
processes

Article

Parallel Implementation of the Deterministic Ensemble Kalman
Filter for Reservoir History Matching

Lihua Shen * , Hui Liu and Zhangxin Chen

����������
�������

Citation: Shen, L.; Liu, H.; Chen Z.

Parallel Implementation of the

Deterministic Ensemble Kalman

Filter for Reservoir History Matching.

Processes 2021, 9, 1980. https://

doi.org/10.3390/pr9111980

Academic Editors: Simant Upreti and

Jean-Pierre Corriou

Received: 11 September 2021

Accepted: 3 November 2021

Published: 6 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW,
Calgary, AB T2N 1N4, Canada; Hui.Liu@cmgl.ca (H.L.); zhachen@ucalgary.ca (Z.C.)
* Correspondence: lihua.shen@ucalgary.ca; Tel.: +1-403-210-6526

Abstract: In this paper, the deterministic ensemble Kalman filter is implemented with a parallel
technique of the message passing interface based on our in-house black oil simulator. The imple-
mentation is separated into two cases: (1) the ensemble size is greater than the processor number
and (2) the ensemble size is smaller than or equal to the processor number. Numerical experiments
for estimations of three-phase relative permeabilities represented by power-law models with both
known endpoints and unknown endpoints are presented. It is shown that with known endpoints,
good estimations can be obtained. With unknown endpoints, good estimations can still be obtained
using more observations and a larger ensemble size. Computational time is reported to show that the
run time is greatly reduced with more CPU cores. The MPI speedup is over 70% for a small ensemble
size and 77% for a large ensemble size with up to 640 CPU cores.

Keywords: history matching; DEnKF; relative permeability; power-law model; parallel computing

1. Introduction

The ensemble Kalman filter (EnKF) is a data assimilation method to estimate poorly
known model solutions and/or parameters by integrating the given observation data. It
was introduced by Evensen [1] and has attracted a lot of attention in the fields of weather
forecasting sciences, oceanographic sciences and reservoir engineering. Regarded as a
Monte Carlo formulation of the Kalman Filter, it is applied to each ensemble forecast in
an analysis step. The deterministic ensemble Kalman filter (DEnKF) is a variation of the
EnKF which has an asymptotic match of the analysis error covariance from the Kalman
filter theory with a small correction and without any perturbed observation; its form is
simpler while its robust property is still kept [2].

The EnKF has been introduced to reservoir engineering in the past decade. As a data
assimilation method for history matching, the EnKF can be used to assimilate different
kinds of production data, estimate model parameters and adjust dynamical variables. It
was first applied to history matching by Nævdal [3,4]. A detailed review was given by
Aanonsen et al. [5]. It has been used to estimate reservoir porosity and permeability
successfully [4,6,7]. It has also been adopted to estimate relative permeability and capillary
pressure curves with good accuracy [8–11]. Nevertheless, for most of the applications,
hundreds of the ensemble members are required to guarantee the accuracy of an estimation.
For example, an estimation of endpoints of relative permeability curves is challenging; a
good estimation can only be obtained in limited cases [8,9] and requires a large ensemble
size. Therefore, a serial run of simulations is very time-consuming. Furthermore, for
large-scale numerical models, the memory of one single processor may even not be enough
for a simulation with one ensemble member. Therefore, the parallel technique becomes a
natural choice to reduce the computational time and make large-scale models feasible.

The parallel technique has been successfully applied in many fields including atmo-
sphere and oceanographic sciences. A multivariate ensemble Kalman filter was imple-
mented on a massively parallel computer architecture for the Poseidon ocean circulation

Processes 2021, 9, 1980. https://doi.org/10.3390/pr9111980 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-2449-1778
https://orcid.org/0000-0002-9107-1925
https://doi.org/10.3390/pr9111980
https://doi.org/10.3390/pr9111980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9111980
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9111980?type=check_update&version=3


Processes 2021, 9, 1980 2 of 20

model [12]. At an EnKF forecast step, each ensemble member is distributed to a different
processor. To parallelize an analysis step, the ensemble is transposed over processors
according to domain decomposition. A parallelized localization implementation was re-
ported in [13] based on domain decomposition. As for the reservoir history matching,
the parallel technique has not been well developed. An automatic history matching mod-
ule with distributed and parallel computing was done by Liang et al. using weigthed
EnKF [14], where two-level high-performance computing is implemented, distributing
ensemble members simultaneously by submitting all the simulation jobs at the same time
and simulating each ensemble member in parallel. A parallel framework was given by
Tavakoli et al. [15] using the EnkF and ensemble smoother (ES) methods based on the
simulator IPARS, in which a forecast step was parallelized while an analysis step was
computed by one central processor. It discussed the case where the processor number is
fewer than the ensemble size and each processor is in charge of one or several ensemble
members according to its simulation speed. In their another work [16], the case where the
processor number is greater than the ensemble size was also discussed. For parallelizing
an analysis step, the parallelization was carried out by partitioning a matrix in a row-wise
manner. Comparing to the EnKF, ES requires less time to assimilating the data as it does
not need to synchronize all the ensemble members at the analysis step. However, for the
large data point problems, the matrices become very large, resulting in long computational
time and large memory requirements for the inversion.

Although the implementation of the parallel technique was explored in the above
papers, good computational efficiency has not been obtained, even with high performance
simulators. One important reason is that after each analysis step, updated variable values
were written on a disk and read by different processors to restart a simulator. A large
number of inputs/outputs not only waste the disk space, but also slow down accessing,
reading and writing. On the other hand, an analysis step must have been done after
all the simulations in a forecast step are finished. This synchronization determines that
at every forecast step, the simulation time equals the maximum run time among all the
processors. From the parallel aspect, MPI inputs/outputs have poor performance on
common computer clusters. Load and storage operations are more time-consuming than
multiplication operations. Moreover, parallelization of an analysis step needs message
passing multiple times. According to the above published papers, the parallel efficiency
was generally lower than 50% with an ensemble of no more than 200 members compared
to the ideal efficiency 100%.

In contrast to the traditional EnKF method, some modifications of this method have
been done and different filters have been developed, such as Ensemble Square Root Filters
(ESRFs) [17,18] and deterministic Ensemble Kalman filters (DEnKF) [2] that give better
performance in certain conditions. First proposed by Sakov et al. [17], DEnKF can be
regarded as a linear approximation to the ESRF under a small analysis correction condition,
and it combines the simplicity of the ESRF and the versatility of the traditional EnKF. Its
robust property has been shown by numerical experiments [17]. Despite the intensive
research and implementation of EnKF, to our knowledge, the DEnKF has not been adopted
in the reservoir history matching field yet.

In this paper, the DEnKF is implemented for reservoir history matching with a parallel
technique and our in-house parallel black oil simulator. Both forecast and analysis steps
are parallelized according to a relationship between an ensemble size and a processor
number. To improve the computational efficiency, several switches are defined to control
the input/output and set by the user. The restart of the simulator is slightly modified to
coordinate the history matching implementation. The simulator is called as a function from
our platform library.

This paper is organized as follows. First, our black oil simulator is briefly introduced.
After that, the EnKF and DEnKF are given, followed by a parallel technique used in our
computations. Based on this technique, numerical experiments on the estimation of relative
permeability curves with known endpoints and unknown endpoints are presented. The



Processes 2021, 9, 1980 3 of 20

parallel speedup is reported to show the computational efficiency. Conclusions are given
at the end of this paper.

