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Abstract: In a semiconductor fab, wafer lots are processed in complex sequences with re-entrants and
parallel machines. It is necessary to ensure smooth wafer lot flows by detecting potential disturbances
in a real-time fashion to satisfy the wafer lots’ demands. This study aims to identify production
factors that significantly affect the system’s throughput level and find the best prediction model. The
contributions of this study are as follows: (1) this is the first study that applies machine learning
techniques to identify important real-time factors that influence throughput in a semiconductor fab;
(2) this study develops a test bed in the Anylogic software environment, based on the Intel minifab
layout; and (3) this study proposes a data collection scheme for the production control mechanism.
As a result, four models (adaptive boosting, gradient boosting, random forest, decision tree) with the
best accuracies are selected, and a scheme to reduce the input data types considered in the models is
also proposed. After the reduction, the accuracy of each selected model was more than 97.82%. It
was found that data related to the machines’ total idle times, processing steps, and machine E have
notable influences on the throughput prediction.

Keywords: semiconductor fab; machine learning; production control; digital twin; simulation

1. Introduction

A semiconductor fab operates continuously to produce wafer lots through a complex
process. The high complexity comes from the re-entrances of the wafer lots into the same
machines several times [1]. For effective operating of this complex system, an advanced
technique is necessary, which allows us to capture the system’s dynamics. The purpose of
this study was to identify production factors that significantly affect the throughput level
in the semiconductor fab and find the best prediction model. Machine learning techniques
were applied to understand the relationships between real-time system status and planned
throughput per week. Identifying important factors that affect the throughput prediction
is important for production control, because it helps the shop floor managers to focus
their observations on those important factors and ensure smooth wafer lot flows within
the system.

This study used a simulation to observe the real system’s behavior to make better
decisions and improve the system’s performance. Using simulations is effective to con-
tinuously analyze the system’s key performance indicators (KPIs), in order to optimize
the performance of many systems, including in manufacturing industries [2]. Simula-
tions also provide a highly accurate estimate for system performance expectations [3].
Considering the necessity of the simulation to mimic the behavior of the represented real
system, Waschneck et al. [4] stated that synchronization between the simulation and the
real production system is possible in the digital twin concept. Based on the concept, the
considered production control system in this study is described in Figure 1.

Processes 2021, 9, 407. https://doi.org/10.3390/pr9030407 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-9414-2549
https://doi.org/10.3390/pr9030407
https://doi.org/10.3390/pr9030407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9030407
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/3/407?type=check_update&version=2


Processes 2021, 9, 407 2 of 16Processes 2021, 9, x FOR PEER REVIEW 2 of 18 
 

 

 

Figure 1. The considered production control mechanism. 

Initially, production plans were generated and implemented to operate the real pro-

duction system. The production execution data was sent regularly to the simulation. In 

the simulation, the real system's behavior was analyzed; for instance, how the number of 

processed products in a machine affects the system’s throughput. Various production con-

trol decisions (e.g., updates in schedules and dispatching rules) could be tested, as well. 

The simulation result that showed the effectiveness of each strategy was sent to the pro-

duction control system. The production control mechanism then determined which up-

date to be applied in the currently running real production system. In this study, the sim-

ulation was developed and utilized to understand the real production system's behavior. 

As a result, the important measures that significantly affected the system’s throughput 

are summarized, e.g., number of products being processed in a specific machine. They 

could then be considered for (1) identifying when to perform changes in the currently 

running real system, and (2) selecting updated production decisions. The measures were 

continuously obtained from the running system, and when the value became lower or 

higher than a certain threshold, some unusual system behaviors that can cause a reduction 

in the system’s performance could be identified. For case (1), this situation triggered the 

simulation to be executed for finding better decisions. For case (2), new production deci-

sions were made to deal with the updated situation.  

In this study, machine learning techniques were used to identify important produc-

tion factors that affect the production system's throughput level. Using machine learning 

for analysis of real manufacturing system behavior was effective, as reported by Morariu 

et al. [5], when dealing with scheduling and resource allocation issues. The usage of ma-

chine learning to model and control manufacturing processes is enabled, because it is pos-

sible to collect a large amount of data in the factory. It allows the production planners to 

analyze production issues without accurate mathematical modeling or a physics-based 

simulation of the system [6]. 

In the proposed production control mechanism (Figure 1), KPIs were identified. 

