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Abstract: Most photovoltaic (PV) plants conduct operation and maintenance (O&M) by periodical
inspection and cleaning. Such O&M is costly and inefficient. It fails to detect system faults in
time, thus causing heavy loss. To ensure their operations are at an ideal state, this work proposes
an unsupervised method for intelligent performance evaluation and data-driven fault detection,
which enables engineers to check PV panels in time and implement timely maintenance. It classifies
monitoring data into three subsets: ideal period A, transition period S, and downturn period B. Based
on A and B datasets, we build two non-continuous regression prediction models, which are based
on a tree ensemble algorithm and then modified to fit the non-continuous characteristic of PV data.
We compare real-time measured power with both upper and lower reference baselines derived from
two predictive models. By calculating their threshold ranges, the proposed method achieves the
instantaneous performance monitoring of PV power generation and provides failure identification
and O&M suggestions to engineers. It has been assessed on a 6.95 MW PV plant. Its evaluation
results indicate that it is able to accurately determine different functioning states and detect both
direct and indirect faults in a PV system, thereby achieving intelligent data-driven maintenance.

Keywords: fault detection; performance evaluation; PV monitoring system; tree-based regression;
unsupervised learning method

1. Introduction

Nowadays, PV energy represents the third-largest source of renewable energy after
wind and hydro [1,2]. Many countries are developing PV projects to utilize such renewable
sources. For example, a massive solar park with 7.2 million PV panels has been built
in Egypt to increase its generation capacity [3], and an Iowa farm [4] in the USA uses
solar power to generate fuel and fertilizer on-site. In order to increase the efficiency of
generating power, PV power plants have shifted their focus from large-scale development
to large-scale operation and maintenance (O&M) [5,6]. Under this circumstance, intelligent
O&M methods are being widely researched. By employing them, PV power stations are
capable of analyzing their operation process automatically, coping with faulty situations
timely, thus greatly improving the overall efficiency of maintenance and management.

Most intelligent O&M methods are based on a video/image analysis or monitoring
database. Video/image-based methods [6–8] utilize UAVs, satellite or 24 h cameras to get
videos or images of PV stations and then train deep learning models to detect potential
anomalies. However, to obtain a reliable and accurate model requires a large number of
labelled samples (anomalies in the PV panels, e.g., short circuit and cell cracking). Yet,

Processes 2021, 9, 1711. https://doi.org/10.3390/pr9101711 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7128-6913
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0001-8025-0453
https://doi.org/10.3390/pr9101711
https://doi.org/10.3390/pr9101711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9101711
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9101711?type=check_update&version=1


Processes 2021, 9, 1711 2 of 21

in most cases PV plants are operated normally and thus it is impractical and difficult to
get sufficient labelled samples. Therefore, monitoring-based methods [9,10] are playing
an increasingly important part in intelligent O&M. Most existing PV plants have been
equipped with sensors and monitoring systems. We are able to record detailed historical
data (PV power generation data and meteorological data, e.g., solar irradiance, environ-
ment temperature, relative humidity, wind velocity, and wind direction) and technical
parameters of every piece of equipment. Unlike video/image-based methods which rely
on additional UAVs or high-resolution cameras, the monitoring-based methods are directly
applicable to conventional PV systems and often cost far less in equipment costs compared
to video/image-based ones.

However, there are two shortcomings in existing monitoring systems. First, the inter-
pretation of stored data requires technical background. Query of the database is usually
allowed, and data can be organized in plots and tables; however, interpretation is left
to the users of such monitoring systems. The curves from the monitoring system are
simply values of current and voltage and do not give much information by themselves.
Only experienced engineers who are proficient in the process of photoelectric conversion
can tell from it whether photocells are healthy or not. Second, a large number of curves are
produced every day. Many PV plants record operational data every 10 min or even every
minute [11]. It is challenging and time consuming for engineers to distinguish useful and
critical information from such huge data. Consequently, intelligent detection methods and
instantaneous warnings are in desperate need for present PV monitoring systems.

This work proposes an intelligent O&M method to analyze historical data automati-
cally in a monitoring system and detect an anomalous status, including both direct and
indirect faults. Our main contribution is to build two highly effective unsupervised pre-
dictive models and refine their predictions with the weather scale factors and power data
clustering results. Consequently, we can reveal the upper and lower reference values
used for faults detection in PV stations. Note that the predictive models do not provide
fault detection results by themselves but are used to offer references and support such
detection. Our proposed model not only fits well with the non-continuous characteristic of
PV generation, but it also is more sensitive to the indirect faults among PV panels.

This paper consists of the following sections: Section 2 reviews the related works of
intelligent O&M approaches and presents the advantages of the proposed method. Then it
is detailly illustrated in Section 3. Section 4 describes the experiment results. Finally,
the paper is concluded in Section 5.

2. Related Work

Methods of intelligent O&M and fault diagnosis using monitoring data can be catego-
rized into PR (performance ratio) methods, I-V (current-voltage) curve methods, statistical
methods, and prediction (machine learning-based) methods.

In PR methods [12,13], the yield of a PV system is evaluated by the ratio between the
measured power and the nominal power (which requires precise formulas to calculate,
and the formulas are based on the theory of photoelectric conversion) of a system. A low
value is an indicator of potential anomalies. In I-V approaches [14–17], the I-V curve of
a normally operating PV panel is considered as standard characteristic. The mismatch
between the standard and real-time ones is used as the judgement of failures. Similarly,
the dI/dV-V curves [18] can also be used to detect failures in PV panels, where dI/dV
values are the gradients of I-V curves. Statistical methods do not require any model
training [19], but identify abnormal operation based on the statistical characteristics of
individual PV feature (e.g., current and voltage) [20]. Statistical methods use the 3σ rule,
Hampel identifier, box-plot, and so on; or are based on statistical tests [21], such as ANOVA
test and Kruskal-Wallis test.