2. Black Oil Simulator

In this paper, a black oil model is simulated. Using the mass conservation law and
Darcy’s law on water, oil and gas, the following equations can be obtained [19,20]:

∇(KKrwρw
µw
∇Φw) + qw = ∂(φρwSw)

∂t

∇(KKroρo
o

µo
∇Φo) + qo =

∂(φρo
oSo)

∂t

∇(KKroρ
g
o

µo
∇Φo) +∇(

KKrgρ
g
g

µg
∇Φg) + qg

= ∂(φρ
g
o So)

∂t +
∂(φρ

g
gSg)

∂t .

(1)

In these equations, K is the absolute permeability tensor of a reservoir; Krl and Sl are
the relative permeability and saturation of phase l (l = w, o, g), respectively; ρw is the water
density; ρo

o is the oil component density in the oil phase; ρ
g
o is the gas component density in

the oil phase; and ρ
g
g is the gas component density in the gas phase. The potential of phase

l has the form
Φl = Pl − Gρlz

where Pl is the pressure of phase l (l = w, o, g), G is the magnitude of the gravitational
constant and z is the depth of the position. The saturations of water, oil and gas satisfy

Sw + So + Sg = 1. (2)

For the pressures of the water, oil and gas, we have

pcow(Sw) = Po − Pw

pcog(Sg) = Pg − Po

where Pcow is the capillary pressure between oil and water and Pcog is the capillary pressure
between oil and gas. We choose P = Po, Sw and Sg as the primary unknowns, and they can
be obtained from Equation (1). There are production and injection wells in a reservoir. The
rates of these wells have the forms

qw = WI ∗ KKrw
µ ρw[PBH − P− GρBH(zBH − z)]

qo
o = WI ∗ KKro

µ ρo
o[PBH − P− GρBH(zBH − z)]

qg
o = WI ∗ KKro

µ ρ
g
o [PBH − P− GρBH(zBH − z)]

qg
g = WI ∗ KKro

µ ρ
g
g[PBH − P− GρBH(zBH − z)].

(3)

Here, qg = qg
o + qg

g, qo = qo
o and WI is the well index which is known [19,20].

In summary, four unknowns P, Sw, Sg and PBH are to be solved from
Equations (1)–(3). An in-house parallel simulator is used to simulate the black oil model.
Developed on our platform PRSI, it uses the finite (volume) difference method with up-
winding schemes [20,21]. Its highly computational efficiency and good parallel scalability
have been shown by numerical experiments that simulate very large scale models with
millions of grid cells using thousands of CPU cores [22]. In our implementation, this
simulator is called as a function from the library.

3. EnKF and DEnKF

EnKF is an efficient data assimilation method which has been used in history matching
of reservoir simulation to estimate model parameters with uncertainty such as porosity
and permeability. It is a Monte Carlo method in which an ensemble of reservoir models is
generated according to the given statistic properties. The ensemble can be written as



Processes 2021, 9, 1980 4 of 20

Yk = [yk,1, yk,2, · · · , yk,Ne ], k = 1, · · · , Nt,

where subscript k is the time index, Ne is the ensemble size and Nt is the total number
of the assimilation steps. Each yk,j denotes one sample vector. For the history matching
of reservoir simulation, yk,j is named a state vector which consists of two parts: model
variables m and observation data d. The model variables include static variables mst (such
as porosity, absolute permeability and relative permeability parameters) and dynamical
variables mdyn (such as pressure and saturation). The observation data includes well
measurement data such as production rates, injection rates and bottom hole pressures.
Thus, a state vector can be written as

yk,j =

[
m
d

]
k,j

=

 mst
mdyn

d


k,j

.

We denote the length of the vectors mk,j and dk,j by Nm,k and Nd,k, and define the
matrix Hk as Hk = [0 I], where 0 is the Nd,k × Nm,k zero matrix and I is the Nd,k × Nd,k
identity matrix. Then, it is obvious that

dk,j = Hkyk,j.

Note that the observation vector dk,j is random and can be expressed as

dk,j = dtrue
k + εk,j, k = 1, · · · , Nt, j = 1, · · · , Ne (4)

where dtrue
k is the true value of the observation and εk,j is a vector of the error at the kth

time step. According to Burgers et al. [23], vector εk,j consists of measurement errors and
noise. Both of them are assumed Gaussian and uncorrelated. Thus, the covariance of εk,j
can be simplified to a diagonal matrix CD,k.

At the time step tk when observation data is available, a reservoir simulator stops to
start the data assimilation. The traditional form of an EnKF analysis step is as follows [1]:

ya
k,j = y f

k,j + Kk(dk,j − Hky f
k,j), (5)

Kk = C f
y,k HT

k (HkC f
y,k HT

k + CD,k)
−1 (6)

where the superscript f means a forecast solution that is computed from the simulator, the
superscript a means an analysis ensemble updated by data assimilation, and T denotes the
transpose of a vector or a matrix. Kk named the Kalman gain can be regarded as a weighted
matrix that controls which sample has more influence on updating. In Equation (6), C f

y,k is

the covariance matrix of the state vector y f
k,j from simulation, i.e.,

C f
y,k = cov(Y f

k , Y f
k ) =

1
Ne − 1

(Y f
k − Ȳ f

k )(Y
f

k − Ȳ f
k )

T

where Ȳ f
k is a matrix in which every column vector is the mean value of the ensemble

members. Denoting the mean of all the ensemble members Y f
k as y f

k , then Ȳ f
k can be written

as Ȳ f
k = y f

k 1T with 1 a vector of ones.
Note that for the convenience of numerical implementation, Equations (5) and (6) can

be expresses as
Ya

k = Y f
k X5,k (7)

where the Ne × Ne matrix X5,k is calculated from Y f
k . The form of X5,k is given by

Evensen [1,24].



Processes 2021, 9, 1980 5 of 20

Here, we drop the subscript k of the above notations for simplicity. For the DEnKF,
denoting A f = Y f − Ȳ f and Aa = Ya − Ȳa as the ensemble anomalies of the forecast
ensemble Y f and the analysis ensemble Ya, respectively, then they have the relationship [17]

Aa = A f − 1
2

KHA f .

Denote TR = I− 1
2(Ne−1) A f T HT(HP f HT + CD)

−1HA f and write it in the ensemble
form

Ya = Y f X5.

Then, X5 has the form [17,24]

X5 = [
1

Ne
11T + w1T + (I− 1

Ne
11T)TR],

and w is a vector which satisfies ya = y f + A f w and has the form

w =
1

Ne − 1
A f T

HT(HC f
y HT + CD)

−1(d− Hy f ).

Therefore, to obtain the analysis ensemble Ya, X5 and its multiplication with the
forecast ensemble Y f need to be calculated. This is similar to the traditional EnKF and
the ESRF, while TR has a simpler form for the DEnKF. It will be seen in our numerical
experiments that the performance is quite good.