Monitoring the KPIs in real time using smart manufacturing technologies enables auto-

matic problem identification and development of a warning system [7], because the KPIs 

are presented to shop floor staff, managers, and supervisors who are in charge of making 

decisions [8]. KPIs in the manufacturing system have been listed in previous research [8], 

and there are various subcategories, including availability, utilization, and throughput, 

which were measured in this study. Evaluation of such performance evaluation factors in 

the manufacturing system is common, and the evaluation result can be used to identify 

the importance order of those factors when used to evaluate existing systems [9].  

Previous methods have ranked the factors using expert-based evaluation systems, 

such as preference ranking organization method for enrichment evaluation (PROME-

THEE) [10] and the analytic network process [11]. Different from them, this study used 

machine learning techniques to evaluate the effect of removing the factor candidates, 

while maintaining the model's high prediction accuracy. Information about the selected 

factors were recorded in real time using various sensors installed on the production floor, 

ditions of the Creative Commons At-

tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/). 

Figure 1. The considered production control mechanism.

Initially, production plans were generated and implemented to operate the real pro-
duction system. The production execution data was sent regularly to the simulation. In
the simulation, the real system’s behavior was analyzed; for instance, how the number
of processed products in a machine affects the system’s throughput. Various production
control decisions (e.g., updates in schedules and dispatching rules) could be tested, as
well. The simulation result that showed the effectiveness of each strategy was sent to the
production control system. The production control mechanism then determined which
update to be applied in the currently running real production system. In this study, the
simulation was developed and utilized to understand the real production system’s behav-
ior. As a result, the important measures that significantly affected the system’s throughput
are summarized, e.g., number of products being processed in a specific machine. They
could then be considered for (1) identifying when to perform changes in the currently
running real system, and (2) selecting updated production decisions. The measures were
continuously obtained from the running system, and when the value became lower or
higher than a certain threshold, some unusual system behaviors that can cause a reduction
in the system’s performance could be identified. For case (1), this situation triggered
the simulation to be executed for finding better decisions. For case (2), new production
decisions were made to deal with the updated situation.

In this study, machine learning techniques were used to identify important pro-
duction factors that affect the production system’s throughput level. Using machine
learning for analysis of real manufacturing system behavior was effective, as reported by
Morariu et al. [5], when dealing with scheduling and resource allocation issues. The usage
of machine learning to model and control manufacturing processes is enabled, because it is
possible to collect a large amount of data in the factory. It allows the production planners
to analyze production issues without accurate mathematical modeling or a physics-based
simulation of the system [6].

In the proposed production control mechanism (Figure 1), KPIs were identified. Mon-
itoring the KPIs in real time using smart manufacturing technologies enables automatic
problem identification and development of a warning system [7], because the KPIs are
presented to shop floor staff, managers, and supervisors who are in charge of making
decisions [8]. KPIs in the manufacturing system have been listed in previous research [8],
and there are various subcategories, including availability, utilization, and throughput,
which were measured in this study. Evaluation of such performance evaluation factors in
the manufacturing system is common, and the evaluation result can be used to identify the
importance order of those factors when used to evaluate existing systems [9].

Previous methods have ranked the factors using expert-based evaluation systems, such
as preference ranking organization method for enrichment evaluation (PROMETHEE) [10]
and the analytic network process [11]. Different from them, this study used machine learn-
ing techniques to evaluate the effect of removing the factor candidates, while maintaining
the model’s high prediction accuracy. Information about the selected factors were recorded
in real time using various sensors installed on the production floor, such as radio frequency
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identification (RFID) [12], and stored as big data. The collected data related to the selected
factors could then be used for real-time evaluation and prediction in the semiconductor
production system.

The structure of this paper is organized as follows: Section 2 reviews previous studies
and addresses the contribution of this study. Section 3 explains the developed simulation
model, data collection scheme, and considered machine learning techniques. Section 4
presents the numerical experiments and analysis. Finally, Section 5 presents the conclusions.

2. Literature Review

Machine learning methods have been used before for analysis and decision making in
semiconductor fabs. Some examples are work-in-progress prediction [13], lead time predic-
tion [14], dynamic storage dispatching [15], vehicle traffic control [16], and wafer defect
detection using image classification [17,18]. The machine learning method is classified as
a data-driven approach that is suitable for cases with complicated relationships between
many factors [19]. The studies above are related to predicting or optimizing the semicon-
ductor fab operation with predefined factors. When optimizing the production parameters,
exact decision variables can be controlled; for example, the sequence of wafer lots to be
produced at the machines, the vehicle sequence to dispatch to a destination node, and so
forth. Meanwhile, the prediction might consider the production system’s decision variables
and some derived factors that represent the production system’s situation. Identifying
important input factors and the appropriate model is necessary to predict the system’s
target values appropriately. Target values to be estimated could be the quality of the wafer
lots [20] or abnormality in the wafer lot flows [21].