Prediction methods mainly train a machine learning-based model to directly pre-
dict whether PV panels are normal or not. Wang et al. [22], Hussain et al. [23] and
Aziz et al. [24] take neural networks for fault diagnosis and O&M with data cloud ac-
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quisition. Huang et al. [25] utilizes the AdaBoost algorithm to establish a fault diagnostic
model. Momeni et al. [26] uses a graph-based semi-supervised learning (GBSSL) algorithm
to identify, classify, locate, and correct faults. Ma et al. [27] focuses on a partial shading
scenario, and apply a multiple-output support vector regression (M-SVR) to estimate the
shading strength. Chen at al. [28] proposes a random forest (RF) based fault diagnosis
model and takes the real-time operating voltage and string currents of the PV arrays as fault
features. Compared to the above-mentioned PR, I-V and statistical methods, the prediction
methods are data-driven, which learn the diagnosis knowledge based on historical data
and is free of the expertise domain background. Moreover, such machine learning-based
models can detect faults in real-time and classify their specific type with high prediction
accuracy. However, these methods require data to be collected from both normal and faulty
conditions. Our proposed method is an unsupervised prediction method, and we do not
directly predict which fault occurs. Instead, we predict the expected ideal and worst power
generation and then make two comparisons between them, and real-time ones. Hence,
we are able to evaluate its real-time performance and identify faults. Our work is novel
and advances the area of intelligent O&M in the following aspects:

(1) Applying unsupervised detection method. PV panels’ performance depends on
meteorological conditions, and a large number of faults may appear. It is difficult to get a
dataset covering all possible fault scenarios. Thus, some methods must artificially produce
labeled anomalous data by intentionally making some open circuit or short circuit to PV
panels [29,30]. This undermines the total power generation of PV stations and declines
their operation efficiency. On the contrary, our method is unsupervised without relying
on the labelled faulty samples, and simply makes use of the existing monitoring data to
evaluate operating status and detect anomalies.

(2) Building non-continuous regression models. Considering the special characteristic
of non-continuity in PV generation (Non-continuity is caused by the current-limiting
nature in photoelectric conversion [1,29,31], where data values are not continuous in the
whole scope and some ranges are meaningless and thus no data values are found there in
practice.), we build non-continuous regression models. First, we deploy the ensemble tree-
based regression algorithm that adjusts a tree structure according to the data characteristics
and thus handles non-linear functions better [32]. Moreover, we implement clustering-
based modification to the regression predictions so as to ensure that there is no inexistent
value in such non-continuous regression tasks. To the best of our knowledge, our method
is the first to deal with such non-continuous issues in PV predictive models.

(3) Detecting indirect faults sensitively. Unlike direct faults that lead to conspicuous
performance loss and can be identified easily, indirect faults (caused by dust, module
degradation and so on) result in such a gradual PV generation loss that many methods
fail to detect it [33,34]. Instead, by comparing the real-time measured value with both the
upper and lower references, our method can accurately distinguish different states of PV
panels, and hence detect indirect faults sensitively and also provide instantaneous alarm
of degradation.

3. Proposed Framework

The main objective of the proposed O&M framework is to enable PV system pro-
duction to reach its expected level of efficiency intelligently [19]. Therefore, the proposed
approach aims at PV system failure detection, performance evaluation, and O&M planning.
The notations frequently used in this paper and their descriptions are summarized in
Table 1. The concrete steps of the proposed method are detailed in the following sections.
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Table 1. Notations and descriptions.

Notation Description

A Ideal period
S Transition period
B Downturn period
p PV power generation (KWh)
r Solar irradiance (W/m2)
r̃ Differential value between two adjacent r (W/m2)

rL Logarithmic value of r (W/m2)
τ Temperature of a PV panel (°C)
h Relative humidity (%)

hL Logarithmic value of h (%)
v Wind velocity (m/s)
d Wind direction (0◦–360◦)
D Original dataset after data preprocessing

DA Subset of selecting A data from D
DB Subset of selecting B data from D

µi, i = 1, 2, . . . , k Cluster centroids, k centroids in total

C = {Ci, i = 1, 2, . . . , k} Clustered dataset, cluster Ci represents the i-th class,
k classes in total

Maxi, i = 1, 2, . . . , k The maximum value of cluster Ci
Mini, i = 1, 2, . . . , k The minimum value of cluster Ci

li ε {1, 2, 3, . . . , k}, i = 1, 2, . . . , m Class label of the i-th sample in D
fA, fB Upper and lower regression models

x = [r, τ, h, v, d, T, r̃, rL, hL] Real-time feature vector
pA, pB Predictions from the upper and lower model

p̂A, p̂B
Modified upper and lower predictions, also

simplified as a and b
α1, α2, β1, β2 Coefficients that divide up a baseline range

w Weather scale factor

A general framework of the proposed method is presented in Figure 1. First, we apply
data preprocessing (including outlier detection, feature analysis and data pre-classification)
to both historical meteorological and PV power datasets. Then, historical data are pre-
classified into three subsets that represent different operational statuses, namely, ideal pe-
riod dataset DA, transition period dataset DS and downturn period dataset DB. We apply
an XGBoost-based regression algorithm to datasets DA and DB, so as to train upper and
lower baseline models of a PV plant’s power output. Moreover, since PV power data
are noncontinuous, we deploy k-means [35] to cluster hierarchical PV power data and
use the statistical results of every cluster to modify the prediction values. Furthermore,
due to very low PV generation in bad weather (e.g., rainstorm, blizzard, hail, and sand-
storm), we consider its corresponding weather scale factors to revise both references. Thus,
by integrating the results of upper and lower reference models, clustering results and
weather scale factors, we acquire the final upper and lower reference curves. Comparing
the measured power with two reference curves, we can evaluate their performance, detect
faults, and carry out intelligent data-driven O&M. It is noted that our method does not use
the information related to a PV system’s components like inverters, which means that it is
a generic data-based method and not limited to a certain type of PV systems.
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We intend to evaluate the different operating statuses of real-time power generation
so as to better implement O&M. Thus, we propose the five stages (determined by two
references) and present corresponding definitions, which are detailed in Section 3.3. If only
using a simple threshold to identify how close the actual power value is to the expected
value, there is only one reference indicating the expected generation, so it would be easy
and clear to identify whether the PV panels are in the expected state or not. However, it is
not qualified to answer the following important questions: which operating situation (ideal
or malfunction period) the PV panels are in when the actual generation values are higher
than the expected ones, and how to distinguish the downturn period when covered by light-
barriers and the malfunction periods when suffering from short-circuit (their power outputs
in such cases are far below the expected reference values)? Using only one threshold makes
it difficult to make more fine-grained performance evaluations. Therefore, we propose to
use two references indicating the expected best and worst generation. With two references,
the above questions can be easily answered. Moreover, it is more accurate to determine the
operating status and evaluate real-time generation efficiency.