4. Parallel Technique

In most cases, EnKF requires an ensemble of hundred data points to assimilate his-
tory data. Between every two assimilation steps, a reservoir model is simulated with as
many times as the ensemble size, which is extremely computational costly. In this work,
the MPI parallel technique is adopted to improve the computing efficiency and reduce
the computing time. Note that from the beginning of the EnKF process, many ensemble
members of parameters are generated based on statistical properties and then for each
ensemble member, reservoir simulation is conducted independently. Based on this consid-
eration, the ensemble members can be distributed to all the processors in balance. Each
processor is in charge of an equal number of ensemble members and simulating at the
same time. When it comes to a data assimilation step where a processor cannot compute
independently, analysis values are calculated by communicating with each other using the
MPI technique. After all data is assimilated, it comes to the prediction step. In this step,
each processor independently simulates the reservoir model with the distributed ensemble
members which have already been adjusted. From this procedure, it can be seen that the
MPI technique can be adopted in the EnKF method naturally.

There are the following steps for the programming implementation:

1. get the ensemble:

(a) if step = 0,

i. if readrdm = TRUE, read static variables only;
ii. else generate ensemble of the static variables.

(b) else

i. if readens = TRUE, read both static variables and dynamic variable
values from files;

ii. else get the static variable values and dynamic variable values from
the memory.

2. use the ensemble to simulate the reservoir and get Y f ; if predict = TRUE, go to 7.
3. if readens = TRUE, write both static dynamic variable values and dynamic variable

values to the files.



Processes 2021, 9, 1980 6 of 20

4. read observations from the files.
5. assimilate data using DEnKF and get Ya.
6. if readens = TRUE, write both static dynamic variable values and dynamic variable

values to the files; go to 1.
7. end

The flow chart of the implementation is given in Figure 1. In our implementation, for
the result visualization purpose, two switches writeens and writepars can also be set by the
user. When writeens = TRUE, all the dynamic and static variables are written to the files
but not necessarily read during running. When writepars = TRUE, only static variables are
written. The ensembles of the dynamic and static variables are always output to files at the
last analysis step.

read in ensembles?

Yes

read ensemble files

generate ensemble

of paramters

write ensemble?

No

reservoir simulation

write ensemble to files
   get values of observations d 

  and dynamic variables m_dyn  

write observations and/or

dynamic variables?
write values to files

Yes

No

data assimilation using

 DEnKF to get Y^a

step = step + 1

write analysis values 

of m_st, m_dyn or d?
write analysis values

Yes

No

start

No

step =0?

Yes

No

No

predict?
No

end

Yes

Yes

predict

Figure 1. The flowchart of the algorithm.



Processes 2021, 9, 1980 7 of 20

For the switch readens, if it is set to TRUE by the user, all the dynamic variables and the
static variables are written to the files on a hard disk and the corresponding variable spaces
allocated in the computer are freed after they are written at the each data assimilation step.
After one cycle is done and before the next reservoir simulation starts, these data are read
in from those files to restart the reservoir simulator. However, when the ensemble size
is large, the performance of IO (Input and Output) is poor. Many small files written to
the hard disk can not only waste space of the hard disk, but also are slow to access. The
efficiency becomes even lower when the dynamic variable values are written to the files
using MPI/IO. Nevertheless, MPI/IO must be used in a certain condition. For example,
when the ensemble size is smaller than the processor size, for each ensemble, the reservoir
simulation is done by several processors in parallel. Therefore, after the simulation, the
vector of each dynamic variable is partially distributed in several processors. It is inevitable
to write a dynamic vector to one file in the grid cell order using MPI/IO. To avoid reading
and writing data to files, our simulator is slightly modified and the switch readens can be
set to FALSE by the user so that both the dynamic variables and the static variables are
always in the memory during computing and their values are updated every step. One
might worry about that these variables would occupy too much computer memory. In fact,
the ensemble members are equally distributed in the processors from the beginning. The
allocation of the ensemble members and the simulations in different processes are shown
in Figure 2. In this figure, the solid box denotes one simulation, the dash dot box denotes
one processor and the dot box denotes the processor group. If the ensemble size Ne is
larger than the processor number p, each processor only has Ne

p ensemble numbers. If the
ensemble size is smaller than the processor number, each simulation with one ensemble
member is carried out by p

Ne processors. The vector of each dynamic variable value is
equally distributed to these p

Ne processors. Therefore, when multiple computer nodes and
CPU cores are used on a supercomputer, each core only spends limited memory to save
the dynamic variable vectors. It is not costly to keep these variables all the time.

S1

P1 P2 P

one processorone simulation

p

Ne/p

1 +Ne/p

2 *Ne/p

1 +(p-1)Ne/p

2 +(p-1) Ne/p

Ne

S2

S

S

2 +Ne/p
S

S

S

S

S

Sj :  jth ensemble member Pj :  processor j 

(a)

G

P1

P2

P
p/Ne

G G

P
1+p/Ne

P
2+p/Ne

P
2*p/Ne

P
1+ (Ne-1)p/Ne

f

1

f

2

f

Ne

G
a

1

G
a

2

G
a

Ne

one processorone simulation one processor group

S1 S2 S
Ne

P
2+ (Ne-1)p/Ne

P
p

Sj :  jth ensemble member Pj :  processor j 

(b)

Figure 2. The allocation of the ensemble members and the simulations in different processors: (a)
Ne > p and (b) Ne <= p.

As an ensemble size is generally much smaller than the length of a state vector, the
main computational cost of an analysis step is the matrix multiplication in Equation (7)
which is computed in parallel after the matrix X5 is computed sequentially by one processor.
Supposing that the division of Ne and p is an integer, there are two different cases:

• Ne > p. If the ensemble size Ne is larger than the processor number p, each processor
runs the simulation for Ne

p times in every cycle independently and get the dynamic
variable values corresponding to its ensemble members (see Figure 2a). Therefore,



Processes 2021, 9, 1980 8 of 20

each processor obtains one or several complete columns of matrix Y f . For processor
j (j = 1, · · · , p), by multiplying these columns by X5, it gets a matrix Ya,j with a size
the same as that of matrix Y f . Note that Ya = ∑

p
j=1 Ya,j so the analysis results can be

obtained by adding all the Ya,j from every processor using the function MPI_Allreduce.
The matrix multiplication is illustrated by Figure 3.

• Ne <= p. If the ensemble size Ne is smaller than or equal to the processor num-

ber p, each simulation is done by the processor group G f
j = {P1+j∗p/Ne , P2+j∗p/Ne ,

· · · , Pp/Ne+j∗p/Ne }, (j = 0, · · · , Ne − 1) (see Figure 2b) with p
Ne

processors included
(note that they are at the same time in one simulation box). The computing tasks
of the processors in this group are assigned by the simulator based on the domain
decomposition. According to the load balancing principle, the vector entries of each
dynamic variable are equally distributed and the variable values are not complete
in each processor. For the processor group Ga

j = {Pj, Pj+p/Ne , · · · , Pj+(Ne−1)∗p/Ne}
(j = 1, · · · , p/Ne) (see Figure 2b) by multiplying these vector entries of its own with
X5, the processors in Group Ga

j get the matrices Ya,j, Ya,j+p/Ne ,· · · Ya,j+(Ne−1)∗p/Ne ,
respectively. By gathering these values in its own group Ga

j , every processor in this

group gets the value ∑Ne−1
i=0 Ya,j+i∗(p/Ne) which includes the corresponding updated

vector entries. The distribution of the matrix entries is displayed in Figure 4. The
processor groups are created by the function lMPI_Comm_split.

