

α1
µ ζ l1(ζ) [ym(t)− ν̂(ζ = 0)]

∂x̂1

∂t
= −γ1

∂x̂1

∂ζ
+ α1ν̂ + σ11 x̂1 + σ12 x̂2 + l2(ζ) [ym(t)− ν̂(ζ = 0)]

∂x̂2

∂t
= −γ2

∂x̂2

∂ζ
+ α1ν̂ + σ21 x̂1 + σ22 x̂2 + l3(ζ) [ym(t)− ν̂(ζ = 0)]

ν̂(1, t) = ρ1 x̂1(1, t) + ρ2 x̂2(1, t) + u(t)

x̂1(0, t) = q1ym(t)

x̂2(0, t) = q2ym(t)

(42)

where x̂(ζ, t) =
[

ν̂ x̂1 x̂2
]T ∈ L2(0, 1) are the reconstructed states and li(ζ) are the in-domain observer

gains. Similarly to the system stabilization shown in Section 3.1 and Appendix A, the backstepping
methodology is used once again to find the appropriate gains for the observer. Other techniques
could be used, but, once again, the backstepping methodology can be used to ensure finite-time
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convergence of the observer states to the system states. The derivation of the observer gains are shown
in Appendix B.

The observer dynamics can be written in a general state-space representation as:

˙̂x(t) = Âx̂(t) + Lo,1 [y(t)− Cm x̂(t)] + Lo,2 [y(t)] + Bu(t) =
˙̂x(t) = Âx̂(t) + Lo,1Cm [x̄(t)− x̂(t)] + Lo,2Cm [x̄(t)] + Bu(t)

(43)

where Lo,1 is related to the in-domain observer gains and Lo,2 is related to the boundary observer gains
shown in Equation (A6). Although Â has the same in-domain operators as A, it has different boundary
conditions, such that A = Â + Lo,2Cm.

Lemma 7. The system observer error will reach the origin in a finite-time of t = to = φ2 + φ1, with

φ2 = max
{

1
γ1

, 1
γ2

}
and φ1 = 1

µ

Proof. Due to the structure of the target system shown in Equation (A9), it is easy to see that ẽ1(ζ =

0, t > φ2) = ẽ2(ζ = 0, t > φ2) = 0, ∀ζ ∈ [0, 1], with φ2 = max
{

1
γ1

, 1
γ2

}
. This also implies that

ẽ3(ζ = 0, t > φ2) = 0 due to the boundary condition. Finally, ẽ3(ζ, t > φ1 + φ2) = 0, ∀ζ ∈ [0, 1], where
φ1 = 1

µ . Therefore, the observer error target system will reach the origin (ẽ(ζ, t) = 0) in a finite-time of
t = to = φ2 + φ1. As backstepping is just a linear transformation of the observer error, such that the
original observer error is related to the target system by ê = T−1 ẽ(t), ê(t) = 0, ∀ζ ∈ [0, 1] for t ≥ to.

3.4. Exosystem Observer

If the exosystem dynamics is known, but its states are not available, it is possible to reconstruct
the states using the reference signal yr(t). As the exosystem considered here is a finite system (as
shown in Equations (5) and (6)), the following observer is considered:

˙̂z(t) = Sẑ(t) + Le [yr(t)−Qẑ(t)] = Sẑ(t) + LeQ [z(t)− ẑ(t)] (44)

where ẑ is the estimated exosystem state and Le is the observer gain to be defined. The exosystem
observer error is given by êe(t) = z(t)− ẑ(t) and its dynamics will be:

˙̂ee(t) = (S− LeQ)êe(t) (45)

If (S, Q) is detectable, then it is possible to guarantee the reconstruction of the significant exosystem
states and stabilization can be achieved by using pole-placement.

Exosystem Finite-Time Observer

The observer design from the previous section attains stabilization in a exponential matter. Here,
the finite-time observer is considered to obtain a faster estimation of the exosystem observer. This
kind of stabilization was shown in [24] and used in [25]. For this design, two exosystem observers
(ẑ1 and ẑ2) with different observer gains (Le,1 and Le,2) are considered and the redundant information
from this two observers can be used in combination with previous information to get the estimation to
converge in a finite-time. This observer equations are given as:

ẑF(t) =
[

I 0
] [I e(A−Le,1Q)DF

I e(A−Le,2Q)DF

]−1([
ẑ1(t)
ẑ2(t)

]
−
[

e(A−Le,1Q)DF ẑ1(t− DF)

e(A−Le,2Q)DF ẑ2(t− DF)

])
(46)

where ẑF(t) is the estimation given by the finite-time observer, DF is the time delay used, e(A−Le,iQ)DF

is the exponential matrix and I is the identity matrix. With this observer design, ẑF(t) is guaranteed to
converge to z(t) when t > DF as shown in [24].
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4. Discrete Time Regulator Design

The discrete regulator design is considered in this section. It is necessary to find a control law
for the discrete system that guarantees the closed-loop stability and proper output tracking. Figure 4
represents the closed-loop controller for the discrete setting. The closed-loop begins at the controller,
where the initial condition for the system and exosystem observers (x̂k=−1 and ẑk=−1) are used to
calculate the first control action uk=0. Then, the action is applied to the plant and the system measured
output and the reference signal from the exosystem become available (yk=0 and yr,k=0). These output
are used to estimate the system and exosystem states in the observer (x̂k=0 and ẑr,k=0). Finally, the
estimates are used in the control law to calculate the next input (u1) and the process is repeated.

x̂k = Ad x̂k−1 + Bduk + LOd,1 [yk − ŷk] + LOd,2yk

x̂k=−1, ẑk=−1

ẑk = Sd ẑk−1 + Led [yr,k − ŷr.k]

uk = Kd [x̂k + x̂k−1] + Ld ẑ

Controller

xk = Adxk−1 + Bduk

xk=−1, zk=−1

zk = Sdzk−1

uk

Plant
yk

yr,k

Figure 4. Discrete time closed-loop representation.

The control law used to ensure the system stability and proper signal tracking is similar to the
regulator equation shown in Equation (10) for the continuous setting considering fullstate feedback:

uk = Kdxk−1 + Ldzk−1 (47)

where the first part of the right side of the control law represents the feedback control used to guarantee
the system stability. The second part is responsible for the output tracking and Ld is a matrix that
needs to be found to ensure proper output tracking.

The discrete output tracking error can be defined as:

ek = yk − yr,k (48)

Similar to the controller in the continuous time setting, the discrete regulator should guarantee:

• The closed-loop system is stable;
• For the closed-loop system, the tracking error ek(k→ ∞) = 0, ∀xk=0 ∈ X, zk=0 ∈ R;

Before addressing the discrete regulator design, first the proper discrete representation of the system is
considered.