In a study similar to this one, Jiang et al. [20] attempted to classify wafer lots based
on their yield levels. This was intended to minimize the defect wafer lots. Other related
studies on the yield model are [22,23]. Different from [20], this study focused on predicting
the production system’s operational factors that have important effects on the system’s
throughput, instead of observing the quality of the produced wafer lots. Lee and Cho [21]
and Lauer and Legner [24] detected an abnormality in the semiconductor production line.
Lee and Cho [21] generated a graph representing the movements of lots and compared
their prediction graph with the actual graph to identify abnormalities in the flows. In
contrast, this study focused more on understanding the whole system’s overall behavior,
instead of observing each individual lot’s movement. Lauer and Legner [24] dealt with
master production planning in the higher production planning phase; this study observed
the behavior of real-time execution of the production system.

Unlike in previous studies, in this study, machine learning was applied for analysis
related to wafer lot production control. A further comparison was made with the research
listed in a review paper about machine learning implementation in production lines [25].
All of the previous studies discussed here in the scheduling optimization field used the
regression technique to observe the cycle time. Unlike these previous research papers,
this study observed the potential of applying classification machine learning methods
to identify good and bad cases in production lines and important factors that contribute
to such case generations. Good cases referred to the weekly production data in which
the target system throughput (number of wafer lots produced each week) was satisfied,
and the bad cases were weekly data with the number of produced wafer lots less than
the target value. The observed important factors were related to number of wafer lots
waiting at each machine, number of wafer lots being processed at each machine, and each
machine’s total working and idle times in a week. The contributions can be summarized as
follows: (1) Based on the author’s knowledge, this is the first study that applies machine
learning techniques to identify important real-time factors that influence throughput in the
semiconductor fab; (2) A test bed in the Anylogic software environment was developed
based on the Intel minifab system [26]; and (3) A data collection scheme is proposed for the
production control mechanism within the simulation. The prediction scheme in this study
helps to identify important input factors to the throughput estimation. These factors can
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then be set as short-term targets when operating the semiconductor fab, including for how
to make more detailed decisions, such as scheduling and dispatching.

3. Materials and Methods

The Intel minifab system [26] was implemented in this study. The used data has been
considered by many previous studies as well [27–29]. Three types of wafer lots (Product
Pa, Product Pb, and test wafer lot TW) were processed through six steps at five machines,
as shown in Table 1. The demands for Pa, Pb, and TW per week are 51, 30, and 3 wafer
lots. Each wafer lot is processed individually on machines C, D, and E, but the lots must
form a batch with a size of three before being processed at machine A or B. Rules for the
batching for both steps 1 and 5 are, at most, only one TW lot can be included in the batch.
Pa and Pb can be mixed in step 1, but not in step 5. The fab layout consists of five cells.
Facilities located at each cell from the leftmost to the rightmost are (cell 1) entrance point
for products, (cell 2) machines A and B, (cell 3) machine E, (cell 4) machines C and D, and
(cell 5) exit point for the finished product. Machine(s) in each cell share the same buffer
with the following capacity: 18 lots for cell 2, 12 lots each for cells 3 and 4, and unlimited
capacity for the entrance and exit points. The transportation time required between two
adjacent cells is 120 seconds. Thus, an example of movement time from machine E to
the exit point is 240 seconds. Machine E requires the following setup times: 600 seconds
if the next step is a different step (e.g., changing from step 3 to step 6), 300 seconds if
the product type is changed, and 720 seconds if processing steps and product types are
changed simultaneously.

Table 1. Processing steps, machine eligibilities, and time information for the Intel minifab system.

Processing Steps
Machine A & B Machine C & D Machine E

L P U L P U L P U

step 1 1200 13,500 2400
step 2 900 1800 900
step 3 600 3300 600
step 4 900 3000 900
step 5 1200 15,300 2400
step 6 600 600 600

L = loading time, P = processing time, U = unloading time (in seconds).