P1 P j P

*

=

p

j = 1

X_5

P

P j

* X_500

Figure 3. The matrix multiplication of Y f and X5 in case Ne > p. Pi (i=1, · · · , p) denotes the ith
processor.

in Group G
a

j

P1

Pj

Pp/Ne

P
j + i*p/Ne

P
j + (Ne-1)*p/Ne

P1

Pj

Pp/Ne

P
j + i*p/Ne

P
j + (Ne-1)*p/Ne

Y = 
f

One variable

One variable

S1 Si S
Ne

Figure 4. The entries of the matrix Y f on different processors in case Ne <= p. Si (i = 1, · · · , Ne)
denotes the ith ensemble member. Pi (i=1, · · · , p) denotes the ith processor.



Processes 2021, 9, 1980 9 of 20

When Ne > p and the division of Ne and p is not an integer, some of the processors
get fewer ensemble members than the others and thus simulate a reservoir with less time.
However, the algorithm is still the same. When Ne <= p and the division of p and Ne is not
an integer, special treatment and more message passing are required when gathering the
vectors since for some of the ensemble members the corresponding reservoir simulations
are conducted by fewer processors than the others.

For a large-scale reservoir model that requires a large number of grid cells for dis-
cretization, the simulation with every ensemble member is time-consuming. In this case,
the ensemble is not distributed to processors. Instead, the models with different ensemble
members are simulated sequentially. Each model with one ensemble member is simulated
by all the processors in parallel. Although the simulation run is very costly, it is obviously
a trivial case of our discussion from the programming design aspect.

5. Numerical Experiments

In this section, the history matching of the SPE-9 benchmark model is presented.
Estimations of relative permeability curves with known endpoints and unknown endpoints
are plotted. With each estimation, the corresponding prediction results are obtained.
Following that, the parallel efficiency of computations is reported.

5.1. SPE-9 Black Oil Model

SPE-9 is a three-phase black oil model with 24× 25× 15 grid blocks. The grid sizes in
the x- and y-direction are both 300 ft. The z-direction grid size is 20, 15, 26, 15, 16, 14, 8, 8, 18,
12, 19, 18, 20, 50, and 100 ft from top to bottom. It has heterogeneous absolute permeability.
The porosity varies layer-by-layer in the z-direction and equals 0.087, 0.097, 0.111, 0.16,
0.13, 0.17, 0.17, 0.08, 0.14, 0.13, 0.12, 0.105, 0.12, 0.116 and 0.157 from top to bottom. The
densities of water, oil and gas are 63.021, 44.986, and 0.0701955 lbm/ft3, respectively, with
a reference pressure of 3600 psi. The bubble pressure is 3600 psi at the reference depth
9035 ft. The rock compressibility and water compressibility are both 1.0× 10−6 (1/psi).
The total production days are 900 days.

There are 26 wells in the reservoir: one injector and 25 producers. The injector’s
perforation is at layer 11 to layer 15 while each producer’s perforation is at layers 2, 3
and 4. The injector has a maximum standard water rate of 5000 bbl/day and a maximum
bottom hole pressure of 4543.39 psi. The radius of each well is 0.5 ft. The schedule can be
obtained from the keyword file in the document folder of the commercial software such as
CMG IMEX.

The oil relative permeability in three phases can be obtained from the water and oil
two-phase relative permeabilities and the gas and oil two-phase relative permeabilities [25].
To represent a relative permeability curve by a power-law function (e.g., based on an
empirical Corey’s model [26]), a power-law model only requires to determine the endpoints
and exponential factors. Power-law models of water and oil relative permeabilities can be
written as

krw(Sw) = aw

(
Sw − Swc

1− Swc − Sorw

)nw

= awSnw
wD (8)

krow(Sw) = aow

(
1− Sw − Sorw

1− Swc − Sorw

)now

= aow(1− SwD)
now . (9)

where
SwD =

Sw − Swc

1− Swc − Sorw
.



Processes 2021, 9, 1980 10 of 20

Similarly, power-law representations of gas and oil relative permeabilities are

krg(Sg) = ag

(
Sg − Sgc

1− Sgc − Sorg − Swc

)ng

= agS
ng
gD (10)

krog(Sg) = aog

(
1− Sg − Sorg − Swc

1− Sgc − Sorg − Swc

)nog

= aog(1− SgD)
nog . (11)

with

SgD =
Sg − Sgc

1− Sorg − Sgc − Swc
.

Equations (8)–(11) will be used in our computing.
We consider the case where the oil relative permeability is defined by normalizing its

effective permeability by using its value at the critical water saturation, i.e.,

krow =
kow(Sw)

kow(Swc)

where kow is the effective oil permeability. Then krow(Swc) = 1 holds, which leads to aow = 1.
Similarly, for the gas and oil relative permeabilities, if the gas relative permeability is
defined by normalizing its effective permeability by using its value at the irreducible gas
saturation, i.e.,

krog =
kog(Sg)

kog(Sgc)

where kog is the oil effective permeability, then krog(Sgc) = 1 and thus aog = 1. Consequently,
10 parameters are left to define the relative permeability curves. Written as a parameter
vector, they are

mst = [aw, nw, now, Swc, Sorw,

ag, ng, nog, Sgc, Sorg]. (12)

Note that the endpoints are fixed by 6 parameters: aw, Swc, Sorw, ag, Sgc and Sorg. If
these parameters are known, only 4 parameters are left and the endpoints of the relative
permeability curves are fixed. Thus, the parameter vector becomes

mst = [no, now, ng, nog]. (13)

For an estimation with known endpoints, the observations are the cumulative water
production rate (CWPR), cumulative oil production rate (COPR) and cumulative gas
production rate (CGPR) of all the 25 production wells as well as the cumulative water
injection rate (CWIR) of the injection well. For an estimation with unknown endpoints, the
observations are the oil production rates, the gas production rates, the water production
rates of the 25 producers, the water injection rate of the injector and the bottom-hole
pressures of all the wells. All the rates are obtained from our simulator PRSI. All the data is
perturbed by a Gaussian distribution error with 5% variance.

5.2. Estimation with Known Endpoints

As mentioned before, when the endpoints are known, only four unknowns are left
as shown in Equation (13). In this work, totally 160 Gaussian realizations are generated
for these parameters to assimilate the observations. The days on which the observations
are assimilated are listed in Table 1. The first step of data assimilation is on the 12th day



Processes 2021, 9, 1980 11 of 20

and the last one on the 552nd day. After that, each updated ensemble member with the
permeability parameter values at the last step is used to simulate the model until the end
day to predict the rates. The reference values, together with the means and the variances
of the unknowns used to generate the ensemble, are listed in Table 2. The adjusted mean
values after data assimilation and their relative errors different from the reference values
are also listed in this table.