4.1. Discrete Representation

Given the system defined in Equation (4), one can apply a structure preserving time discretization
of the dynamical system. By the application of Crank-Nicolson midpoint integration rule, and with
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the assumption of piecewise constant input within the sampled intervals, the Cayley-Tustin time
discretization transformation is used. The obtained discrete system is represented as:

xk = Adxk−1 + Bduk

yk = Cdxk−1 + Dduk

ym,k = Cm,dxk−1 + Dm,duk

(49)

where δ = 2/∆t, Ad, Bd, Cd, Dd, Cm,d and Dm,d are the discrete time system operators and are given by: Ad(·) Bd
Cd(·) Dd

Cm,d(·) Dm,d

 =

−I + 2δ (δI − A)−1 (·)
√

2δ (δI − A)−1 B√
2δC (δI − A)−1 (·) C (δI − A)−1 B√

2δCm (δI − A)−1 (·) Cm (δI − A)−1 B

 (50)

and (δI − A)−1 = R(δ, A) is defined as the resolvent operator of the operator A, which can be found in
Equation (16), (δI − A)−1 B and G(δ) = C (δI − A)−1 B were defined in Equation (17) for the specific
system considered.

The operators given by Equation (50) are all compact and well-defined and the issue of boundary
(point) actuation or/and observation does not induce mathematical difficulties which are associated
with the continuous counterparts, usually leading to unboundness of the boundary (point) actuation
and/or observation.

Assumption 2. A small enough value of ∆t is used such that the discrete time representation of the system shown
in Equation (49) is a good approximation of the open-loop system internal dynamics and input/output relation.

Assumption 2 presumes there is a large enough δ (small enough ∆t) such that the discretization
can be applied to unstable systems as well [26] and is necessary for the development of the discrete
regulator in the following sessions. For an unstable open-loop system, the following lemma gives an
interval for which the discrete representation might be a good approximation of the system:

Lemma 8. In the case of an unstable system, the discrete system (Ad, Bd, Cd, Dd) will not be a good discrete
approximation of the system (A, B, C, D) if ∆t > 2

s(A)
, where s(A) = sup{Re z : z ∈ σ(A)}.

Proof. For a stable system, s(A) < 0 (all eigenvalues are negative), thus, as δ = 2
∆t and ∆t > 0,

(δI − A)−1 exists for any value of ∆t. For an unstable system, s(A) > 0, there will be at least one
unstable eigenvalue with a positive real part. If this eigenvalue is real, δ→ s(A) and (δI − A)−1 → ∞,
if ∆t → 2

s(A)
. As the discrete operators shown in Equation (49) depend on the resolvent, ∆t ≥ 2

s(A)
will not result in a good discrete approximation. If the eigenvalue is complex, the Spectral Mapping
Theorem can give an insight on the behavior of the discrete eigenvalue. If there exists a exact discrete
representation of A, it’s largest eigenvalue will be λd,E = e

2
δ λs , such that λs = a + bj and Reλs = a =

s(A). For the Cayley-Tustin transformation, this relation is given by λd,CT = δ+λs
δ−λs

. If we calculate the
modulus of these eigenvalues, we get:

||λd,E|| = e
2a
δ ; ||λd,CT || =

√
1 +

4aδ + ||λs||2
δ2 − 2aδ + ||λs||2

(51)

As expected, if ∆t → 0, δ → ∞ and ||λd,CT || → ||λd,E||. Taking the derivative with respect to δ

yields:
∂||λd,E||

∂δ
=
−2a
δ2 e

2a
δ ;

∂||λd,CT ||
∂δ

=
2a(||λs||2 − δ2)

(||λs||2 − 2aδ + δ2)2||λd,CT ||
(52)
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For the exact representation, the value of the discrete eigenvalues will decrease as δ increases (i.e.,
∆t decreases). For the Cayley-Tustin transformation it is possible to see that the function will have
an turning point at (δ)Turn = ||λs|| or (∆t)Turn = 2

||λs || . If δ = 2
∆t = s(A) ≤ ||λs||, then ∆t > (∆t)Turn

and the functions have different responses, i.e., ||λd,E|| is increasing as ∆t increases, but ||λd,CT || will
decrease past the turning point. Thus, ∆t ≥ 2

s(A)
will not generate a good discrete approximation of

the system.

Similar to the controller design in the continuous time setting, first the stabilization of the system
in the discrete time setting given by Equations (49) and (50) is addressed.

4.2. Discrete System Stabilization

The design of the discrete regulator is considered in this section. First, it is shown in Lemma 9
that the discrete system can be stabilized.

Lemma 9. If K in the continuous time setting is able to stabilize the system, then there is a corresponding Kd(·)
in the discrete time setting that ensures the discrete system stability with the control law:

uk = Kdxk−1 (53)

with:
Kd =

√
2δ
(

I − K(δI − A)−1B
)−1

K(δI − A)−1 (54)

Proof. With the control law considered, the closed-loop discrete system is given by:

xk = (Ad + BdKd) xk−1 (55)

By using the definitions of the operators, the following relation can be achieved:

xk =

[
−I + 2δ(δI − A)−1 + 2δ(δI − A)−1B

(
I − K(δI − A)−1B

)−1
K(δI − A)−1

]
xk−1 ={

−I + 2δ(δI − A)−1
[

I − BK(δI − A)−1
]−1
}

xk−1 =
[
−I + 2δ (δI − A− BK)−1

]
xk−1

(56)

where the Woodbury identity was used to properly manipulate the expressions. The resulting operator
is equivalent to the discrete operator obtained by applying the Cayley-Tustin time discretization in the
closed-loop system obtained in Section 3.1. Using the Cayley-Tustin transformation, the closed-loop
system can be represented in the discrete setting as:

xk = Ādxk−1 → Ād = −I + 2δ(δI − Ā)−1 = −I + 2δ (δI − A− BK)−1 (57)

From [27,28], it was shown that a stable continuous operator generates a stable discrete operator,
thus, if (A + BK) is stable, then the discrete operator Ād = −I + 2δ (δI − A− BK)−1 is stable as well.
Finally, if the control law proposed in Equation (53) with Kd shown in Equation (54), is used, then the
closed-loop discrete operator is equivalent to the operator shown above and the discrete closed-loop
system is stable as well (i.e., Ad + BdKd = Ād).

With the proposed control law, the discrete closed-loop system is given as:

xk = Ādxk−1 + Bdrk

yk = C̄dxk−1 + Ddrk
(58)
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with: [
Ād Bd
C̄d Dd

]
=

[
Ad + BdKd Bd
Cd + DdKd Dd

]
=

[[
−I + 2δ (δI − A− BK)−1

]
Bd√

2δC (Iδ− A− BK)−1 Dd

]
(59)

4.3. Discrete Output Regulation

After achieving the system stabilization, it is possible to accomplish proper output tracking. First,
the Cayley-Tustin time discretization is applied to the exosystem, such that the discrete time exosystem
is given as:

zk = Sdzk−1

yr,k = Qdzk−1
(60)

with:

Sd = −I + 2δ(δ− S)−1 =



1
2
δ

0 0

0 1 0 0

0 0
δ2 − f 2

δ2 + f 2
2δ f

δ2 + f 2

0 0 − 2δ f
δ2 + f 2

δ2 − f 2

δ2 + f 2


Qd =

√
2δQ (δI − S)−1 (61)

Then, it is necessary to find the discrete feedforward gain Ld that is able to guarantee the proper
tracking of the reference signal yr,k. This can be accomplished by solving the output regulator equations
in the discrete-time setting.