This study introduced an observation mechanism to identify situations that will
satisfy the requested throughput and bad conditions that production planners should pay
attention to ensure throughput fulfillment. The current study focused more on the wafer
lot movement dynamics and ensured that meaningful observation factors were obtained.
Thus, the consideration of machine operators was removed from the simulation in this
study. Some necessary wafer lot dispatching and machine selection rules have not been
previously defined in [26]. Therefore, rules were added into the simulation as follows:

• The First-In-First-Out rule was used to select which wafer lot entered each machine.
In other words, the entrance sequence of the wafer lots into a machine’s queue de-
termined their sequence when entering the machine. For machine A or B, any batch
that could be feasibly formed using the earliest arriving products was selected to
be processed in the machine. As stated previously [26], when forming a batch for
processing step 1, at most, one TW wafer lot can be included. The possible batch
configurations for processing step 1 are (Pa,Pa,Pa), (Pa,Pa,Pb), (Pa,Pa,TW), (Pa,Pb,TW),
(Pb,Pb,TW), (Pb,Pb,Pa), and (Pb,Pb,Pb). Meanwhile, when performing processing
step 5, different product types cannot be mixed into the same batch, though having
one TW lot, at most, is acceptable. The possible batch configurations for processing
step 5 are (Pa,Pa,Pa), (Pa,Pa,TW), (Pb,Pb,TW), and (Pb,Pb,Pb). Every time machine
A or B becomes empty or a wafer lot enters queue of any machine A or B when the
machine is idle; any possible batch is formed using the earliest arriving wafer lots at
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the machine’s queue. If the batch is formed, the batch is released for processing in
the machine.

• The machine with a smaller total number of products waiting in the queue and
products being processed is selected as the next machine for the lot or batch (when an
alternative machine exists). After each wafer lot or batch processing is completed in a
machine, the lot or batch is delivered to the next processing step (e.g., after a wafer
lot completes its processing step 4 at machine D, before it starts processing step 5 at
machine A or B). At this time, it is inserted into the queue of the machine with the rule
set above. The rule above is less important than the same machine visit rule for TW, if
applicable. Considering that each TW lot is not allowed to be processed in the same
machine, if necessary, assigning this TW lot to the next machine with a higher number
of allocated wafer lots is acceptable.

A simulation test bed using Anylogic 8.7.0 was developed based on the system above,
as shown in Figure 2. The wafer lots were released every shift (one shift is 12 h). Thus,
the number of wafer lots to be released (per week) was distributed into 14 shifts (Table 2).
The demand was released according to the generated schedule until the simulation was
terminated. The recorded data were related to real-time production parameters, as listed in
Table 3. The selection of production parameters was based on their importance according
to previous studies: machine buffer capacity [30], machine utilization, and throughput [8].
The number of processing steps performed by each machine was added to consider the
re-entrance characteristic in the studied semiconductor fab.

Table 2. Wafer lot release schedule per shift (for one week).

Number of Released Wafer Lots

Shift Pa Pb TW

shift 1 3 2 1
shift 2 4 2 0
shift 3 4 2 0
shift 4 3 3 0
shift 5 4 2 0
shift 6 4 2 0
shift 7 3 2 1
shift 8 4 2 0
shift 9 4 2 0

shift 10 3 3 0
shift 11 4 2 0
shift 12 4 2 0
shift 13 3 2 1
shift 14 4 2 0

total 51 30 3

The throughput (data no. 43) was measured at the end of each week, in accordance
with the target set in [26]. A set of data was measured from the start of a week until its end.
Although there might be a slight effect from the decisions at the end of a shift on the earlier
part of the next shift, we assumed that such an effect can be ignored. To compensate for
this, we collected a large data set with various conditions at the start of each week.

To assess the relationships between the data, analysis using machine learning tech-
niques for classification (Table 4) was conducted. The flowchart of this study is presented
in Figure 3. In stage 1, the simulation, using Anylogic, was developed based on the Intel
minifab design and the data collection, as explained above. As a result of this stage, the
recorded data was obtained and used for training each machine learning model listed in
Table 4 (stage 2).
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Table 3. Collected data in the simulation.

Data No. Data Name Description

1 total_captures_queue_A_per_week number of wafer lots waiting at machine A’s buffer in one week

2 total_captures_queue_B_per_week number of wafer lots waiting at machine B’s buffer in one week

3 total_captures_queue_C_per_week number of wafer lots waiting at machine C’s buffer in one week

4 total_captures_queue_D_per_week number of wafer lots waiting at machine D’s buffer in one week

5 total_captures_queue_E_per_week number of wafer lots waiting at machine E’s buffer in one week

6 total_captures_queue_AB_per_week number of wafer lots waiting at machine A’s and machine B’s buffers in one week

7 total_captures_queue_CD_per_week number of wafer lots waiting at machine C’s and machine D’s buffers in one week

8 total_captures_queue_A_1_per_week number of wafer lots with processing step 1 waiting at machine A’s buffer in one week