Table 1. The days on which data is assimilated.

step 1 2 3 4 5 6 7 8
day 12 32 50 67 87 102 122 141

step 9 10 11 12 13 14 15 16
day 162 182 200 217 237 257 277 297

step 17 18 19 20 21 22 23 24
day 312 332 352 367 387 407 422 442

step 25 26 27 28 29 30
day 462 480 497 517 537 552

It turns out that the data assimilation is very effective. From Table 2, it is seen that
the mean values of the initial ensemble are far from the reference values. However, after
data assimilation, their values are quite close to the reference values with the relative errors
ranging from 0.75% to 7.67%. The relative permeability curves are shown in Figure 5. It is
seen that the initial curves are randomly scattered and the curves from the mean values are
far from the reference ones. After assimilation, the adjusted curves almost overlap with the
reference ones.

Table 2. This table shows the reference values, the adjusted values and the relative errors at the last
assimilation step, the initial ensemble means and variances of the four parameters in Equation (13).

Unknown nw now ng nog

reference value 5.5 4.0 2.0 3.0
adjusted value 5.86 4.03 2.02 3.23
relative error (%) 6.55 0.75 1.0 7.67
initial mean 4.0 3.0 1.5 2.0
initial variance 1.0 0.5 0.5 0.5

0 0.2 0.4 0.6 0.8 1

S
w

0

0.2

0.4

0.6

0.8

1

k
ro

w

0

0.2

0.4

0.6

0.8

1

k
rw

initial ensembles

initial ensemble mean

referece

adjusted

adjusted mean

(a) krw and krow

0 0.2 0.4 0.6 0.8

S
g

0

0.2

0.4

0.6

0.8

1

k
ro

g

0

0.2

0.4

0.6

0.8

1

k
rg

initial ensembles

initial ensemble mean

referece

adjusted

adjusted mean

(b) krg and krog

Figure 5. Initial ensembles, initial ensemble means, adjusted values and reference values with known
endpoints: (a) krw and krow; (b) krg and krog.

To show the parameter values more clearly, the variations of all the four parameters at
different time are shown in Figure 6a–d, which depicts that the variation of each parameter
becomes smaller by data assimilation. At the same time, the mean values become closer to



Processes 2021, 9, 1980 12 of 20

the reference value. A relative root mean square error is calculated to show the convergence
of the parameters. It is a normalized difference between the mean value of the updated
parameter vector and its true value, i.e.,

REst =

√√√√ 1
Nmst

Nmst

∑
i=1

(
mmean

st,i −mtrue
st,i

mtrue
st,i

)2

× 100% (14)

where mst,i is the ith component of the vector mst and Nmst is the length of the vector [9].
Figure 6e depicts the relative root mean square error of the relative permeability model
vector. It shows that at the last assimilation step, the relative root mean square error drops
to 5%.

0 100 200 300 400 500

Time (day)

0

2

4

6

8

n
w

adjusted n
w

reference n
w

(a) nw

0 100 200 300 400 500

Time (day)

2

3

4

5

n
o

w

adjusted n
ow

reference n
ow

(b) now

0 100 200 300 400 500

Time (day)

0

1

2

3

n
g

adjusted n
g

reference n
g

(c) ng

0 100 200 300 400 500

Time (day)

1

2

3

4

n
o

g

adjusted n
og

reference n
og

(d) nog

0 50 150 250 350 450 550

Time(day)

5

10

15

20

25

30

R
e
la

ti
v
e
 R

o
o

t-
M

e
a
n

-S
q

u
a
re

 E
rr

o
r 

(%
)

(e) the relative root-mean-square
error

Figure 6. The reference values, the adjusted parameters and the relative root mean square errors the at different time with
known endpoints. The red line denotes the true reference (true) value of a parameter. The black dot denotes the mean of
an ensemble. The blue bar denotes the maximum and minimum deviations from the mean. (a) nw; (b) now; (c) ng; (d) nog;
(e) the relative root mean square error.

From the 552nd day, the adjusted ensemble parameters from the last analysis step
are used to predict the injection and production data. The cumulative oil production rate
(COPR), the cumulative water production rate (CWPR) and the cumulative gas production
rate (CGPR) of the group of all the 25 production wells as well as the cumulative water
injection rate (CWIR) of the injection well are predicted and shown in Figure 7. In this
figure, gray lines represent the rates from the initial ensemble. As the initial ensemble
is randomly generated, the rates are quite different from each other. From day 12 to day
552 by the EnKF method, the observation data are assimilated 30 times, the permeability
curves are adjusted and the new calculated and updated rates match the reference rates
very well. After the last assimilation step, the adjusted permeability curves at day 552 are
used to simulate the reservoir model to predict the rates. It is shown that the predicted
rates and the reference rates almost overlap, which means that the adjusted permeability
curves are accurate enough to be used to predict the future performance.



Processes 2021, 9, 1980 13 of 20

For the last analysis step, the relative errors of the pressure P, the water saturation Sw,
the gas saturation Sg and the well bottom hole pressure PBH are calculated by normalizing
the difference of the ensemble mean and the variable’s true value. For each variable v, the
relative error is computed from the following form:

REdyn(v) = ‖vmean − vtrue‖2/‖vtrue‖2 (15)

where ‖ · ‖2 denotes the Euclidean norm of a discretized variable. The relative errors of
these variables are listed in Table 3. The table shows that the relative errors of the dynamic
variables are no more than 2.5%. In particular, the pressure P, the water saturation Sw and
the well bottom hole pressure PBH are lower than 1.0%.

0 200 400 600 800 900

Time (day)

0

0.5

1

1.5

2

2.5

3

3.5

C
O

P
R

 (
s
tb

)

10
7

initial rate

reference rate

observed rate

calculated rate

updated rate

predicted rate

(a) COPR (b) CWPR/CWIR

0 200 400 600 800 900

Time (day)

0

0.5

1

1.5

2

2.5

3

3.5

C
G

P
R

 (
m

m
s
c
f)

10
5

initial rate

reference rate

observed rate

calculated rate

updated rate

predicted rate

(c) CGPR

Figure 7. The production rates with known endpoints: (a) cumulative oil production rate; (b) cumulative water production
rate (The upper curve is the cumulative water injection rate. The lower curve is the cumulative water production rate); (c)
cumulative gas production rate.

Table 3. The relative errors of the dynamic variables REdyn at the last assimilation step with
known endpoints.

Dynamic Variables P Sw Sg PBH

relative errors (%) 0.63 0.28 2.5 0.93

5.3. Estimation with Unknown Endpoints

For permeabilities with unknown endpoints, good estimations are not obtained by
assimilating the observations of COPR, CWPR, CWIR and CGPR. It is probably because
when the endpoints are unknown, the solution is not unique for this inverse problem.
Therefore, we assimilate more detailed data including the oil production rates (WOPR),
the water production rates (WWPR), the gas production rates (WGPR) of the 25 producers,
the water injection of the injector (WWIR) and the bottom-hole pressures (WBHP) of all
the wells. It is interesting to see that with more data assimilated and an ensemble with
640 samples, all the parameters are well estimated. Table 4 shows the reference values,
the adjusted values, the relative errors, the initial ensemble means and variances. From
this table, we can see that most of the relative errors are no more than 10% except aw, now
and Sorg which are ~12%. Figure 8 shows the relative permeability curves of oil-water and
oil-gas. We can see that although the initial curves are quite random, the updated curves
are close to the reference curves.

Similar to the previous example, the variations of all the ten parameters at different
time are also plotted (see Figure 9a–j). This figure depicts that the variations of parameters
become smaller by data assimilation. At the same time, the mean values become closer to
the reference values. Figure 9k shows that from the beginning to the last data assimilation
step, the relative mean-square-root error of all the ten parameters drops from 65.5% to 8.4%.