4.3.1. Discrete Regulator Equations

In Section 3.2, the regulation equations were solved in the continuous setting. In this section,
the output regulation equations for the discrete time setting are derived. The following Lemma
summarizes the results for the output tracking if the Cayley-Tustin time discretization is applied.

Lemma 10. If the Cayley-Tustin time discretization is considered, then the solution of the regulation equation
(Sylvester equations) in the discrete setting is the same as in the continuous setting, i.e., Πd = Π, such that
xk = Πd(ζ)zk when proper tracking is achieved and it is the solution of the following Sylvester equations in the
discrete-time setting:

ΠdSd = ĀdΠd + BdLd
C̄dΠd + DdLd = Qd

(62)

with the following relation between L and Ld:

Ld =
√

2δ
(

I − K(δI − A)−1B
)−1

L(δI − S)−1 (63)

Proof. The discrete control law that stabilizes the system and ensures the proper tracking of the
discrete signal is given by: with the following relation between L and Ld:

uk = Kdxk−1 + Ldzk−1 (64)

The discrete error is defined as er,k = xk −Πdzk, which leads to:

er,k = xk −Πdzk = Ādxk−1 + BdLdzk−1 −Πdzk = Ād [xk−1 −Πdzk−1] + [ĀdΠd + BdLd −ΠdSd] zk−1 (65)
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and if the last term in brackets is equal zero, the error system becomes:

er,k = Āder,k−1 (66)

which is stable if Ād is stable. This yields the following Sylvester equation:

ΠdSd = ĀdΠd + B̄dLd (67)

And the tracking error will be:

ek = yk − yr,k = C̄dxk−1 + Dd Ldzk−1 −Qdzk−1 = C̄d [xk−1 −Πdzk−1] + [C̄dΠdzk−1 + Dd Ldzk−1 −Qdzk−1] =

C̄dek−1 + [C̄dΠd + Dd Ld −Qd] zk−1

(68)

which gives the condition:
C̄dΠd + D̄dLd = Qd (69)

Lastly, the proof that Πd(ζ) = Π(ζ) for the Cayley-Tustin time discretization is derived. First, the
discrete Sylvester equation is considered and the definition of each operator is used:

ΠdSd = ĀdΠd + BdLd →
Πd (δI − S)−1 = (δI − A− BK)−1 Πd + (δI − A)−1 B

(
I − K(δI − A)−1B

)−1 L (δI − S)−1 →
Πd (δI − S)−1 = (δI − A− BK)−1 Πd + (δI − A− BK)−1 BL (δI − S)−1 →

(δI − A− BK)Πd = Πd (δI − S) + BL→ ΠdS = (A + BK)Πd + BL

(70)

And for the algebraic condition:

C̄dΠd + DdLd = Qd →
C (δI − A)−1

[
I + B

(
I − K (δI − A)−1 B

)−1
K (δI − A)−1

]
Πd+

C
(

I − (δI − A)−1 BK
)−1

(δI − A)−1 BL (δI − S)−1 = Q (δI − S)−1 →

C (δI − A)−1
(

I − BK (δI − A)−1
)−1

Πd + C (δI − A− BK)−1 BL (δI − S)−1 = Q (δI − S)−1 →
C
[
(δI − A− BK)−1 Πd + (δI − A− BK)−1 BL (δI − S)−1

]
= Q (δI − S)−1 →

CΠd (δI − S)−1 = Q (δI − S)−1 → CΠd = Q

(71)

which is the same Sylvester equation and algebraic condition shown in the continuous-time setting
(Equation (29)), consequently, Πd = Π.

4.4. Discrete System Observer Design

The discrete observer design is considered in this section, as it was developed in Section 3.3 in
the continuous time setting. In the continuous setting (Equation (43)), the observer does not have
the same operator as the system (Â is different from A), thus, the discrete observer will also have
different operators Ad, Bd, Cd and Dd when compared to the discrete system. Thus, the discrete system
is observable as well and the discrete observer will take the following form:

ŷm,k = Ĉm,d x̂k−1 + D̂m,duk + (Mod,1 + Mod,2)yk
x̂k = Âd x̂k−1 + B̂duk + Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k]

(72)
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where Bd and yk have been defined previously. The other discrete operators are given as:[
Âd(·) B̂d

Ĉm,d(·) D̂m,d

]
=

[
−I(·) + 2δ

(
δI − Â

)−1
(·)

√
2δ
(
δI − Â

)−1 B√
2δ
[
I + Cm

(
δI − Â

)
Lo,1

]−1 Cm
(
δI − Â

)−1 [
I + Cm

(
δI − Â

)
Lo,1

]−1 Cm
(
δI − Â

)−1 B

]

Mod,1 =
[
I + Cm

(
δI − Â

)
Lo,1

]−1 Cm
(
δI − Â

)−1 Lo,1 Lod,1 =
√

2δ
(
δI − Â

)−1 Lo,1

Mod,2 =
[
I + Cm

(
δI − Â

)
Lo,1

]−1 Cm
(
δI − Â

)−1 Lo,2 Lod,2 =
√

2δ
(
δI − Â

)−1 Lo,2

(73)

Notice that Lod,1 and Lod,2 have similar structure to Bd, as the system measured output ym,k can be
considered as an input to the observer as well.

Lemma 11. If the observer gains in the continuous time setting (Lo,1 and Lo,2) are chosen such that (Â− Lo,1Cm)

is stable, then, the discrete observer given by Equation (72) and the operators defined in Equation (73) will be able
to reconstruct the states of the discrete system (the discrete observer error - êk - decreases with time and eventually
reaches the origin).

Proof. To prove the observer states convergence to the system states, it is necessary to analyze the
discrete observer error:

êk = xk − x̂k (74)

After some algebraic manipulation (shown in Appendix C), the discrete error can be written as:

êk = (Âd − Lod,1Ĉm,d)êk−1 =
{
−I + 2

[
δI − Â + Lo,1Cm

]−1
}

êk−1 (75)

which is the discrete operator generated by (Â− Lo,1Cm). Thus, if Lo,1 is chosen such that (Â− Lo,1Cm)

is stable, the discrete observer will be stable as well, as the Cayley-Tustin time discretization cannot
map a stable continuous system to a unstable discrete one.