9 total_captures_queue_A_5_per_week number of wafer lots with processing step 5 waiting at machine A’s buffer in one week

10 total_captures_queue_B_1_per_week number of wafer lots with processing step 1 waiting at machine B’s buffer in one week

11 total_captures_queue_B_5_per_week number of wafer lots with processing step 5 waiting at machine B’s buffer in one week

12 total_captures_queue_C_2_per_week number of wafer lots with processing step 2 waiting at machine C’s buffer in one week

13 total_captures_queue_C_4_per_week number of wafer lots with processing step 4 waiting at machine C’s buffer in one week

14 total_captures_queue_D_2_per_week number of wafer lots with processing step 2 waiting at machine D’s buffer in one week

15 total_captures_queue_D_4_per_week number of wafer lots with processing step 4 waiting at machine D’s buffer in one week

16 total_captures_queue_E_3_per_week number of wafer lots with processing step 3 waiting at machine E’s buffer in one week

17 total_captures_queue_E_6_per_week number of wafer lots with processing step 6 waiting at machine E’s buffer in one week

18 machine_A_step1_per_week number of wafer lots with step 1 processed at machine A in one week

19 machine_A_step5_per_week number of wafer lots with step 5 processed at machine A in one week

20 machine_B_step1_per_week number of wafer lots with step 1 processed at machine B in one week

21 machine_B_step5_per_week number of wafer lots with step 5 processed at machine B in one week

22 machine_C_step2_per_week number of wafer lots with step 2 processed at machine C in one week

23 machine_C_step4_per_week number of wafer lots with step 4 processed at machine C in one week

24 machine_D_step2_per_week number of wafer lots with step 2 processed at machine D in one week

25 machine_D_step4_per_week number of wafer lots with step 4 processed at machine D in one week

26 machine_E_step3_per_week number of wafer lots with step 3 processed at machine E in one week

27 machine_E_step6_per_week number of wafer lots with step 6 processed at machine E in one week

28 machine_A_available_production_
time_with_idle_per_week

percentage of machine A’s available production time after excluding the preventive and
emergency maintenances in one week

29 machine_B_available_production_
time_with_idle_per_week

percentage of machine B’s available production time after excluding the preventive and
emergency maintenances in one week

30 machine_C_available_production_
time_with_idle_per_week

percentage of machine C’s available production time after excluding the preventive and
emergency maintenances in one week

31 machine_D_available_production_
time_with_idle_per_week

percentage of machine D’s available production time after excluding the preventive and
emergency maintenances in one week

32 machine_E_available_production_
time_with_idle_per_week

percentage of machine E’s available production time after excluding the preventive and
emergency maintenances in one week

33 machine_A_utilization_
all_working_times_per_week

percentage of machine A’s actual production time after excluding the preventive
maintenance, emergency maintenance, and idle times in one week

34 machine_B_utilization_
all_working_times_per_week

percentage of machine B’s actual production time after excluding the preventive
maintenance, emergency maintenance, and idle times in one week

35 machine_C_utilization_
all_working_times_per_week

percentage of machine C’s actual production time after excluding the preventive
maintenance, emergency maintenance, and idle times in one week

36 machine_D_utilization_
all_working_times_per_week

percentage of machine D’s actual production time after excluding the preventive
maintenance, emergency maintenance, and idle times in one week

37 machine_E_utilization_
all_working_times_per_week

percentage of machine E’s actual production time after excluding the preventive
maintenance, emergency maintenance, and idle times in one week
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Table 3. Cont.

Data No. Data Name Description

38 machine_A_idle_time_
percentage_per week percentage of machine A’s total idle time in one week

39 machine_B_idle_time_
percentage_per week percentage of machine B’s total idle time in one week

40 machine_C_idle_time_
percentage_per week percentage of machine C’s total idle time in one week

41 machine_D_idle_time_
percentage_per week percentage of machine D’s total idle time in one week

42 machine_E_idle_time_
percentage_per week percentage of machine E’s total idle time in one week

43 throughput_per_week number of wafer lot finished in one week

Table 4. Machine learning techniques applied in this study.

Machine Learning Technique Reference

adaptive boosting (AB) [31]
linear classifiers with stochastic gradient descent training (SGD) [32]

neural network (multilayer perceptron 1) (NNMLP) [32]
gradient boosting (GB) [33]

random forest (RF) [34]
k-nearest neighbors (KNN) [35]

classification and regression tree (CART) [33]
naive bayes (gaussian 1) (NB) [36]

support vector machine (C-support vector 1) (SVM) [37]
1 Specific methods that are considered in this study.
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Definitions of the models (Table 4) are provided in previous research [38,39], as follows:

• Adaptive boosting (AB) The purpose of AB is to improve the performance of weak
classifiers, such as the decision tree. The results of a previous classifier are inserted
into the next one in a sequential training scheme. During this process, the mistakes of
earlier classifiers are dealt with to improve the final prediction quality.