Processes 2021, 9, 1980 14 of 20

Table 4. This table shows the reference values, the adjusted values and the relative errors REst at the last assimilation step,
the initial ensemble means and variances of the ten parameters in Equation (12).

Unknown aw nw now Swc Sorw ag ng nog Sgc Sorg

reference value 0.5 5.5 4.0 0.156572 0.123639 0.8 2 3 0.02 0.1
adjusted value 0.5619 5.3012 4.4599 0.1520 0.1248 0.8657 2.0327 3.0537 0.0192 0.0882
relative error (%) 12.38 3.62 11.50 2.92 0.93 8.22 1.63 1.79 3.88 11.81
initial mean 0.6 4 2.0 0.3 0.05 0.6 1.5 2.0 0.05 0.05
initial variance 0.3 1.0 0.5 0.03 0.03 0.3 0.5 0.5 0.02 0.03

0 0.2 0.4 0.6 0.8 1

S
w

0

0.2

0.4

0.6

0.8

1

k
ro

w

0

0.2

0.4

0.6

0.8

1

k
rw

initial ensembles

initial ensemble mean

referece

adjusted

adjusted mean

(a) krw and krow

0 0.2 0.4 0.6 0.8 1

S
g

0

0.2

0.4

0.6

0.8

1

k
ro

g

0

0.2

0.4

0.6

0.8

1

k
rg

initial ensembles

initial ensemble mean

referece

adjusted

adjusted mean

(b) krg and krog

Figure 8. Initial ensembles, initial ensemble means, adjusted values and reference values with unknown endpoints: (a) krw

and krow; (b) krg and krog.

For the prediction step, the injection/production rates obtained from the adjusted
parameters match the observation very well. The results of WOPR, WWPR, WGPR and
WBHP of some selected wells including Producer1, Producer 4, Producer 8 and Producer
20 are depicted in Figure 10. For each well, the relative error of one prediction variable is
calculated from the mean-square-root of the observation variable on ND days included in
the set D = {565, 600, 601, 604, 610, 625, 660, 661, 664, 670, 685, 720, 721, 724, 730, 745, 783,
873, 900} using the following formula:

REpredict =

√√√√ 1
ND

∑
i∈D

|dmean
i − dtrue

i |2

|dtrue
i |2

where d mean
i and d true

i denote the mean and true values of one observation variable d
on the ith day, respectively. The values of the relative errors are shown in the bar graphs
in Figure 11. This figure shows that with the estimated parameters, the relative errors of
the predicted rates and the well bottom-hole pressure are no more than 3.5%. The relative
errors of the dynamic variables at the last analysis step calculated by Equation (15) are
listed in Table 5. This table shows that the relative errors of the dynamic variables are no
more than 4.28%.



Processes 2021, 9, 1980 15 of 20

0 100 200 300 400 500

Time (day)

0

0.2

0.4

0.6

0.8

1

a
w

adjusted a
w

reference a
w

(a) aw

0 100 200 300 400 500

Time (day)

0

2

4

6

8

n
w

adjusted n
w

reference n
w

(b) nw

0 100 200 300 400 500

Time (day)

0

1

2

3

4

5

n
o

w

adjusted n
ow

reference n
ow

(c) now

0 100 200 300 400 500

Time (day)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
w

c

adjusted S
wc

reference S
wc

(d) Swc

0 100 200 300 400 500

Time (day)

0

0.05

0.1

0.15

0.2

0.25

0.3

S
o

rw

adjusted S
orw

reference S
orw

(e) Sorw

0 100 200 300 400 500

Time (day)

0

0.2

0.4

0.6

0.8

1

a
g

adjusted a
g

reference a
g

(f) ag

0 100 200 300 400 500

Time (day)

0

1

2

3

4

n
g

adjusted n
g

reference n
g

(g) ng

0 100 200 300 400 500

Time (day)

0

1

2

3

4

n
o

g

adjusted n
og

reference n
og

(h) nog

0 100 200 300 400 500

Time (day)

0

0.05

0.1

S
g

c

adjusted S
gc

reference S
gc

(i) Sgc

0 100 200 300 400 500

Time (day)

0

0.05

0.1

0.15

0.2

0.25

S
o

rg

adjusted S
org

reference S
org

(j) Sorg

0 50 150 250 350 450 550

Time(day)

0

10

20

30

40

50

60

70

R
e

la
ti

v
e

 R
o

o
t-

M
e

a
n

-S
q

u
a

re
 E

rr
o

r 
(%

)

(k) relative error

Figure 9. The reference values, the adjusted parameters and the relative root mean square errors the at different time with
unknown endpoints. The red line denotes the true reference (true) value of a parameter. The black dot denotes the mean of
an ensemble. The blue bar denotes the maximum and minimum deviations from the mean.

(a) WOPR (b) WWPR

(c) WGPR (d) WBHP

Figure 10. The oil production rates, the water production rates, the gas production rates and the
bottom-hole pressure of the selected production wells with unknown endpoints.



Processes 2021, 9, 1980 16 of 20

1 3 5 7 9 11 13 15 17 19 21 23 25

well

0

1

2

3

4

re
la

ti
v

e
 e

rr
o

r 
o

f 
W

O
P

R
 (

%
)

(a) WOPR
In

je
ct

or 1 3 5 7 9 11 13 15 17 19 21 23 25

well

0

0.05

0.1

0.15

0.2

re
la

ti
v

e
 e

rr
o

rs
  

W
W

P
R

 o
r 

W
W

IR
 (

%
)

(b) WWPR/WWIR

1 3 5 7 9 11 13 15 17 19 21 23 25

well

0

0.2

0.4

0.6

0.8

1

re
la

ti
v

e
 e

rr
o

r 
o

f 
W

G
P

R
 (

%
)

(c) WGPR

In
je

ct
or 1 3 5 7 9 11 13 15 17 19 21 23 25

well

0

1

2

3

re
la

ti
v

e
 e

rr
o

r 
o

f 
W

B
H

P
 (

%
)

(d) WBHP

Figure 11. The relative errors of the prediction REprediction of all the wells.

Table 5. The relative errors of the dynamic variables REdyn at the last assimilation step with un-
known endpoints.

Dynamic Variables P Sw Sg PBH

relative error (%) 0.61 4.28 1.98 0.94

5.4. Parallel Performance and Discussion

The numerical experiments are carried out on the Niagara Scinet cluster of 1548 Lenovo
SD 530 servers each with 40 Intel ‘Skylake’ cores at 2.4 GHz. To test the MPI parallel
performance of our computing, the examples of both known endpoints and unknown
endpoints in the previous section are computed with 40, 80, 160, 320 and 640 cores. In
these computations, the switch readens is set to FALSE. Therefore, only the ensembles at
the last analysis step are output to files. To compare more precisely, the initial ensemble is
generated in advance and read from the disk at the beginning of each run. Both experiments
are computed with one processor per CPU core. The 40-core case is used as the base case.
Computational time is given for both of the examples. The parallel efficiency and the
speedup are presented. Generally, the parallel efficiency is defined as

Ep =
T1

Tp p

where T1 and Tp denote the run time of a task using one processor and p processors,
respectively. T1 is the base case time. If the execution time of p0 processors is used as a
base case, the parallel efficiency can be calculated by

Ep =
Tp0 p0

Tp p
.