4.5. Discrete Exosystem Observer Design

The discrete observer design for the exosystem is considered in this section using the discrete
reference signal yr,k. The following finite discrete observer is considered:

ŷr,k = Q̂d ẑk−1 + Medyr,k

ẑk = Sd ẑk−1 + Led(yr,k − ŷr,k)
(76)

where ẑk is the estimated exosystem state, Sd and Qd have been defined in Section 4.3 (in Equation (60)).
Led and Med are defined as:

Led =
√

2δ (δI − S)−1 Le

Q̂d =
[

I + Q (δI − S)−1 Le

]−1√
2δQ (δI − S)−1

Med =
[

I + Q (δI − S)−1 Le

]−1
Q (δI − S)−1 Le

(77)

Lemma 12. If the exosystem observer gain in the continuous time setting (Le) is chosen such that (S− LeQ) is
stable, then, the discrete observer given by Equation (A23) and the operators defined in Equation (A24) will be
able to reconstruct the states of the discrete exosystem.

Proof. To prove the exosystem observer convergence to the system states, the discrete error of the
exosystem observer is analyzed:

êr,k = zk − ẑk (78)
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After some algebraic manipulation (shown in Appendix D), the discrete error can be written as:

êr,k = (Sd − LedQ̂d)êr,k−1 =
{
−I + 2 [δI − S + LeQ]−1

}
êr,k−1 (79)

which is the operator generated by the discrete representation of (S− LeQ). Thus, if Le is chosen such
that (S− LeQ) is stable, the discrete observer will be stable as well.

4.6. Finite-Time Discrete Exosystem Observer Design

The exosystem discrete dynamics is given by zk = Sdzk−1 and the reference signal is yr,k = Qdzk−1.
If the pair (Sd, Qd) is observable (which can be proved by the observability of (S, Q)), then the
exosystem states can be estimated in the discrete setting using the observability matrix:

yr,k
yr,k+1

...
yr,k+e−1

 =


Qd

QdSd
...

QdSe−1
d

 ẑk−1 = OBSVExo ẑk−1 → ẑk = Sk+1
d ẑk−1 (80)

where, OBSVExo is the exosystem observability matrix in the discrete-time setting. Therefore, after e
time steps (and e samples of yr,k) it is possible to properly estimate zk. For any instance before that, the
discrete observer from Section 4.5 can be used.

5. Results

In this section, the numerical simulations are shown to demonstrate the application of the regulator
designed. The system parameters used in the following results are given in Table 1. For the given
values the open-loop system is unstable, as shown in Section 2.1.1. The desired reference signal is
given by the function:

y(t) = 1 + 0.1t +
sin
(

π
2 t
)

2
(81)

To generate this signal with the exosystem, the following conditions are chosen:

Q =
[
1 0 1 0

]
; f =

1
2

; z(0) =
[
1 0.1 0 0.5

]T
(82)

First, the simulations for the design of the regulator in the continuous-time setting are shown.

5.1. Continuous Time Regulation

Using the values given in Table 1, a numerical simulation was performed in the continuous time
setting to show the system stabilization with the control law shown in Equation (22), in Section 3.1.
The result is shown in Figure 5 and it is possible to see that the system is stabilized at a time close to

t = φ1 + φ2 = 1
µ + max

{
1

γ1
, 1

γ2

}
= 1

2 + max
{

1
0.5 , 1

1

}
= 2.5, as expected from the relation between the

target and the closed-loop system.
Next, the results for the output tracking are presented. The result is shown in Figure 6 and the

control law from Equation (10) is used. As expected from the finite time stabilization obtained due to
the desired target system, the system output starts to perfectly track the reference signal for a time
close to t = 2.5. The results from Figures 5 and 6 consider that all the system states and exosystem
states are available.

The measurement of all states is generally not feasible, specially when a DPS is considered. Thus,
the control law shown in Equations (22) and (10) might not be used directly. Taking that into account,
the observer design for the system states and the exosystem were considered in Sections 3.3 and 3.4,
respectively. First, the results for the system observer are examined. Figure 7 shows the results for this
simulation. As expected, the observer states are able to reconstruct the system states at a finite time
close to t = 2.5 (i.e., the observer error reaches the origin for a time close to t = 2.5).
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Figure 5. System stabilization with the control law given in Equation (22).

Figure 6. System stabilization and output regulation with the control law given in Equation (10).

Figure 7. System observer error, using the observer developed in Section 3.3.
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Next, the performance of the system observer with the Equation (10) is examined. Instead of using
the system states in the control law, the observer states are used and the result is shown in Figure 8.
As the observer is able to properly reconstruct the system states for t > to = 2.5, the controller can just
properly stabilize and achieve proper tracking after that. Thus, the system is stabilized and the output
properly tracks the reference signal at t = to + ts = 5.

Figure 8. System closed-loop response, using the observer developed in Section 3.3 and the control law
given in Equation (10).

The simulation results shown before still considered that the exosystem states were available.
Next, the results with the exosystem observer, shown in Section 3.4, are explored. Figure 9 shows the
closed-loop system response considering that the exosystem observer will have the poles placed at
σ(S− LeQ) = {−1,−2,−3,−4}. The finite stabilization and system observer convergence are still
achieved, but, as the exosystem observer, in this case, does not have a finite time convergence, the
proper output tracking takes longer to be obtained (it exponentially converges).

Figure 9. System closed-loop response (on the left), using the system and exosystem observers and the
control law given in Equation (10). On the right, the exosystem states and its observer states.

The last case considered in the continuous-time setting is the use of the finite-time observer to
reconstruct the exosystem states. The simulation results are presented in Figure 10. As two observer are
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necessary to obtain the finite-time convergence, one observer was designed such that σ(S− Le,1Q) =

{−1,−1.5,−2,−2.5} and the other such that σ(S − Le,2Q) = {−3,−3.5,−4,−4.5}. The desired
convergence time was set to DF = to + ts = 5. Thus the system stability and proper tracking, plus the
system and exosystem states reconstruction should be guaranteed for a time close to t = 5. As results
show, although this observer convergence is guaranteed for time close to t = 5, the drawback is
the higher error for the estimation in the beginning, which leads to excessive control actions and an
increase in the output, which might not be desirable or physically possible.

Figure 10. System closed-loop response (on the left), using the system observer, finite-time exosystem
observer and the control law given in Equation (10). On the right, the exosystem states and its observer
states.

5.2. Discrete Time Regulation

After the design of the regulator in the continuous-time setting has been achieved, the results for
the discrete-time settings are considered, using the design developed in Section 4. A sampling time of
∆t = 0.1 is used. First, the system stabilization with the control law shown in Equation (53), developed
in Section 4.2, is shown. The result is presented in Figure 11 and it is possible to see that the system is
stabilized, as expected from the relation between the closed-loop of the discrete representation and the
continuous closed-loop system.
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Next, the results for the output tracking in the discrete time setting are considered. The result is
shown in Figure 12 and the control law from Equation (53), developed in Section 4.3.1, is used. It is
assumed that the system and exosystem states are known. As expected, the system stabilization is
obtained and the system output is able to perfectly track the reference signal.
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Figure 12. Discrete system stabilization and output regulation with the control law given in Equation (53),
assuming that zk are known states.