• Linear classifiers with stochastic gradient descent training (SGD) In SGD, estimation is
conducted using linear models with stochastic gradient descent learning. The gradient
of the loss is measured using each sample, and the model is updated with a certain
decreased strength (learning rate).
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• Neural network (multilayer perceptron) (NNMLP) NNMLP is a fully connected feed–
forward network. The error propagation method is used for conducting the training.

• Gradient boosting (GB) GB is the improved version of the classification and regression
tree (CART). Each new tree is generated in a serial order to correct the prediction error
of the prior tree.

• Random forest (RF) RF uses decision trees for the classification task. The tree’s depth
is increased by one, and this process is iterated for all nodes in the tree until a certain
depth is reached.

• K-nearest neighbors (KNN) KNN predicts each data record in the test set by selecting
the k nearest training set vectors. The classification is performed based on the majority
of the votes.

• Classification and regression tree (CART) Training of the CART model includes tree
generation through recursive binary splitting. Various split points are tested using a
cost function, and the lowest cost-split is chosen to deal with the organized values.

• Naive bayes (gaussian) (NB) NB performs the classification based on the conditional
probability of each categorical class variable. Such a maximum likelihood method is
used for parameter estimation in various problem domains.

• Support vector machine (C-support vector) (SVM) SVM conducts the classification
by generating N-dimensional hyperplanes that separate the data. Penalty factor C is
considered to control the trade-off between allowing the existence of training errors
and setting rigid margins.

The Python sklearn library [39] was applied in Visual Studio 2019 Community Plat-
form to implement the machine learning techniques. When training each model, the
following steps were conducted:

1. Division of the collected data into training and testing data; the data before the
division is shuffled, and the percentage of testing data is set equal to 20%.

2. Testing accuracy of each model using k-fold cross-validation; the number of consid-
ered splits is ten. The training data are shuffled before the testing.

In stage 3, models with the best accuracy were selected. Until the current stage, all
input data (data no. 1–42) were considered, but observing only some input data might be
sufficient to predict the system’s throughput. Thus, in stage 4, the effect of reducing the
input data to the throughput prediction accuracy changes was observed using the second
step above. Given the complete input data, one input data was iteratively reduced, and
the difference was observed. After checking all possible candidates in one iteration for
reducing one data, the best accuracy was obtained. If the new prediction accuracy was
the same or better than the current one, the input data combination was updated. In the
end, the input data combination that produced the best accuracy was obtained. It was
expected that identifying the important input data would help practitioners to focus their
observations during the production period. The observation time was shortened, and
more systemic insights could be obtained after analyzing the type of remaining input data.
Finally, the testing data was fitted using the selected input data by calculating the precision,
recall, f1-score, and support metrics.

4. Results

The simulation was run using random seed values from 0 to 30. The data was
collected using each seed value after running the simulation for 325 weeks (on average).
This observation period length was long enough, considering that, in practice, production
control decisions should be made within shorter time periods (less than a year, ideally a few
weeks or months) to ensure customers’ demand satisfaction is met. Given that the interval
for capturing the simulation data was set to 1800 seconds and a shift equals 604,800 seconds,
the number of data captures for each parameter in a week was 336 (that is, 604,800/1800). At
the end of each week, each recorded parameter’s average value was obtained (accumulated
value of each parameter in the week divided by the number of data captures per week).
Data from 10,086 weeks were collected through the simulation after removing the records
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that were obtained during the warmup period. Each weekly data were considered to be in
the warmup period if their value was less than the minimum throughput in the steady-
state period; for example, the data in the first week of Figure 4. The data are available
at https://github.com/ivanksinggih/Intel_minifab_Anylogic/tree/data (accessed on 7
February 2021).

The system’s throughput was between 73–95 wafer lots per week during the data
collection period. The simulation had an average throughput (amount of lots per week) of
84 lots, which is same as the system’s initial design, so the developed simulation model
was validated. It was expected that the system throughput would be at least equal to
84 wafer lots per week. Identifying appropriate system parameters to allow for more than
84 lots to be produced could allow additional demands to be satisfied. Thus, two classes
were defined for the classification: (1) a “good” case, with throughput between 84–95 wafer
lots per week, and (2) a “bad” case, with throughput between 73–83 lots per week. It
was expected that using the selected model and input data set allow satisfying the target
throughput and even having additional capacity to produce more lots.