The speedup is defined as

Sp =
T1

Tp
.

Similarly, if the execution time of p0 processors is used as a base case, the speedup can
be calculated by

Sp =
Tp0

Tp
.

For the known endpoint experiment with 160 ensemble members, the computational
time and parallel efficiency are listed in Table 6. In this table, the ‘forecast’ denotes the
total forecast time including the synchronization time. The ‘analysis’ is the total time
spent on the analysis step. The ‘predict’ denotes the prediction time after the last step of
analysis. The ‘other’ time mainly includes the run time of input/output. The last row ‘run
time’ is the total execution time. From this table, it can be seen that most time is spent



Processes 2021, 9, 1980 17 of 20

on the forecast steps and the prediction steps. With the CPU cores increasing, the run
time decreases rapidly. When 40, 80 and 160 CPU cores are used, the time for the forecast
steps is reduced by half when the CPU core number is doubled. This also happens at the
prediction steps. Therefore, we can see that the parallel efficiencies of the forecast and the
prediction steps are over 100%. When 320 and 640 CPU cores are used, the ensemble size is
160 which is smaller than the processor numbers. Each simulation is conducted by multiple
CPU cores which needs message passing. Therefore, the parallel efficiencies of the forecast
and prediction steps are lower than 100%. The last row shows that the parallel efficiency
of the whole execution is over 74% compared to the ideal efficiency 100%. Note that the
parallel efficiency of the analysis step is not as good as the forecast and prediction as the
time for the multiple message passing becomes dominant in the analysis step when more
processors are used. The speedup is shown in Figure 12. It can be seen from this figure
that when 40, 80 and 160 CPUs are used, the speedup is almost linear. This benefits from
the good parallel efficiencies of the forecast steps and the prediction steps. When 320 and
640 CPU cores are used, it drops down and becomes sub-linear.

Table 6. The computational time and parallel efficiencies for the known endpoint example (time
unit: second).

CPU Cores 40 80 160 320 640

forecast 464 228 114 60 36
analysis 11 9 7 5 4
predict 98 50 24 15 7
other 1 1 1 1 1
run time 574 288 146 81 48
EP(%) - 99.65 98.29 88.58 74.74

For the unknown endpoint experiment with 640 ensemble members, the time and
the parallel efficiencies are shown in Table 7. From this table, it can be seen that all steps
take more time than those with the known endpoint example since the ensemble size is
much larger. Similar to the previous example, good parallel efficiencies of the forecast
and the prediction steps are obtained, as here the ensemble size is always less or equal
to the processor number, which means each simulation is conducted by one processor
independently with no message passing required. The run time reduces significantly when
more CPU cores are used. The parallel efficiency is over 77%. The time for the analysis also
reduces with more CPU cores are used. However, it can be seen that the parallel efficiencies
for this step is much lower than the ideal one. One reason is that the observation reading
time does not decrease with the number of CPU cores increasing. Another reason is that
several times of message passing are required to obtain the updated ensemble in the
analysis steps.

To show the time allocation of the analysis step in detail, the time spent on every
part of the last analysis step is listed in Table 8. In this table, ‘read obs’ means the time
used for reading observations from the files. The term ‘compute X5’ means the time for
computing matrix X5. The term ‘A f ∗ X5’ denotes the time used for the multiplication of
the local forecast ensemble and matrix X5. The term ‘MPI_Allreduce’ denotes the message
passing time used in the analysis step. The term ‘output’ denotes the time used for the
ensemble output. The ‘total’ denotes the total time of this analysis step. From the second
row ‘read obs’ and the third row ‘compute X5’, it can be seen that the time for computing
matrix X5 is very short compared to the others. From the fourth row ‘A f ∗ X5 ’, it can be
seen that the time used for the matrix multiplication reduces significantly when more CPU
cores are used. Compared to the time used for message passing shown in the fifth row
‘MPI_Allreduce’, it becomes less dominant with the CPU cores increasing. The time for
reading observations and the message passing does not reduce when more CPU cores are
used, which leads to the low parallel efficiencies for the analysis steps. The ‘output’ row
shows that when more CPU cores are used, the time used for outputting the ensemble is



Processes 2021, 9, 1980 18 of 20

also reduced somehow. The speedup curve of the whole execution is plotted in Figure 13
which shows better performance than the known endpoint example.

Table 7. The computational time and parallel efficiencies for the unknown endpoint example (time
unit: second).

CPU Cores 40 80 160 320 640

forecast 2060 1034 561 275 136
analysis 103 62 53 49 41
predict 431 215 110 55 28
other 2 2 2 3 4
run time 2596 1313 726 382 209
EP(%) - 98.86 89.39 84.95 77.26

Table 8. The time allocation at the last analysis step for the unknown endpoint example (time
unit: second).

CPU Cores 40 80 160 320 640

read obs 0.24 0.25 0.20 0.24 0.27
compute X5 0.05 0.08 0.07 0.09 0.09
A f ∗ X5 2.27 1.16 0.73 0.45 0.30
MPI_Allreduce 0.40 0.35 0.39 0.62 0.58
output 2.98 1.41 1.45 0.67 0.65
total 5.54 3.25 2.84 2.07 1.89

0 100 200 300 400 500 600 700

MPIs (CPU cores or processors)

0

2

4

6

8

10

12

14

16

s
p

e
e

d
u

p

ideal

actual

Figure 12. The speedup for the known endpoint example with 160 ensemble members.

0 100 200 300 400 500 600 700

MPIs (CPU cores or processors)

0

2

4

6

8

10

12

14

16

s
p

e
e

d
u

p

ideal

actual

Figure 13. The speedup for the unknown endpoint example with 640 ensemble members.



Processes 2021, 9, 1980 19 of 20

6. Conclusions

A parallel technique is used to implement the DEnKF for reservoir history matching.
The algorithm and implementation are introduced in detail. Two numerical experiments
of estimating relative permeabilities are computed using a massively parallel computer.
Reservoir history matching using DEnKF can be efficiently implemented using the MPI
parallel technique. The parallel efficiency is over 74% for a small ensemble with 160
members and 77% for a large ensemble with 640 members using up to 640 CPU cores.

The numerical experiments demonstrate that the DEnKF can be used to estimate the
relative permeability curves given by a power-law model in reservoir history matching. For
the relative permeability curves with known endpoints, all the parameters in a power-law
model can be estimated well. For the unknown endpoint model, good estimations can
be obtained with more observations and a larger ensemble size compared to the known
endpoint model.