As in the continuous-time setting, the system observer and exosystem observer designs in the
discrete-time setting are considered next, using the developed discrete observers designs shown in
Section 4.4 and Section 4.5, respectively. The results for the system observer are considered first in
Figure 13. As expected, the observer is able to reconstruct the system states and using the observer
states in the control law shown in Equation (53), the closed-loop of the discrete-time system is stable,
achieving proper tracking of the reference signal.
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Lastly, the closed-loop response using a finite-time observer design in the discrete time setting based in the487

observability matrix is considered, as examined in Section 4.6. The result is shown in Figure 15 and, as expected,488

the exosystem states are properly reconstructed after four sampling times, as there are 4 states in the exosystem,489

which makes the closed-loop system response better.490

Figure 13. Discrete system closed-loop response, using the observer developed in Section 4.4 and the
control law given in Equation (53).

Finally, the exosystem observer design in the discrete-time setting is considered, as shown in
Section 4.5. Figure 14 shows the closed-loop response of the discrete system using the observer gain
of the continuous-time setting to guarantee the stability of the observer in the discrete-time. As it
is possible to notice, the system stabilization, the system and exosystem observer convergence are
achieved, yielding to the proper tracking of the closed-loop system response.
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Figure 14. Discrete system closed-loop response (on the left), using the system and exosystem observers
and the control law given in Equation (53). On the right, the discrete exosystem states and its observer
states.

Lastly, the closed-loop response using a finite-time observer design in the discrete time setting
based in the observability matrix is considered, as examined in Section 4.6. The result is shown in
Figure 15 and, as expected, the exosystem states are properly reconstructed after four sampling times,
as there are 4 states in the exosystem, which makes the closed-loop system response better.
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Figure 15. Discrete system closed-loop response (on the left), using the observability matrix to reconstruct the
exosystem states. On the right, the discrete exosystem states and the observer states.
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ω(1, t) = ρ ′1x1(1, t)+ρ ′2x2(1, t)+ u′(t)
x1(0, t) = q1ω(0, t)
x2(0, t) = q2ω(0, t)
ym(t) = ν(0, t) = ω(0, t)
y(t) = x1(1, t)

where θ1(ζ ) = β1e
α1
µ ζ , θ2(ζ ) = β2e

α1
µ ζ , α(ζ ) = α1e−

α1
µ ζ , ρ ′1 = ρ1e
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α1
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α1
µ ζ .510

Figure 15. Discrete system closed-loop response (on the left), using the observability matrix to
reconstruct the exosystem states. On the right, the discrete exosystem states and the observer states.

6. Conclusions

In this manuscript, the regulator design for the Saint–Venant–Exner model was developed so it
would achieve proper closed-loop stability and output tracking of a reference signal in both continuous
and discrete-time setting. The backstepping methodology was used in the continuous-time setting
to map the closed-loop system to a stable target system, thus guaranteeing the system stability.
Furthermore, the same method was used to design the observer, allowing for the reconstruction of
the system states by using just the output. Considering a reference signal generated by an exosystem,
the output tracking problem was solved. Next, with the stabilization and proper tracking achieved in
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the continuous-time setting, the discrete regulator was explored. The closed-loop stability, observer
design and the regulator equations were shown to be directly related to their construction in the
continuous-time, thus ensuring the proper performance of the regulator, as it was possible to observe
in the simulations.

For future work, the constrained optimal stabilization and tracking problem could be considered,
as the regulator designed here did not take into account any physical limitations, neither in the states
nor the input.
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Appendix A. System Stabilization: Backstepping

First, the state transformation ω(ζ, t) = ν(ζ, t)e
α1
µ ζ is used:

∂ω

∂t
= µ

∂ω

∂ζ
+θ1(ζ)x1 +θ2(ζ)x2

∂x1

∂t
= −γ1

∂x1

∂ζ
+α(ζ)ω +σ11x1 +σ12x2

∂x2

∂t
= −γ2

∂x2

∂ζ
+α(ζ)ω +σ21x1 +σ22x2

(A1)

ω(1, t) = ρ′1x1(1, t) + ρ′2x2(1, t) + u′(t)
x1(0, t) = q1ω(0, t)
x2(0, t) = q2ω(0, t)
ym(t) = ν(0, t) = ω(0, t)
y(t) = x1(1, t)

where θ1(ζ) = β1e
α1
µ ζ , θ2(ζ) = β2e

α1
µ ζ , α(ζ) = α1e−

α1
µ ζ , ρ′1 = ρ1e

α1
µ ζ , ρ′2 = ρ2e

α1
µ ζ and u′(t) = u(t)e

α1
µ ζ .

The stabilization in the continuous-time setting was developed in [13] and assumes that the
following Volterra transformation exists:

W(ζ, t) = ω(ζ, t)−
∫ ζ

0 [K1(ζ, η)ω(η, t) + K2(ζ, η)x1(η, t) +K3(ζ, η)x2(η, t)] dη

X1(ζ, t) = x1(ζ, t)

X2(ζ, t) = x2(ζ, t)

(A2)



µ
∂K1

∂ζ
+ µ

∂K1

∂η
= α(η)K2 + α(η)K3

µ
∂K2

∂ζ
− γ1

∂K2

∂η
= θ1(η)K1 + σ11K2 + σ21K3

µ
∂K3

∂ζ
− γ2

∂K3

∂η
= θ2(η)K1 + σ12K2 + σ22K3

µK1(ζ, 0) = q1γ1K2(ζ, 0) + q2γ2K3(ζ, 0)

K2(ζ, ζ) = − θ1(ζ)

γ1 + µ

K3(ζ, ζ) = − θ2(ζ)

γ2 + µ

(A3)
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The PDE system given in Equation (A3) can be solved numerically [29,30]. The control law and
the Volterra transformation shown in (A2) map the system to the following target system:

∂W
∂t

= µ
∂W
∂ζ

∂X1

∂t
= −γ1

∂X1

∂ζ
+
∫ ζ

0 [κ1(ζ, η)W(η, t) +c11(ζ, η)X1(η, t) + c12(ζ, η)X2(η, t)] dη

∂X2

∂t
= −γ2

∂X2

∂ζ
−
∫ ζ

0 [κ2(ζ, η)W(η, t) + c21(ζ, η)X1(η, t) + c22(ζ, η)X2(η, t)] dη

W(1, t) = r′(t)
X1(0, t) = q1W(0, t)
X2(0, t) = q2W(0, t)