3.1. Data Preprocessing

Before a prediction model is applied, the first step is to conduct data preprocessing,
including outlier detection, feature analysis, and data pre-classification.

3.1.1. Outlier Detection

Due to the error or failure of sensor data transmission, there are various anomalies in
raw PV monitoring data, such as missing, negative, and duplicated values. Apart from
conducting basic preprocessing towards such obvious outliers, we pay attention to detect-
ing others, e.g., extreme and unmatched values in the original dataset so as to thoroughly
clean the data.

First, we apply classical statistical methods, i.e., box-plot and 3σ criterion, on each
single feature and try to detect outliers that deviate far away from most data. Note that,
such statistical methods achieve local detection that only identify extreme values in a single
feature. As for global detection, we concentrate on unmatched values. For example, in one
PV plant, when irradiation is more than 1000 W/m2, the corresponding PV generation
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should also be quite large, e.g., 1000 KWh. However, there is a record with 1000 W/m2

irradiation but very low generated power, e.g., 20 KWh. In the proposed framework,
such unmatched structural outliers are removed by an unsupervised machine learning
algorithm, i.e., DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [36],
which is able to identify hidden outliers from the global perspective. DBSCAN has two
major parameters: radius ε determines the scope of a cluster, and minimum number of
points N means the minimum number of members in a cluster. It can be regarded as a
simple binary classification (normal data vs. outliers) method. Although it is an excellent
anomaly detection method, it cannot be directly used in a monitoring system for classifying
different operating status and different faults. Due to its design, it is sensitive to data
distribution and depends heavily on the manual off-line setting of parameters, which is not
suitable for online detection. Especially, under a situation where data are recorded every
minute, DBSCAN would gradually turns to be unstable and inaccurate without timely
human supervision. The biggest motivation of intelligent PV fault detection is to identify
faults instantly and warn engineers of anomalous situations in time, so that they don’t have
to keep their eyes on these monitoring data but still can notice anomalies at the first time.
Using only DBSCAN is hard to perform such goal, so we propose the methods depicted
next. After detecting and removing outliers in raw data, we obtain our dataset D.

3.1.2. Feature Analysis

Since we try to predict PV generation, it is necessary to carry out detailed analysis
of PV power data (p). First, it is greatly affected by the fluctuation and uncertainty of
meteorological factors, and hence exhibits variability and volatility. Particularly, under the
nonstationary and low illumination intensity in cloudy and rainy days, PV power data are
prone to fluctuating violently [2,26,31,37]. Second, due to the current-limiting nature, a PV
system has non-continuous output characteristics of power generation [2,29,37]. However,
traditional methods, e.g., linear regression and support vector regression, fit continuous
data and output continuous value. The special characteristics of PV power data increase
difficulties and challenges for the accurate prediction of PV output. We deal with such
non-continuous regression tasks by clustering-based modification which is presented in
detail in the next sections.

Besides analyzing PV power data, we pay attention to the factors that affect or con-
tribute to PV output. The most directly related factors are meteorological one. Commonly
used factors include solar irradiance (r), temperature of PV panel (τ), relative humidity (h),
wind velocity (v), and wind direction (d). In order to capture the non-linear relationship
between meteorological factors and PV power, as many feature engineering methods do,
we construct two additional features: rL and hL, which are the logarithmic values of r and
h. To capture the changing trend (increasing or decreasing) of solar irradiance, we add
feature r̃ which denotes the differential irradiance between two adjacent r values.

3.1.3. Data Pre-Classification

In the proposed method, a critical part is to build two models: upper and lower
reference models. It is of great importance to select suitable valid data from the original
data and use them to train two models. We dig out the original data D and manually select
the ideal period dataset DA and the downturn period dataset DB for the upper and lower
model, respectively.

As shown in Figure 2, we propose to pre-classify the original data into three periods.
For most PV plants, as time goes by, if there are no faults during running, the PV panels
degrade due to dust or module deterioration. Thus, the power generation presents a
declining tendency as shown in Figure 2. The states of PV panels are divided into the
following three periods:
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Figure 2. Three typical states of PV power.

(1) Ideal period A: The first time when the panels are brought into operation or
after maintenance (e.g., cleaning and washing), the PV panel is in a healthy and clean
state without any light barriers. At this time, the efficiency of photoelectric conversion is
comparatively high. The power generation in a PV plant is also at an ideal state, namely,
relatively high and stable.

(2) Transition period S: Under a natural state and without any interference, PV panels
gradually accumulate dust and some light barriers (e.g., bird dropping, leaves, snow and
plastic bags). Under this circumstance, the conversion efficiency slows down, and power
generation gradually declines too. The total PV power generation makes a gradual transi-
tion from ideal state to a lower state.

(3) Downturn period B: When there is visible dust or too much light barriers on PV
panels, PV cells receive little solar irradiation, or when they are aging, the photoelec-
tric conversion efficiency reaches its lowest limit, and the generated power continues to
be sluggish.

Among these operating periods, we pay special attention to A and B periods. We col-
lect data from these two periods to construct the ideal period dataset DA and downturn
period dataset DB. Note that in this paper we manually classify the dataset D and select
suitable data for DA and DB. According to the definitions of operating periods and our
preliminary investigation, we are able to select data for DA and DB based on weather and
maintenance records. Based on experience, these two factors are the most related ones in
regard to generation efficiency. Besides, it is convenient to get access to its own historical
operating records and the weather-related data online. Our method can be easily applied
in other similar tasks. In the future, we consider labeling historical data D with different
period labels and then train a classification model, thus avoiding manual selection of data.