The result of accuracy testing for each machine learning technique is presented in
Figure 5 (box plot) and Table 5. The methods with an accuracy of more than 95% are
AB, GB, RF, and CART. As shown by the box plot, these four best methods also have
a small deviation in their prediction results, which indicate that they were sufficiently
reliable to produce good results in multiple runs. This fact is important considering that the
selected prediction methods should be used to deal with new data obtained continuously
from semiconductor fab that operates in high uncertainty (e.g., because of emergency
maintenances). More observations were conducted to reduce the input data when using
those four best methods. The final accuracies of those four best methods after reducing the
input data are shown in Table 6. The AB, GB, and RF methods have slightly better accuracy
than CART, and each of them considers different input data combinations when predicting
the throughput.
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Further analysis is required to identify whether a certain data group has more impor-
tance than others in the throughput prediction process. The input data are classified in
two ways based on the following information: (1) data type and (2) machine-related data.
The definition of each group and the input data inclusion into each group are presented
in Table 7.

Each input data’s importance was further assessed by observing how long each of
them was maintained when generating the final model, when using methods with the best
accuracy (how long each of them remained within the iterations without being removed
from the models). The analysis framework is presented in Figure 6. In the initial step (left
part of Figure 6), the iteration index, the point at which each input data was removed,
is recorded. An example of the AB model is presented in Figure 7. Based on Figure 7,
input data 1 was removed in the first iteration (because its removal produces a new model
with the least accuracy), input data 10 in the second iteration, input data 20 in the third

https://github.com/ivanksinggih/Intel_minifab_Anylogic/tree/data
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iteration, and so on. The input data removal was stopped at iteration 28, because any input
data removal at that iteration reduced the accuracy. When the iterations stopped, the final
model’s remaining input data were marked as not removed until the end of the iterations
(iteration 42).
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Table 5. Obtained accuracy of each machine learning technique.

Machine Learning Technique Accuracy

adaptive boosting (AB) 97.57% 1

linear classifiers with stochastic gradient descent training (SGD) 67.96%
neural network (multilayer perceptron) (NNMLP) 77.27%

gradient boosting (GB) 97.78% 1

random forest (RF) 97.83% 1

k-nearest neighbors (KNN) 71.70%
decision tree (CART) 95.80% 1

naive bayes (gaussian) (NB) 87.85%
support vector machine (C-support vector) (SVM) 78.31%

1 More than 95% accuracy.

Table 6. Accuracy of each machine learning technique after reduction of input data.

Best
Model

Input Data Combination
(with Indices in Table 3)

Accuracy (with Selected
Input Parameters)

AB 2–3, 9, 14, 16, 18, 22, 24–27, 31, 35, 40–42 97.88% 1

GB 6, 11, 13–14, 16, 18, 21, 26–27, 30–31, 35, 39, 41–42 97.88% 1

RF 1, 6, 12, 15, 22–23, 26–27, 32, 35, 41–42 97.88% 1

CART 27 97.82%
1 Combination of input data with the best accuracy among the best models.

In the next step of Figure 6 (right part of the figure), the obtained results from above
are summarized based on the groups defined in Table 7. The values at the rightmost part
of Figure 6 show the average iteration index, at which point the input data (in the group)
were removed from the four best models. The data groups with larger average values
contained input data that remained longer in the model. Input data in such groups had
more effects on the predicted throughput.
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Table 7. Input data groups based on (1) data type and (2) machine-related data information.

Grouping Rule Groups and Definitions Included Input Data

(1) data type

(group 1A) number of wafer lots waiting at each machine
(without processing step consideration) 1–7

(group 1B) number of wafer lots waiting at each machine
(with processing step consideration) 8–17

(group 1C) number of processed wafer lots (with
processing step consideration) 18–27

(group 1D) percentages of available machines’
production times after excluding maintenance times 28–37