(A4)

where r′(t) = r(t)e
α1
µ ζ and the coefficients are defined as:

cij(ζ, η) = α(ζ)Kj(ζ, η) +
∫ ζ

η κi(ζ, φ)Kj(φ, η)dφ

κi(ζ, η) = α(ζ)K3(ζ, η) +
∫ ζ

η κi(ζ, φ)K3(φ, η)dφ
(A5)

Appendix B. Observer Design: Backstepping

The state transformation ω̂(ζ, t) = ν̂(ζ, t)e
α1
µ ζ is used:

∂ω̂

∂t
= µ

∂ω̂

∂ζ
+ θ1(ζ)x̂1 + θ2(ζ)x̂2 − l1(ζ) [ym(t)− ω̂(ζ = 0)]

∂x̂1

∂t
= −γ1

∂x̂1

∂ζ
+ α(ζ)ω + σ11 x̂1 + σ12 x̂2 − l2(ζ) [ym(t)− ω̂(ζ = 0)]

∂x̂2

∂t
= −γ2

∂x̂2

∂ζ
+ α(ζ)ω + σ21 x̂1 + σ22 x̂2 − l3(ζ) [ym(t)− ω̂(ζ = 0)]

ω̂(1, t) = ρ′1 x̂1(1, t) + ρ′2 x̂2(1, t) + u′(t)

x̂1(0, t) = q1ym(t)

x̂2(0, t) = q2ym(t)

(A6)

where x̂(ζ, t) =
[

ω̂ x̂1 x̂2
]T are the transformed observer states. The observer error (ê) is defined

as ê(ζ, t) =
[

ê1 ê2 ê3
]
=
[

ω− ω̂, x1 − x̂1, x2 − x̂2
]T ∈ L2(0, 1), and the observer error dynamics is

given as: 

∂ê1

∂t
= µ

∂ê1

∂ζ
+ θ1(ζ)ê2 + θ2(ζ)ê3 − l1(ζ)ê1(ζ = 0)

∂ê2

∂t
= −γ1

∂ê2

∂ζ
+ α(ζ)ê1 + σ11 ê2 + σ12 ê3 − l2(ζ)ê1(ζ = 0)

∂ê3

∂t
= −γ2

∂ê3

∂ζ
+ α(ζ)ê1 + σ21 ê2 + σ22 ê3 − l3(ζ)ê1(ζ = 0)

ê1(1, t) = ρ′1 ê2(1, t) + ρ′2 ê3(1, t)

ê2(0, t) = 0

ê3(0, t) = 0

(A7)

which can be represented in a general form as:

˙̂e(t) = (Â− Lo,1Cm)ê(t) (A8)

Therefore, to design the observer it is necessary to find an appropriate set of gains L1 that makes
Â− Lo,1Cm stable. Considering the error system shown in Equation (A7), the following stable target
system is desired:
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∂ẽ1

∂t
= µ

∂ẽ1

∂ζ
+ θ1(ζ)ẽ2 + θ2(ζ)ẽ3 +

∫ ζ
0 ĝ12(ζ, η)ẽ2(η)dη +

∫ ζ
0 ĝ13(ζ, η)ẽ3(η)dη

∂ẽ2

∂t
= −γ1

∂ẽ2

∂ζ
+ σ11 ẽ2 + σ12 ẽ3 +

∫ ζ
0 ĝ22(ζ, η)ẽ2(η)dη +

∫ ζ
0 ĝ23(ζ, η)ẽ3(η)dη

∂ẽ3

∂t
= −γ2

∂ẽ3

∂ζ
+ σ21 ẽ2 + σ22 ẽ3 +

∫ ζ
0 ĝ32(ζ, η)ẽ2(η)dη +

∫ ζ
0 ĝ33(ζ, η)ẽ3(η)dη

ẽ1(1, t) = ρ′1 ẽe(1, t) + ρ′2 ẽ3(1, t)

ẽ2(0, t) = 0

ẽ3(0, t) = 0

(A9)

To achieve the target system, the following backstepping transformation is used:

ẽi(ζ, t) = êi(ζ, t) +
∫ ζ

0 mi(ζ, η)ê1(ζ, t)dη (A10)

For i = 1, 2, 3, where mi(ζ, η) are the transformation kernels, which can be found by solving the
following set of equations:

µ
∂m1

∂ζ
+ µ

∂m1

∂η
= −θ1(ζ)K2 − θ2(ζ)K3

γ1
∂m2

∂ζ
− µ

∂m2

∂η
= α(ζ)m1 + σ11m2 + σ21m3

γ2
∂m3

∂ζ
− µ

∂m3

∂η
= α(ζ)m1 + σ12m2 + σ22m3

m1(1, η) = ρ1m2(1, η) + ρ2m3(1, η)

m2(ζ, ζ) =
α(ζ)

γ1 + µ

m3(ζ, ζ) =
α(ζ)

γ2 + µ

(A11)

This system can be solved numerically in the domain 0 ≤ η ≤ ζ ≤ 1, and result in the following
equations for the functions ĝi,j, for i = 1, 2, 3 and j = 2, 3 in Equation (A9):

ĝi,j = −θj(ζ)mi(ζ, η)−
∫ ζ

η
mi(ζ, φ)ĝ1,j(φ, η)dφ (A12)

And the observer gains li(ζ) will be given as:

li(ζ) = −µmi(ζ, η = 0) (A13)

Appendix C. Discrete System Observer Stability

It is necessary to show that the observer error can be written as:

êk = xk − x̂k = (Âd − Lod,1Ĉm,d)êk−1 (A14)

First, the relation between the system discrete operators and the observer operators is defined.
As A = Â + Lo,2Cm the following relation between (δI − A)−1 and

(
δI − Â

)−1 holds:

(δI − A)−1 =
(
δI − Â− Lo,2Cm

)−1
=
(
δI − Â

)−1
+
(
δI − Â

)−1 Lo,2

[
I − Cm

(
δI − Â

)−1 Lo,2

]−1
Cm
(
δI − Â

)−1 (A15)

Thus, the following relations between the system discrete operators and the observer operators
will hold as well:
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Ad = Âd + Lod,2

[
I − Cm

(
δI − Â

)−1 Lo,2

]−1√
2δCm

(
δI − Â

)−1

Bd = B̂d + Lod,2

[
I − Cm

(
δI − Â

)−1 Lo,2

]−1
Cm
(
δI − Â

)−1 B

Cm,d =
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1√
2δCm

(
δI − Â

)−1
=
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1 [
I + Cm

(
δI − Â

)−1 Lo,1

]
Ĉm,d

Dm,d =
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1
Cm
(
δI − Â

)−1 B =
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1 [
I + Cm

(
δI − Â

)−1 Lo,1

]
D̂m,d

(A16)

And the discrete observer error can be written as:

êk = xk − x̂k = Adxk−1 + Bduk −
(

Âd x̂k−1 + B̂duk + Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k]
)
=

Âd(xk−1 − x̂k−1) + Lod,2

[
I − Cm

(
δI − Â

)−1 Lo,2

]−1√
2δCm

(
δI − Â

)−1 xk−1

+Lod,2

[
I − Cm

(
δI − Â

)−1 Lo,2

]−1
Cm
(
δI − Â

)−1 Buk − (Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k])

(A17)

By the definition of the operators, it is possible to write:

ym,k = Cm,dxk−1 − Dm,duk =
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1 [√
2δCm

(
δI − Â

)−1 xk−1 + Cm
(
δI − Â

)−1 Buk

]
(A18)

and:

[ym,k − ŷm,k ] = −Ĉm,d x̂k−1 − D̂m,duk + (I −Mod,1 −Mod,2)yk =

−Ĉm,d x̂k−1 − D̂m,duk + (I −Mod,1 −Mod,2)
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1 [
I + Cm

(
δI − Â

)−1 Lo,1

]
(Ĉm,dxk−1 + D̂m,duk)→

(I −Mod,1 −Mod,2) =
[
I + Cm

(
δI − Â

)
Lo,1
]−1

[
I + Cm

(
δI − Â

)
Lo,1 − Cm

(
δI − Â

)−1 Lo,1 − Cm
(
δI − Â

)−1 Lo,2

]
=
[
I + Cm

(
δI − Â

)
Lo,1
]−1

[
I − Cm

(
δI − Â

)−1 Lo,2

]
→

(I −Mod,1 −Mod,2)
[

I − Cm
(
δI − Â

)−1 Lo,2

]−1
=
[
I + Cm

(
δI − Â

)
Lo,1
]−1 →

[ym,k − ŷm,k ] = −Ĉm,d x̂k−1 − D̂m,duk +
[
I + Cm

(
δI − Â

)
Lo,1
]−1

[
I + Cm

(
δI − Â

)−1 Lo,1

]
(Ĉm,dxk−1 + D̂m,duk) =

Ĉm,d(xk−1 − x̂k−1)

(A19)

Finally, the discrete observer error can be written as:

êk = Âd(xk−1 − x̂k−1)− Lod,1Ĉm,d(xk−1 − x̂k−1) = (Âd − Lod,1Ĉm,d)êk−1 (A20)

And this can be linked to the operators in the continuous time setting by:

Âd − Lod,1Ĉm,d = −I + 2δ
(
δI − Â

)−1 − 2δ

{
I −

[
I +

(
δI + Â

)−1 Lo,1Cm

]−1
} (

δI − Â
)−1

=

−I + 2δ
[

I +
(
δI − Â

)−1 Lo,1Cm

]−1 (
δI − Â

)−1
= −I + 2

[
δI − Â + Lo,1Cm

]−1
(A21)

which would be the discrete operator generated by (Â− Lo,1Cm). Thus, if Lo,1 is chosen such that (Â−
Lo,1Cm) is stable, the discrete observer will be stable as well, as the Cayley-Tustin time discretization
cannot map a stable continuous system to a unstable discrete one.

Appendix D. Discrete Exosystem Observer Stability

Similarly to the system observer, it is necessary to show that the exosystem observer error can be
written as:

êr,k = zk − ẑk = (Sd − LedQd)êr,k−1 (A22)

ŷr,k = Q̂d ẑk−1 + Medyr,k

ẑk = Sd ẑk−1 − Led(yr,k − ŷr,k)
(A23)
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where ẑk is the estimated exosystem state, Sd and Qd have been defined in Section 4.3 (in Equation (60)).
Led and Med are defined as:

Led =
√

2δ (δI − S)−1 Le

Med =
[

I + Q (δI − S)−1 Le

]−1
Q (δI − S)−1 Le

(A24)

Lemma A1. If the exosystem observer gain in the continuous time setting (Le) is chosen such that (S− LeQ)

is stable, then, the discrete observer given by Equation (A23) and the operators defined in Equation (A24) will be
able to reconstruct the states of the discrete exosystem.

Proof. To prove the exosystem observer convergence to the system states, the discrete error of the
exosystem observer is analyzed:

êr,k = zk − ẑk (A25)

After some algebraic manipulation (shown in Appendix D), the discrete error can be written as:

êr,k = (Sd − LedQ̂d)êr,k−1 =
{
−I + 2 [δI − S + LeQ]−1

}
êr,k−1 (A26)

which is the discrete operator generated by (S− LeQ). Thus, if Le is chosen such that (S− LeQ) is
stable, the discrete observer will be stable as well.

First, the discrete observer error can be written as:

êr,k = zk − ẑk = Sdzk−1 − Sd ẑk−1 − Led(yr,k − ŷr,k) = Sd(zk−1 − ẑk−1)− Led((I −Med)Qdzk−1 − Q̂d ẑk−1)→

(I −Med)Qd =
[

I + Q (δI − S)−1 Le

]−1 [
I + Q (δI − S)−1 Le −Q (δI − S)−1 Le

]
Qd

=
[

I + Q (δI − S)−1 Le

]−1
Qd = Q̂d →= Sd(zk−1 − ẑk−1)− Led(Q̂dzk−1 − Q̂d ẑk−1) = (Sd − LedQ̂d)êr,k−1

(A27)

And this can be linked to the operators in the continuous time setting by:

Sd − LedQ̂d = −I + 2δ (δI − S)−1 − 2δ

{
I −

[
I + (δI + S)−1 LeQ

]−1
}
(δI − S)−1 =

−I + 2δ
[

I + (δI − S)−1 LeQ
]−1

(δI − S)−1 = −I + 2 [δI − S + LeQ]−1
(A28)

which would be the discrete operator generated by (S− LeQ). Choosing Le such that (S− LeQ) is
stable will make the discrete exosystem observer stable as well if the exosystem observer shown in
Section 3.4 is used.

References

1. Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Springer: New York,
NY, USA, 1995.

2. Bensoussan, A.; Prato, G.; Delfour, M.; Mitter, S. Representation and Control of Infinite Dimensional Systems;
Birkhauser: Boston, MA, USA, 2007.

3. Alizadeh Moghadam, A.; Aksikas, I.; Dubljevic, S.; Forbes, J.F. Boundary optimal (LQ) control of coupled
hyperbolic PDEs and ODEs. Automatica 2013, 49, 526–533. [CrossRef]

4. Byrnes, C.I.; Lauko, I.G.; Gilliam, D.S.; Shubov, V.I. Output regulation for linear distributed parameter
systems. IEEE Trans. Autom. Control 2000, 2, 170–194.