3.2. Non-Continuous Regression Models

The proposed method builds the upper and lower baseline models with DA and
DB, respectively. The training procedure of these two models are similar, and the only
difference lies in a different PV dataset we input for training.

As mentioned above, PV power data have special characteristics of variability and
non-continuity, which motivates us to deploy an ensemble trees-based regression method
called extreme gradient boosting (XGBoost) [38]. It assembles a number of CART (Classifi-
cation and Regression Tree) as base learners, which can deliver more accurate prediction.
It inherits the advantages of a decision tree algorithm and handles well non-continuous
functions, which exactly suits the prediction task on non-continuous PV power data. Hence,
we deploy it as our regression algorithm.
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The power generation p is the output of our prediction model whose inputs are the
combination of meteorological features (r, τ, h, v, d), time-related features (T), and addi-
tional features (r̃, rL, hL). Then, our regression prediction model is denoted as:

p = f (r, τ, h, v, d, T, r̃, rL, hL) (1)

where f is an XGBoost-based prediction function. Note that we cannot obtain explicit
expressions in a tree-based regression method. Hence, f is a simplified notation of a tree
structure and corresponding parameters. Using DA and DB as training datasets, we can
obtain two prediction models fA and fB.

By inputting a real-time feature vector:

x = [r, τ, h, v, d, T, r̃, rL, hL] (2)

into fA and fB, we can conduct PV generation prediction and acquire the upper and lower
references, i.e.,

pA = fA(x) (3)

pB = fB(x) (4)

Although the proposed XGBoost-based regression model is suitable for fitting non-
continuous PV data, it is still a regression method and sometimes obtain outputs that do not
exist in a real PV system. Considering the non-continuous characteristic of PV generation,
it is necessary to implement further modification to refine (3) and (4), i.e., modifying with
the weather scale factors and power data clustering results, which is detailed as follows.
Due to the above mentioned current-limiting principle, PV power data are of obviously
hierarchical discreteness. Power values belong to several particular groups where they are
continuous. Between two adjacent groups, there is a blank gap with no data. We propose
to cluster the original power data by using k-means algorithm [35]. In k-means, there is
only one key parameter: the number of clusters denoted as k. After clustering, we calculate
the minimum and maximum values for each cluster. Hence, we can know the ranges to
which actual values belong. For upper or lower predictions located outside existing ranges,
we propose to modify them with the maximum or minimum values of their closest cluster.

For the upper prediction value pA, if it does not belong to any cluster, then the
principle of proximity is adopted to correct it. We replace it with the maximum value of
the closest cluster. The modified prediction value is

p̂A = argmin
Maxj

(∣∣pA −Maxj
∣∣), j = 1, 2, . . . , k (5)

where Maxj is the maximum value of the j-th cluster.
Similarly, for pB located beyond any existing cluster, we modify it with the closest

minimum value, as follows:

p̂B = argmin
Minj

(∣∣pB −Minj
∣∣), j = 1, 2, . . . , k (6)

where Minj is the minimum value of the j-th cluster.
Considering the variability of PV generation under different weather conditions,

we propose the weather scale factors so as to make our prediction more robust. When pre-
dicting expected PV generation in bad weather (here, bad weather refers to the case of
greatly unstable irradiance or extremely low irradiance, e.g., rainstorms, blizzards, hail,
and sandstorms), we multiply them by weather scale factors. In the proposed method,
a weather scale factor w is defined as the percentage of reduction of power generation in
bad weather. It can be computed as the ratio of average power output from a normal day to
that of a bad weather day, which can be derived from the historical monitoring data. Then,
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(5) and (6) are modified by p̂A= wp̂A and p̂B= wp̂B. Prediction modification is realized in
Algorithm 1.

Algorithm 1: Non-continuous Regression Prediction

Input: Dataset DA, dataset DB, original dataset D, number of clusters k, real-time
feature vector x and its corresponding w.
Output: Upper and lower prediction values p̂A and p̂B

1. Train XGBoost algorithm on DA and obtain the upper prediction model fA
2. Train XGBoost algorithm on DB and obtain the lower prediction model fB
3. From D extract power data series P = {p1, p2, . . . , pm}
4. Initialize cluster centroids µ1, µ2, . . . , and µk randomly
5. For each sample pi in P
6. classify it into the closest category:
7. Let li = argmin1≤j≤k‖pi − µj‖
8. Moving each cluster centroid µj to the mean of the points assigned to it:

µj =

(
∑

i∈cj

pi

)
/
∣∣∣cj

∣∣∣
9. Repeat above for-loop until the change of centroids is less than a certain threshold
10. Obtain the clustered data C = {C1, C2, . . . , Ck}
11. For each cluster Ci in C
12. Let Maxi = max

{
pj

∣∣∣pj ∈ Ci

}
, Mini = min

{
pj

∣∣∣pj ∈ Ci

}
13. Input x to fA and obtain upper prediction pA

14. If pA ∈ ∪k
j=1

[
Minj, Maxj

]
15. Let p̂A = pA
16. Else do Equation (5)
17. Input x to fB and obtain lower prediction pB

18. If pB ∈ ∪k
j=1

[
Minj, Maxj

]
19. Let p̂B = pB
20. Else do Equation (6)
21. Match weather scale factor w
22. Let p̂A = wp̂A, p̂B= wp̂B
23. Return upper and lower prediction values p̂A and p̂B

3.3. Performance Evaluation, Fault Detection, and O&M Planning

Generally, a PV system can be affected by different types of faults that result in the
significant loss of power [20,39,40]. According to the factors causing PV faults, two types
of faults can be distinguished: direct and indirect faults. Some direct faults such as cell
cracking, nonconnected module, open circuit and short circuit in a PV system, and broken
fuse or cable, cause conspicuous performance loss. Indirect factors, such as shading due
to dust or light barriers, encapsulation degradation due to ultraviolet and yellowing EVA
(ethylene vinyl acetate), module degradation due to light or heat, and rust due to water
infiltration, lead to the gradual deterioration of PV panels, and hence result in the gradual
power loss [34]. Using the monitored data, a PV monitoring system has to decide whether
there is degradation in its generation performance [41].