Author Contributions: Conceptualization, L.S. and Z.C.; methodology, L.S. and H.L.; software,
L.S.; validation, L.S. and H.L.; formal analysis, L.S.; investigation, L.S. and H.L.; resources, L.S. and
H.L.; data curation, L.S.; writing—original draft preparation, L.S.; writing—review and editing,
Z.C.; visualization, L.S.; supervision, Z.C.; project administration, Z.C.; funding acquisition, Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Chemical and Petroleum Engineering,
University of Calgary, NSERC/Energi Simulation and Alberta Innovates (iCore) Chairs, IBM Thomas
J. Watson Research Center, Energi Simulation/Frank and Sarah Meyer Collaboration Center, WestGrid
(www.westgrid.ca, accessed on 1 January 2020), SciNet (www.scinetpc.ca, accessed on 1 January
2020) and Compute Canada Calcul Canada (www.computecanada.ca, accessed on 1 January 2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: SPE-9 model data are from the CMG reservoir simulation software
under the installation directory \IMEX\2019.10\TPL\spe.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ES Ensemble smoother
ESRF Ensemble square root filter
EnKF Ensemble Kalman filter
DEnKF Deterministic ensemble Kalman filter
MPI Message passing interface
IO Input and output
CWPR Cumulative water production rate
COPR Cumulative oil production rate
CGPR Cumulative gas production rate
CWIR Cumulative water injection rate
WOPR Well oil production rate
WWPR Well water production rate
WGPR Well gas production rate
WWIR Well water injection rate
WBHP Well bottom-hole pressure

www.westgrid.ca
www.scinetpc.ca
www.computecanada.ca


Processes 2021, 9, 1980 20 of 20

References
1. Evensen, G. The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367.

[CrossRef]
2. Sakov, P.; Oke, P.R. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters.

Tellus 2008, 60A, 361–371. [CrossRef]
3. Nævdal, G.; Mannseth, T.; Vefring, E.H. Near-well reservoir monitoring through ensemble Kalman filter. In Proceedings the of

SPE/DOE Improved Oil Recovery Symposium, Freiberg, Germany, 3–6 September 2002.
4. Nævdal, G.; Johnsen, L.M.; Aanonsen, S.I.; Vefring, E.H. Reservoir Monitoring and continuous model updating using ensemble

Kalman filter. SPE J. 2005, 10, 66–74. [CrossRef]
5. Aanonsen, S.I.; Nævdal, G.; Oliver, D.S.; Reynolds, A. The ensemble kalman filter in reservoir engineering—A review. SPE J.

2009, 14, 393–412. [CrossRef]
6. Gu, Y.; Oliver, D.S. History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J. 2005, 10, 217–224.
7. Lorentzen, R.J.; Nævdal, G.; Vallès, B.; Berg, A.M.; Grimstad, A.A. Analysis of the ensemble Kalman filter for estimation of

permeability and porosity in reservoir models. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas,
TX, USA, 9–12 October 2005. [CrossRef]

8. Chen, S.; Li, G.; Peres, A.; Reynolds, A.C. A well test for In-Situ determination of relative permeability curves. SPE J. 2008, 11,
95–107. [CrossRef]

9. Li, H.; Chen, S.N.; Yang, D.; Tontiwachwuthikul, P. Estimation of relative permeability by assisted history matching using the
ensemble Kalman filter method. Pet. Soc. Can. 2012, 51, 205–213. [CrossRef]

10. Zhang, Y.; Song, C.; Yang, D. A damped iterative EnKF method to estimate relative permeability and capillary pressure for tight
formations from displacement experiments. Fuel 2016, 167, 306–315. [CrossRef]

11. Zhang, Y.; Yang, D. Simultaneous estimation of relative permeability and capillary pressure for tight formation using ensemble-
based history matching method. Comput. Fluids 2013, 71, 446–460. [CrossRef]

12. Keppenne, C.L.; Rienecker, M.M. Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean
general circulation model. Mon. Weather Rev. 2002, 130, 2951–2965. [CrossRef]

13. Houtekamer, P.L.; Mitchell, H.L. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 2001,
129, 123–137. [CrossRef]

14. Liang, B.; Sepehrnoori, K.; Delshad, M. An automatic history matching module with distributed and parallel computing. Pet. Sci.
Technol. 2009, 27, 1092–1108. [CrossRef]

15. Tavakoli, R.; Pencheva, G.; Wheeler, M.F.; Ganis, B. A parallel ensemble-based framework for reservoir history matching and
uncertainty characterization. Comput. Geosci. 2013, 17, 83–97. [CrossRef]

16. Tavakoli, R.; Pencheva, G.; Wheeler, M.F. Multi-level parallelization of ensemble Kalman filter for reservoir history matching. In
Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011. [CrossRef]

17. Sakov, P.; Oke, P.R. Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Weather Rev.
2008, 136, 1042–1053. [CrossRef]

18. Evensen, G. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 2004, 54, 539–560. [CrossRef]
19. Chen, Z. Reservoir Simulation: Mathematical Techniques in Oil Recovery. CBMS-NSF Regional Conference Series in Applied Mathematics;

SIAM: Philadelphia, PA, USA, 2007; Volume 77.
20. Chen, Z.; Huan, G.; Ma, Y. Computational Methods for Multiphase Flows in Porous Media. Computational Science and Engineering Series;

SIAM: Philadelphia, PA, USA, 2006; Volume 2.
21. Chen, Z.; Espedal, M.; Ewing, R.E. Finite element analysis of multiphase flow in groundwater hydrology. Appl. Math. 1994, 40,

203–226. [CrossRef]
22. Wang, K.; Liu, H.; Chen, Z. A scalable parallel black oil simulator on distributed memory parallel computer. J. Comput. Phys.

2015, 301, 19–34. [CrossRef]
23. Burgers, G.; Leeuwen, P.J.V.; Evensen, G. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 1998, 126, 1719–1724.

[CrossRef]
24. Sakov, P. EnKF-C User Guide, Version 1.64.2. 2014. Available online: https://github.com/sakov/enkf-c (accessed on

1 January 2020).
25. Stone, H.L. Probability Model for estimating three-phase relative permeability. J. Pet. Technol. 1970, 22, 214–218.: 10.2118/2116-PA.

[CrossRef]
26. Reynolds, A.C.; Li, R.; Oliver, D.S. Simultaneous estimation of absolute and relative permeability by automatic history matching

of three-phase flow production data. J. Can. Pet. Technol. 2004, 43. [CrossRef]

http://doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1111/j.1600-0870.2007.00299.x
http://dx.doi.org/10.2118/84372-PA
http://dx.doi.org/10.2118/117274-PA
http://dx.doi.org/10.2118/96375-MS
http://dx.doi.org/10.2118/96414-PA
http://dx.doi.org/10.2118/156027-PA
http://dx.doi.org/10.1016/j.fuel.2015.11.040
http://dx.doi.org/10.1016/j.compfluid.2012.11.013
http://dx.doi.org/10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
http://dx.doi.org/10.1080/10916460802455962
http://dx.doi.org/10.1007/s10596-012-9315-1
http://dx.doi.org/10.2118/141657-MS
http://dx.doi.org/10.1175/2007MWR2021.1
http://dx.doi.org/10.1007/s10236-004-0099-2
http://dx.doi.org/10.21136/AM.1995.134291
http://dx.doi.org/10.1016/j.jcp.2015.08.016
http://dx.doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://github.com/sakov/enkf-c
http://dx.doi.org/10.2118/2116-PA
http://dx.doi.org/10.2118/04-03-03

	Introduction
	Black Oil Simulator
	EnKF and DEnKF
	Parallel Technique
	Numerical Experiments
	SPE-9 Black Oil Model
	Estimation with Known Endpoints
	Estimation with Unknown Endpoints
	Parallel Performance and Discussion

	Conclusions
	References