5. Natarajan, V.; Gilliam, D.S.; Weiss, G. The State Feedback Regulator Problem for Regular Linear Systems.
IEEE Trans. Autom. Control 2014, 59, 2708–2723. [CrossRef]

6. Xu, X.; Dubljevic, S. Finite-dimensional output feedback regulator for a mono-tubular heat exchanger
process. IFAC-PapersOnLine 2016, 49, 54–59. [CrossRef]

http://dx.doi.org/10.1016/j.automatica.2012.11.016
http://dx.doi.org/10.1109/TAC.2014.2326491
http://dx.doi.org/10.1016/j.ifacol.2016.07.418


Processes 2020, 8, 915 30 of 30

7. Hämäläinen, T.; Pohjolainen, S. Robust Regulation of Distributed Parameter Systems with Infinite-Dimensional
Exosystems. SIAM J. Control Optim. 2010, 48, 4846–4873. [CrossRef]

8. Paunonen, L.; Pohjolainen, S. Internal Model Theory for Distributed Parameter Systems. SIAM J. Control
Optim. 2010, 48, 4753–4775. [CrossRef]

9. Paunonen, L.; Pohjolainen, S. Robust controller design for infinite-dimensional exosystems. Int. J. Robust
Nonlinear Control 2014, 24, 825–858. [CrossRef]

10. Xu, C.Z.; Sallet, G. Proportional and Integral Regulation of Irrigation canal Systems governed by the St
Venant Equation. IFAC Proc. Vol. 1999, 32, 2274–2279. [CrossRef]

11. Litrico, X.; Fromion, V. H/sub /spl infin// control of an irrigation canal pool with a mixed control politics.
IEEE Trans. Control Syst. Technol. 2006, 14, 99–111. [CrossRef]

12. Prieur, C.; de Halleux, J. Stabilization of a 1-D tank containing a fluid modeled by the shallow water
equations. Syst. Control Lett. 2004, 52, 167–178. [CrossRef]

13. Diagne, A.; Diagne, M.; Tang, S.; Krstic, M. Backstepping stabilization of the linearized Saint–Venant–Exner
model. Automatica 2017, 76, 345–354. [CrossRef]

14. Aamo, O. Disturbance Rejection in 2x2 Linear Hyperbolic Systems. IEEE Trans. Autom. Control 2013, 58,
1095–1106. [CrossRef]

15. Deutscher, J. Output regulation for linear distributed-parameter systems using finite-dimensional dual
observers. Automatica 2011, 47, 2468–2473. [CrossRef]

16. Mlayeh, R.; Toumi, S.; Beji, L. Backstepping boundary observer based-control for hyperbolic PDE in rotary
drilling system. Appl. Math. Comput. 2018, 322, 66–78. [CrossRef]

17. Deutschmann, A.; Jadachowski, L.; Kugi, A. Backstepping-based boundary observer for a class of
time-varying linear hyperbolic PIDEs. Automatica 2016, 68, 369–377. [CrossRef]

18. Deutscher, J.; Gehring, N.; Kern, R. Output feedback control of general linear heterodirectional hyperbolic
ODE–PDE–ODE systems. Automatica 2018, 95, 472–480. [CrossRef]

19. Karafyllis, I.; Krstic, M. Sampled-data boundary feedback control of 1-D linear transport PDEs with non-local
terms. Syst. Control Lett. 2017, 107, 68–75. [CrossRef]

20. Karafyllis, I.; Krstic, M. Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica 2018,
87, 226–237. [CrossRef]

21. Kazantzis, N.; Kravaris, C. Energy-predictive control: A new synthesis approach for nonlinear process
control. Chem. Engn. Sci. 1999, 54, 1697–1709. [CrossRef]

22. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations; Springer Series in Computational Mathematics; Springer: Berlin, Germany, 2002;
Volume 31.

23. Havu, V.; Malinen, J. The Cayley transform as a time discretization scheme. Numer. Funct. Anal. Optim.
2007, 28, 825–851. [CrossRef]

24. Engel, R.; Kreisselmeier, G. A continuous-time observer which converges in finite time. IEEE Trans. Autom.
Control 2002, 47, 1202–1204. [CrossRef]

25. Deutscher, J. Finite-time output regulation for linear 2×2 hyperbolic systems using backstepping. Automatica
2017, 75, 54–62. [CrossRef]

26. Dubljevic, S.; Humaloja, J.P. Model Predictive Control for Regular Linear Systems. arXiv 2018, arXiv:0706.1234.
27. Besseling, N. Stability analysis in continuous and discrete time. Ph.D. Thesis, University of Twente, Enschede,

The Netherlands, 2012.
28. Xu, Q.; Dubljevic, S. Linear Model Predictive Control for Transport-Reaction Processes. AIChE J. 2017, 63,

2644–2659. [CrossRef]
29. Izadi, M.; Abdollahi, J.; Dubljevic, S.S. PDE backstepping control of one-dimensional heat equation with

time-varying domain. Automatica 2015, 54, 41–48. [CrossRef]
30. Backstepping output-feedback control of moving boundary parabolic PDEs. Eur. J. Control 2015, 21, 27–35.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/090757976
http://dx.doi.org/10.1137/090760957
http://dx.doi.org/10.1002/rnc.2920
http://dx.doi.org/10.1016/S1474-6670(17)56386-7
http://dx.doi.org/10.1109/TCST.2005.860526
http://dx.doi.org/10.1016/j.sysconle.2003.11.008
http://dx.doi.org/10.1016/j.automatica.2016.10.017
http://dx.doi.org/10.1109/TAC.2012.2228035
http://dx.doi.org/10.1016/j.automatica.2011.08.033
http://dx.doi.org/10.1016/j.amc.2017.11.034
http://dx.doi.org/10.1016/j.automatica.2016.02.007
http://dx.doi.org/10.1016/j.automatica.2018.06.021
http://dx.doi.org/10.1016/j.sysconle.2017.07.009
http://dx.doi.org/10.1016/j.automatica.2017.10.006
http://dx.doi.org/10.1016/S0009-2509(98)00499-0
http://dx.doi.org/10.1080/01630560701493321
http://dx.doi.org/10.1109/TAC.2002.800673
http://dx.doi.org/10.1016/j.automatica.2016.09.020
http://dx.doi.org/10.1002/aic.15592
http://dx.doi.org/10.1016/j.automatica.2015.01.024
http://dx.doi.org/10.1016/j.ejcon.2014.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	System Properties
	Linearized System Stability
	Resolvent and Transfer Function


	Continuous Time Regulator Design
	System Stabilization
	Output Regulation
	System Observer Design
	Exosystem Observer
	Exosystem Finite-Time Observer


	Discrete Time Regulator Design
	Discrete Representation
	Discrete System Stabilization
	Discrete Output Regulation
	Discrete Regulator Equations

	Discrete System Observer Design
	Discrete Exosystem Observer Design
	Finite-Time Discrete Exosystem Observer Design

	Results
	Continuous Time Regulation
	Discrete Time Regulation

	Conclusions
	System Stabilization: Backstepping
	Observer Design: Backstepping
	Discrete System Observer Stability
	Discrete Exosystem Observer Stability
	References