In the proposed approach, apart from the real-time PV power-versus-time curve
displayed in the monitoring system, there are also two reference curves (A and B) from
regression models exhibited in the same figure. For each real-time record (including a
feature vector x and its corresponding power generation p), we obtain its expected ideal
and worst PV generations p̂A and p̂B by inputting its feature vector x into Algorithm 1.
To simplify, we set a = p̂A and b = p̂B. Our method evaluates the PV panels’ real-time
status by comparing real-time PV power p with a and b. As in Table 2, generally, according
to different conditions, there are five different stages. They are classified into four typical
operating periods: malfunction period in Stages 1 and 5; ideal period in Stage 2; transition
period in Stage 3; and downturn period in Stage 4.
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Table 2. Five conditions of power data and corresponding status.

Stage Condition Period

Stage 1 Far above B̂: p > (1 + α1)a Malfunction period
Stage 2 Fluctuating near B̂: (1− α2)a < p < (1 + α2)a Ideal period
Stage 3 Between B̂ and B̌: (1 + β2)b < p < (1− α2)a Transition period
Stage 4 Fluctuating near B̌: (1− β2)b < p < (1 + β2)b Downturn period
Stage 5 Far below B̌ baseline : p < (1− β1)b Malfunction period

If real-time power exhibits more than a given percentage of generation losses, they are
classified into a downturn or malfunction period. In our method, we set α1, α2, β1, and β2
(α1 > α2, β1 > β2 and α1, α2, β1, β2 ∈ [0, 1]) to divide up the warning ranges. Users
receive an alarm if a PV panel produces more than α1 of the expected ideal baseline B̂,
i.e., p > (1 + α1)a, or less than β1 of the expected worst baseline B̌, i.e., p < (1− β1)b,
which means that the sensors or PV panels may break down or the data transmission is
incorrect. If p is fluctuating near B̌, i.e., (1− β2)b < p < (1 + β2)b, the PV panels are of
low efficiency, and they need timely maintenance, such as manual cleaning and equipment
repair. For α1 and β1, smaller values mean stricter alert and more sensitive detection; larger
values mean looser limitation, but help reduce false alarms. On the contrary, a larger β2
means larger range of Stage 4, which may result in more observations classified into the
downturn period, hence bring in more false alarms.

If p is near B̂, i.e., (1− α2)a < p < (1 + α2)a, it indicates that the PV power generation
is running in an ideal state. There is no need to implement any maintenance. Furthermore,
there is no warning or alarm when p is between B̂ and B̌, i.e., (1 + β2)b < p < (1− α2)a,
it is in the transition period, and we consider it as a normal life cycle of PV panels. Note that,
if α2 is too large, there are more data classified into the ideal period, leading to the risk of
misclassification of potential faults.

4. Experimental Results
4.1. Data Description

We have conducted experiments based on the proposed method and used it in a
6.95 MW PV plant. Apart from zero-records (at night or missing), available effective
monitoring data consist of 5936 records (In our experiments, the monitoring system records
sensor data every 15 min). Although the time range of the collected dataset covers less
than one year, our data included all kinds of weather situations, especially some extreme
weather, e.g., snow, high temperature and rainstorms. Examples of the collected data are
shown in in Supplementary File. As mentioned in Section 3, we collect power data p and
features x = [r, τ, h, v, d, T, r̃, rL, hL] in (2).

4.2. Experimental Results
4.2.1. Results of Data Preprocessing

We use DBSCAN [36] to detect outliers and the parameters are set as ε = 46 and
n = 25. To explore raw data intuitively, we plot PV data of a week in Figure 3. Only day-
time hours (from 6:00 to 18:00) are considered in our PV forecasting application. As in
Figure 3, PV power experiences violent fluctuation within a day as well as drastic variation
among days. Meanwhile, we plot all measured PV power data versus time, as shown in
Figure 4. It is noticeable that PV power data is non-continuous. Looking at the picture
from the bottom to top, there are many blank gaps between two adjacent data dot clusters.
Obviously, power data belong to different groups. In sum, the characteristics of raw data:
intensive fluctuation and variability, and hierarchical non-continuity, motivate us to apply
an XGBoost algorithm that suits most for non-continuous PV power regression task.
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We aim to select appropriate data for two datasets, DA and DB, reflecting the ideal and
downturn periods, respectively. First, we get DA by considering maintenance records of a
studied PV plant. The scheduled maintenance plan for year 2018 is to do the cleaning work
every month, and each last for nearly half a month (from 16th to the end of that month).
Obviously, the cleaning work is quite frequent. Under this circumstance, PV panels always
stay in a comparatively clean status, namely, the ideal period. (Since we need the downturn
period data, we stop the monthly cleaning from May.) Moreover, we consider that PV
panels are perfectly clean two days after cleaning, so we take data from 18th to the end
of the month from January to April as an ideal period dataset. For example, in January,
data are collected into DA. In order to obtain valid DB, we suspend the monthly cleaning
from May. Without cleaning, PV panels depend on the rain to wash away dust or other
light barriers. So, it is important to find data originated from continuous sunny days, where
PV panels may be covered with dust or light barriers, and hence in the downturn period.
By checking the historical weather, which is freely available online, we are able to select
suitable valid data for DB from May to July. Take July as an example, it is rainy in the first
week. Thus the data are not appropriate for dataset DB. But since 8 July 2018, it has been
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cloudy, overcast or sunny, which suits our selection principle of dataset DB. So, we take
data from 9 July 2018 to 15 July 2018 into dataset DB.

To conclude, by data preprocessing, we determine the XGBoost-based regression
algorithm according to the special characteristics of PV power data. Moreover, we present
how to construct datasets DA and DB. More detailed analyses about data preprocessing
can be viewed in Supplementary File.