(group 1E) percentage of machines’ total idle times 38–42

(2) machine

(group 2A) machine A-related input data 1,6,8–9,18–19,28,33,38
(group 2B) machine B-related input data 2,6,10–11,20–21,29,34,39
(group 2C) machine C-related input data 3,7,12–13,22–23,30,35,40
(group 2D) machine D-related input data 4,7,14–15,24–25,31,36,41
(group 2E) machine E-related input data 5,16–17,26–27,32,37,42Processes 2021, 9, x FOR PEER REVIEW 14 of 18 
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When observed from the groupings based on the data types, the results show that
the three most important data groups are the percentage of the machines’ total idle times
(Group 1E), the number of processed wafer lots (with processing step consideration)
(Group 1C), then the number of wafer lots waiting at each machine (with processing step
consideration) (Group 1B). Input data in the machines’ total idle times group are important,
because an appropriate idle time balance between the machines is required for processing
the wafer lots and ensures smooth flows of the lots. Data in the number of processed wafer
lots (with processing step consideration) group had more influence on the throughput
prediction than the number of wafer lots waiting at the machines’ queues (input data in
Group 1A and 1B). Thus, the wafer lot dispatching to the machines became an important
decision to increase the system’s throughput. Regarding the number of waiting wafer lots
data, input data in Group 1B were more important than that in Group 1A. This shows
that ensuring an appropriate amount of wafer lots based on their processing steps was
important to increase the throughput. Having wafer lots with a balanced amount of
different processing steps ensured a more continuous flow of wafer lots compared with
extreme cases, in which more wafer lots with earlier processing steps (steps 1, 2, 3) only, or
with later processing steps (steps 4, 5, 6) only, were available in the machines’ queues. An
unbalanced amount of wafer lots of each processing step could also disrupt the smooth
flow of lots. An example of this was when more wafer lots with next processing steps 1, 3,
and 5 were ready at the machines’ queues. In such a situation, the system produced fewer
wafer lots with next processing steps 2, 4, and 6, which caused an insufficient supply of
lots for executing processing steps 3 and 5.
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When observed from the groupings based on the machine types, input data related to
machine E (Group 2E) had slightly more importance than input data for other machines.
The reason for this might be because machine E handles a higher workload (processing
steps 3 and 6) than machines A and B (that together handle processing steps 1 and 5) and
machines C and D (that handle processing steps 2 and 4). Having a good production plan
and control for machine E will increase the throughput compared to focusing treatments
on other machines.

The analysis above is derived from understanding how the system works. Future
studies must conduct more detailed experiments, supported with statistical analysis, to
identify the exact reasons the input data in some groups are more important than in others.

The four best machine learning techniques allowed good prediction of the real system.
The results obtained using the testing data are presented in Table 8.

Table 8. Precision, recall, f1-score, and support values obtained using the testing data.

Best Model Data Class
Evaluation Metrics Number of

Correctly
Classified DataPrecision Recall F1-score Support

AB
good 0.98 0.95 0.96 729 691
bad 0.97 0.99 0.98 1289 1275

GB
good 0.98 0.96 0.97 729 699
bad 0.98 0.99 0.98 1289 1272

RF
good 0.98 0.96 0.97 729 699
bad 0.98 0.99 0.98 1289 1272

CART
good 0.98 0.96 0.97 729 699
bad 0.98 0.99 0.98 1289 1272

5. Conclusions

In this study, a simulation of a semiconductor fab based on the Intel minifab design
was developed. The contributions of this study are as follows: (1) this is the first study to
apply machine learning techniques to identify important real-time factors that influence
throughput in the semiconductor fab; (2) this study developed a test bed in the Anylogic
software environment based on the Intel minifab layout; and (3) this study proposed a data
collection scheme for the production control mechanism.

To analyze production states that cause a high possibility of satisfying the required
throughput, a data collection scheme was designed, and several machine learning tech-
niques were compared. After training the model candidates, the four best models (adaptive
boosting, gradient boosting, random forest, decision tree), with accuracies of more than
95%, were selected; and after reducing the input data, the models’ accuracy became 97.88%,
97.88%, 97.88%, and 97.82%, respectively. Further analysis showed that the machines’
total idle times and the number of wafer lots in the machines and their queues (with their
processing step information), and data related to machine E, have more influence when
predicting the throughput.

The following topics are recommended for future studies: (1) development and testing
of actual production decisions (e.g., lot dispatching and rescheduling functions of the
machines), considering the importance of the input data; and (2) the inclusion of the
operators’ working time and limitations in the available material handling equipment. This
study limited the observations to weekly data. It would be interesting for future studies
to measure each shift’s input data (instead of each week’s). It is necessary to consider the
sequence of values (or accumulated values) for the input data measured in consecutive
shifts within each week. This is because decisions made in a shift have a great influence on
the input data values in the next shift, considering the shorter length of a shift (compared
with a week). Understanding the effect of each shift’s decisions will help practitioners
achieve more accurate production control in each shift, while still reaching the required
throughput at the end of each week.
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