4.2.2. Results of Non-Continuous Regression Models

We compare XGBoost with seven universal regression methods, and each of them has
achieved good performance in existing research. This includes multivariable linear regres-
sion (MLR) attempts to model the relationship between two or more explanatory variables
and a response variable by fitting a linear equation to observed data. ElaticNet [42] is a
regularized regression method that linearly combines the L1 and L2 penalties of the lasso
and ridge methods. Support vector regression [27] is a version of support vector machine
(SVM) for regression. Here, we apply kernel-based SVM. Support vector regression with
linear kernel is denoted as SVR, and the one with radial basis function kernel is denoted as
SVR-RBF. Decision tree regression (DTR) [43] uses tree structure to predict the continuous
output on the basis of input or situation described by a set of properties. Random forest
regression (RFR) [28] is an ensemble learning method, which constructs a multitude of
decision trees at training time and outputs the mean prediction of the individual trees.
Gradient boosting decision tree (GBDT) [44] builds the ensemble model in a stage-wise
fashion like other boosting methods do, and it generalizes them by allowing optimization
of an arbitrary differentiable loss function. Note that we compare their basic regression
performance and do not implement the proposed modifications (clustering-based one and
weather scale factors-based one). The compared algorithms are listed:

(1) Multivariable linear regression (MLR)
(2) ElasticNet
(3) Support vector regression with linear kernel (SVR)
(4) Support vector regression with radial basis function kernel (SVR-RBF)
(5) Decision tree regression (DTR)
(6) Random forest regression (RFR)
(7) Grmadient boosting decision tree (GBDT)

The above algorithms are available in scikit-learn [45] which is a free software machine
learning library for the Python programming language. Among them, RFR and GBDT are
similar to XGBoost. They are tree-based ensemble methods but others use a single model.

To validate the generalization performance, we extract four datasets from the dataset
D: April, May, June, and July. They are under different meteorological conditions. Then,
for each dataset, we split 50% for training regression models and the rest for testing.
We apply five-fold cross validation to search the optimal parameters that show the high-
est accuracy.

We use three performance metrics on test data. They are the ratio of root mean squared
error to the mean value denoted as Ẽ, the mean absolute error denoted as E, and the
goodness of fit denoted as R2.

Ẽ =

√
1
n ∑n

i=1(yi − ŷi)
2

yi
× 100% (7)

E =
1
n

n

∑
i=1
|yi − ŷi| (8)

R2 =

(
1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2

)
× 100% (9)
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where yi is the ground truth of p, ŷi is the prediction value, yi is the mean of all yi, and n is
the number of test samples.

All experiments are carried out in Python 3.7 with an Intel Core i5-8250 CPU and
8G memory. Table 3 shows the performance results on each dataset, and the best one is
highlighted in bold. From Table 3, compared to other methods, XGBoost generally achieves
much better performance. Even if it does not rank the best on dataset May, it achieves
the second-best with a small gap to the best one, i.e., RFR. Table 4 presents the average
evaluation metrics on the four datasets. XGBoost outperforms its peers with the best
average performance metrics. In particular, XGBoost achieves better performance than RFR
and GBDT, both of which are the state-of-the-art ensemble regression methods. In sum,
compared with its seven peers, XGBoost achieves higher average accuracy and more
generalized performance under different meteorological conditions.

Table 3. Accuracy of algorithms.

Algorithms
April May June July

Ẽ (%) E R2 (%) Ẽ (%) E R2 (%) Ẽ (%) E R2 (%) Ẽ (%) E R2 (%)

MLR 10.87 72.20 88.25 9.71 76.61 86.26 5.29 38.76 95.89 5.79 41.31 96.06
ElasticNet 10.91 72.60 88.17 9.76 76.74 86.10 5.32 39.03 95.85 5.92 42.78 95.87

SVR 16.08 71.50 74.31 14.89 87.32 67.66 7.58 53.33 91.58 7.23 51.53 93.83
SVR-RBF 16.11 76.72 74.20 15.34 95.42 65.70 8.24 56.83 90.03 8.88 64.22 90.72

DTR 5.16 37.10 97.35 6.04 46.05 94.67 6.28 46.09 94.22 7.24 51.53 93.82
RTR 4.45 31.58 98.03 5.25 38.78 95.98 5.39 38.79 95.74 6.23 42.42 95.43

GBDT 4.86 34.96 97.65 5.40 39.73 95.74 5.44 38.09 95.66 6.44 43.35 95.12
XGBoost 4.31 30.96 98.16 5.66 41.97 95.32 5.19 37.27 98.02 5.61 38.07 96.29

Table 4. Average accuracy of algorithms.

Algorithms MLR ElasticNet SVR SVR-RBF DTR RTR GBDT XGBoost

Ẽ(%) 7.91 7.98 11.44 12.14 6.18 5.33 5.53 5.19
E 57.22 57.78 65.92 73.29 45.19 37.89 39.03 37.06

R2 (%) 91.62 91.50 81.85 80.16 95.02 96.30 96.04 96.95

Then, we apply XGBoost to train upper and lower reference models. We randomly
split 50% of selected DA and DB to train regression models. The rest of DA and DB are
for testing. The optimal XGBoost parameters for upper models are as follows: maximum
depth is 3, learning rate is 0.1 and the number of estimators is 125. As for the lower
model, maximum depth is 3, learning rate is 0.06, and the number of estimators is 300.
For both upper and lower models, other not-mentioned parameters are set as default
values. As discussed in Section 3, we deploy a k-means clustering algorithm to classify
original PV power data and then take the clustering results to modify the prediction values.
In the k-means algorithm, we set parameter k = 16 to ensure that our data are exactly
classified into 16 classes (As in Figure 4, there are 16 classes). The clustering results are
presented in the Supplementary File section. We calculate the maximum value (Max) and
the minimum value (Min) of every cluster. Then, it is necessary to take the weather scale
factors into consideration to avoid incorrect near-zero PV prediction. The near-zero values
usually are regarded as data from a malfunction period, but for extreme weather, it is
reasonable to get zero PV output. Some methods may produce false alarm under this
situation. The weather scale factors are used to modify the predictions under the case
of greatly unstable irradiance or extremely low irradiance, thus effectively avoiding the
abovementioned false alarm. The weather scale factors are computed as the ratio of average
power output from a normal day to that of a bad-weather day. The studied PV plant is
operated under normal weather conditions, i.e., the collected datasets does not include
data under extreme weather conditions (e.g., blizzards, hail, and sandstorms), and we thus
set w = 1. Our future work plans to find more datasets that cover all types of weather
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conditions and conduct related analysis to show how weather scale factors can be well-used
to improve model performance. Following Algorithm 1, we obtain the final predictions for
the test samples.

Table 5 presents model performance on training and test datasets. Ẽ and E are low on
two test datasets, R2 is very close to 1 on both models, indicating that our two prediction
models are highly accurate and reliable. Note that, the performance in Table 5 is not as
good as those in Tables 3 and 4. This is because our selected datasets DA and DB consist of
records from different months, and hence the training and test datasets are less stable than
those in above experiments.

Table 5. Performance metrics of two prediction models.

Performance Metric Upper Model Lower Model

Ẽ (%) 8.34 10.07
E 23.72 16.80

R2 (%) 98.97 99.09

To better present the superiority of our proposed modification methods, i.e., the clust-
ering-based modification and weather scale factor-based one as shown in Algorithm 1,
Figure 5a,b show an example of the monitoring system before and after modifica-tion,
respectively. Two trained models are applied to the monitoring data of a day in May
which are presented as black hollow circles. The blue curve is the upper reference from
fA, and the purple one is the lower reference deriving from fB. In Figure 5, it is noticeable
that purple one is sometimes above the blue one, e.g., curves during 5:28–6:43, 8:28–9:28,
and 16:28–17:58. Moreover, there are many observations below or above the reference lines.
Instead, in Figure 5, there is no overlap, and the purple reference line is below the blue one.
Furthermore, the modifies references are more consistent with the changing trend of actual
PV power values, and there are also less observations located outside two references.
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4.2.3. Results of Performance Evaluation, Fault Detection, and O&M Planning

Based on two modified prediction models, we obtain the corresponding upper and
lower references of power generation. We compare them with the measured power value,
and assess PV panel status according to their distributions in the reference range. After dif-
ferent tests about selecting suitable parameters, we recommend to set α1 = β1 = 0.5 and
α2 = β2 = 0.1, which show satisfactory results in most experiments. To make a compre-
hensive comparison, we show pictures of different weather conditions, i.e., a sunny day
in Figure 6a, and a cloudy dayin Figure 6b. There are five kinds of typical distributions.
As discussed before, data in Stages 1, 4, and 5 can provide early warning for the engineers
in a PV station. In Stages 1 and 5, actual values deviate far from the references. This is the
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malfunction period, where the sensors may break down and the data transmission may
be incorrect. Specially for Stage 5 where the power is relatively low, chances are high that
there are open circuits or short circuits in PV panels. In Stage 4, the generated power is
comparatively low. PV panels are in a downturn period, and may be covered by dust and
need cleaning. It is worth noting that some disturbance in the power grid also leads to the
decrease of output power. It may fall below the lower reference curve, but it is not due to
a failure in the PV plant. After such warning, on-site engineers need to conduct further
inspection and corresponding O&M plans. Stages 2 and 3 do not trigger warning, because
they correspond to an ideal period and transition period. According to our previous data
analysis and definitions of stages, the transition period (Stage 3) and the downturn period
(Stage 4) are the most common ones. Generally, a normal operating PV station does not
frequently break down with severe faults or always yield an ideal power generation with
high operational efficiency. Hence, a malfunction period (Stages 1 and 5) and ideal period
(Stage 2) are the relatively less common ones.
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In order to explicitly present the performance evaluation, we plot the warning bound-
ary lines in Figure 7a,b. In the monitoring system, the engineers are capable of directly
distinguishing the PV panel statuses and getting suggestions about how to carry out proper
O&M plans. As in Figure 7a, the PV power generation experiences an abrupt decline and
drops greatly at 14:28 in 2018/5/11, which indicates that the PV station is in a malfunction
period and maintenance is required. According to the abrupt decline and long-lasting Stage
5, we consider that there is direct fault in the PV plant, e.g., nonconnected modules and
short/open circuits. Such direct faults are relatively easy to notice in a monitoring system.
They usually happen in Stage 5, accompanied by an obvious and long-term decline of PV
generation. In this case, further O&M plans lie in checking detailed PV records about each
panel and then locating the faulty one(s). As in Figure 7b, a cloudy day in summer, the solar
irradiance is strong, so the curves of p, a, and b are nearly sinusoids shape. At 10:37, both A
and B baselines fall greatly, whereas the actual p stays in the original trend. There is a high
chance that meteorological sensor errors or transmission mistakes appear. The wrong data
are input to our prediction models, so we get wrong results. We suggest that further O&M
plans attach importance to check the original database and repair or replace faulty sensors.
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As for the validation, as there is no label about which performance stage the PV system
is in and which fault it suffers (which makes it difficult to conduct detailed verification and
give specific classification metrics), we have manually labelled the data and conducted
classification experiments to verify the performance of our method compared with other
advanced machine learning classification algorithms. The input of classification models
are the monitoring records that include both meteorological data as listed in (2) and corre-
sponding generated PV power data. The output of classification models indicates which
performance period the PV system is in, i.e., malfunction, ideal, transition, or downturn
periods. We compare our method with several widely-used and powerful algorithms under
their classification implementations, i.e., support vector machine classification [46–48] with
linear kernel (SVC-Linear), support vector machine classification with RBF (SVC-RBF), deci-
sion tree classification (DTC) [49], random forest classification (RTC) [50], gradient boosting
decision trees classification (GBDTC) [51] and extreme gradient boosting trees classification
(XGBC) [52]. The above algorithms are available in scikit-learn [45]. The classification
performance metrics are shown in Figure 8a–g and Tables 6–12.

Table 6. Performance of DTC.

DTC Precision Recall f1-Score

0 0.88 0.85 0.87
1 0.56 0.70 0.62
2 0.63 0.61 0.62
3 0.74 0.65 0.70

Macro-Average 0.71 0.70 0.70

Table 7. Performance of SVC-Linear.

SVC-Linear Precision Recall f1-Score

0 0.96 0.64 0.77
1 0.75 0.84 0.79
2 0.63 0.70 0.66
3 0.75 0.81 0.78

Macro-Average 0.77 0.75 0.75
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Table 8. Performance of SVC-RBF.

SVC-RBF Precision Recall f1-Score

0 0.97 0.78 0.86
1 0.75 0.92 0.83
2 0.71 0.74 0.73
3 0.82 0.77 0.79

Macro-Average 0.81 0.80 0.80

Table 9. Performance of RTC.

RTC Precision Recall f1-Score

0 0.92 0.86 0.89
1 0.76 0.75 −0.76
2 0.70 0.68 0.69
3 0.76 0.83 0.79

Macro-Average 0.78 0.78 0.78

Table 10. Performance of GBDTC.

GBDTC Precision Recall f1-Score

0 0.76 0.90 0.82
1 0.63 0.69 0.66
2 0.60 0.46 0.52
3 0.73 0.72 0.73

Macro-Average 0.68 0.69 0.68
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Table 11. Performance of XGBC.

XGBC Precision Recall f1-Score

0 0.82 0.91 0.86
1 0.65 0.82 0.73
2 0.68 0.57 0.62
3 0.82 0.69 0.75

Macro-Average 0.74 0.75 0.74

Table 12. Performance of Our Method.

Ourmethod Precision Recall f1-Score

0 1.00 1.00 1.00
1 0.97 0.88 0.92
2 0.80 1.00 0.89
3 1.00 0.86 0.92

Macro-Average 0.94 0.93 0.93

Based on whether PV generation is matched with real-time meteorological records,
we manually classify the original data into 4 classes, i.e., malfunction, ideal, transition and
downturn periods. With meteorological records, it is possible to calculate the nominal
power generation by formulas of photoelectric conversions. Specifically, the generated
PV power in an ideal period is supposed to be close to the nominal power generation;
the generation in a transition period is slightly lower than the nominal one; the generation in
a downturn period is relatively low but reasonable (due to too-much light barriers or aging
panels); and the generation values in a malfunction period are extremely larger or lower
than the nominal values. Such manual divisions are conducted based on expert knowledge
and prior experience. We label the malfunction, ideal, transition and downturn periods
with the class indices 0, 1, 2, and 3, respectively. Then, we split 75% for training classification
models and the rest for testing. We apply five-fold cross validation to search the optimal
parameters that show the highest performance. Figure 8 shows the confusion matrix (CM)
of all classes in test dataset. Tables 6–12 details the performance metrics (precision, recall,
f1-score) of each compared algorithm and our method. From Figure 8a–g and Tables 6–12,
we can conclude that our method achieves the best classification performance with the
highest averaged precision 0.94, recall 0.93 and f1-score 0.93. Moreover, the other compared
methods are far behind, which validates the superiority of our method.

In addition, we assess model performance by consulting engineers and judge whether
the proposed method gives right performance evaluation and accurate fault alarm. We ap-
ply the proposed method to the monitoring system of our studied PV plant. According
to the feedback from their on-site engineers, our method achieves accurate performance
evaluation and fast fault detection. First, our method is able to present instantaneous evalu-
ation for each real-time observation. With the assistance of our method, the O&M engineers
do not have to keep their eyes on the curves, and they only check the database when Stages
1 and 4 appear. Second, our method is able to detect both direct and indirect faults in a PV
system. It presents an accurate classification and seldom misses potential anomalous situa-
tion, which greatly enhances the operation safety and maintenance efficiency. More results
and analyses are presented in the Supplementary File section.

Although our proposed method runs well in a practical PV plant, from Figure 7a,b we
can tell that there are still a few unusual observations in early morning and late afternoon
when illumination intensity is quite weak. We plan to improve the robustness of our
prediction models as future research, so that they can make more accurate prediction even
when the power output is pretty low.
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4.3. Discussion

In practical scenarios of PV stations, direct faults, like open circuit and transmission
errors, are comparatively easy to notice in the monitoring system. There is an abrupt
shift from previous trend. Among indirect factors, encapsulation or module degradation
is common in the life cycle of PV panels, which is unavoidable. Therefore, the difficult
task of O&M in a PV plant is to intelligently implement panel cleaning, including dust
removal and anti-blocking. Compared to direct faults, shade reduces a small amount of
output power, which is hard to be detected. In the past, the cleaning O&M of PV panels
was mainly periodically manual or robotic cleaning, such as once a month or once a week.
Now with the proposed method, which evaluates the state of PV panels and provides
instantaneous alarm of degradation, the cleaning maintenance is triggered only when
needed. Furthermore, the proposed framework can easily detect direct PV faults and offer
timely O&M suggestions.

5. Conclusions

This paper presents an O&M framework consisting of an intelligent detection struc-
ture which can enhance the O&M efficiency in the PV monitoring system and reduce the
burden on monitoring staff. Our method evaluates operating performance and identifies
anomalies by comparing to two reference baselines, which is an unsupervised way and ex-
erts no dependence on labeled faulty data. Moreover, considering the special characteristic
of non-continuity in PV generation, we build corresponding non-continuous regression
models, which are based on XGBoost algorithm and refined by the results of k-means
clustering. Last, by comparing the real-time measured value with both the upper and
lower references, our method is sensitive to indirect faults and can provide instantaneous
alarm of degradation. Results on a 6.95 MW PV plant indicate that the proposed method is
able to evaluate different operating statuses and provide faults identification and O&M
suggestions to engineers.

Our work focuses on performance monitoring, fault detection and diagnosis, and O&M
optimization in large complex systems. With proper data of ideal and downturn periods,
the proposed method can be easily applied to other similar engineering scenarios, such as
the assessment of workshop equipment and fault detection in wind power plants. More-
over, our method can be transferred to the application of RUL (remaining useful life) [53]
prediction and equipment’s PHM (prognostic and health management) [54]. In future
studies, we plan to concentrate on the classification refinement of detected faults and
predictive maintenance based on the proposed method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/pr9101711/s1. More details about the proposed method are available online at https://www.dropbox.
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